Density-gradient expansion of the kinetic-energy functiona] for molecules

Chengteh Lee and Swapan K. Ghosh'

Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27514

(Received 2 December 1985)

The gradient expansion of the molecular kinetic-energy functional is assessed through numerical results for 14 diatomic and polyatomic molecules. The correlation of the dissociation energies (D_e) of molecules with the Weizsacker contribution to the kinetic energy (T_W) is established through a plot of D_e/N^2 against T_W where N is the number of electrons. The conclusions support and extend the observations of Allan et al. [J. Chem. Phys. 83, 4562 (1985)]

Results on the density-gradient expansion of the kineticenergy functional, $T[\rho] = T_0 + T_2 + T_4$, for molecular systems have been reported only recently by Allan et al ¹ although analogous studies for atoms have been quite extensive.² For light diatomic molecules, Allan et al. have assessed the gradient expansion functional by numerical comparison with corresponding Hartree-Fock values; they have also verified an earlier conjecture of Mucci and March' on the correlation between the dissociation energies D_e and the Weizsacker contribution T_w ($T_w = 9T_2$). The present work reports similar investigations for polyatomic molecules and a few diatomic molecules.

In Table I, numerical results for T_0 , $T_0 + T_2$, and $T_0 + T_2 + T_4$, calculated with densities from the double- ζ Gaussian basis wave function of Snyder and Basch,⁴ are compared with the corresponding Hartree-Fock kinetic energies, T_{HF} , for 14 molecules. The ratios of T_2/T_0 and T_4/T_2 are close to 0.1 and 0.2, respectively; $T_0 + T_2$ is found to underestimate T_{HF} by less than 1% for all the molecules except H₂ and BH₃, while $T_0 + T_2 + T_4$ shows overestimation by more than 1%. The deviation is much reduced if the T_4 term is multiplied by a factor of $\frac{1}{2}$ or $\frac{1}{3}$. Our conclusions are thus essentially the same as those of Allan et al ¹ based on the results for diatomic molecules alone.

Allan et $al¹$ used a Slater basis set whereas we have em-

ployed Gaussian basis set throughout. This enables us to test the sensitivity of the results to the nature of the basis set, since the diatomic molecules HF, CO, N_2 , and F_2 of Table I are molecules also considered by Allan et $al¹$ It is observed that the T_0 values differ by less than 0.05%, the T_2 's by 0.1%, and the T_4 's by about 3%. This increasing trend may be a consequence of the fact that gradients are more sensitive to the nature of the basis set.

For the molecule N_2 , the local behavior of the kineticenergy density $t(r, \rho)$ is displayed in Fig. 1, which is a plot of the z-direction-averaged kinetic-energy density $t_R(R)$ $[-2\pi \int t(r,\rho) dz]$ (where \hat{z} is the bond axis) against R, the distance from the bond axis. Locally the kinetic-energy components deviate from the Hartree-Fock result; the good global value is a consequence of cancellation of errors in different regions. The shell structure apparent from the piecewise linear nature of $log_{10}t_R$ is more prominent in the radial density $P_R(R)$ defined as $P_R(R)=2\pi R \int \rho(r) dz$, representing the total density in a cylindrical shell at a distance R around the bond axis.

Based on the prediction of the relation between the dissociation energy and the density gradient by Mucci and March,³ Allan *et al.*¹ have shown, for diatomic molecules, a numerical evidence for the correlation between D_e/N^2 (where N is the number of electrons) and the second gra-

Molecule	$T_{\rm HF}$	T_{0}	T_W	$T_0 + T_2$	$T_0 + T_2 + T_4$
H ₂	1.128	0.981	1.128	$1.107(-1.88)$	1.178(4.44)
BH ₃	26.34	23.83	22.99	26.38(0.17)	26.94 (2.29)
CH ₄	40.17	36.45	32.82	40.10 (-0.19)	40.91 (1.85)
HF	100.0	91.30	73.05	$99.42 (-0.59)$	101.0(1.00)
NH ₃	56.16	50.97	44.22	$55.88 (-0.49)$	56.90 (1.32)
H ₂ O	76.08	69.19	57.74	$75.61 (-0.62)$	76.92 (1.11)
BF	124.2	113.2	94.15	$123.7 (-0.41)$	125.8 (1.30)
$_{\rm CO}$	112.7	102.2	88.48	$112.1 (-0.52)$	114.1(1.28)
C_2H_2	76.70	69.52	62.98	$76.52 (-0.25)$	77.93 (1.60)
N ₂	108.7	98.53	86.52	$108.1 \left(-0.54 \right)$	110.1(1.25)
H_2CO	113.8	103.3	88.95	$113.2 (-0.54)$	115.3(1.30)
F ₂	198.5	180.6	145.9	196.8 (-0.85)	199.9 (0.66)
CO ₂	187.5	170.3	1447	186.42 (-0.60)	189.5 (1.05)
N ₂ O	183.6	166.7	142.8	$182.5 (-0.59)$	186.2(1.38)

TABLE I. Kinetic energies for molecules. Quantitites in parentheses indicate relative errors, in percentage with respect to Hartree-Fock values. All values are in atomic units.

FIG. 1. z-direction-averaged kinetic-energy density $t_R(R)$ $[-2\pi \int t(r, \rho) dz]$ for the nitrogen molecule vs the distance R from the bond (upper finger). Also z-direction-averaged radial-density $P_R(R)$ [= $2\pi R \int \rho(\mathbf{r}) dz$].

dient term T_2 . Our plot of D_e/N^2 against T_w , in Fig. 2, for several diatomic and polyatomic molecules shows a very good correlation (almost linear) between these two quantities and thus strengthens the previous conclusion. '

FIG. 2. D_e (in kcal/mol)/ N^2 vs T_W for molecules.

We are grateful to Professor Robert G. Parr for many helpful discussions and constant encouragement. This work has been supported by research grants to the University of North Carolina from the National Science Foundation and the National Institutes of Health.

- On leave from Heavy Water Division, Bhabha Atomic Research Center, Bombay 400 085, India.
- ¹N. L. Allan, C. G. West, D. L. Cooper, P. J. Grout, and N. H. March, J. Chem. Phys. \$3, 4562 (1985).
- 2%. P. Wang, R. G. Parr, D. R. Murphy, and G. A. Henderson, Chem. Phys. Lett. 43, 409 (1976); C. C. Shih, Phys. Rev. A 14, 919 (1976); D. R. Murphy and R. G. Parr, Chem. Phys. Lett. 60,

377 (1979); D. R. Murphy and W. P. Wang, J. Chem. Phys. 72, 429 (1980); D. R. Murphy, Phys. Rev. A 24, 1682 (1981); S. K. Ghosh and L. C. Balbas, J. Chem. Phys. \$3, 5778 (1985).

- ³J. F. Mucci and N. H. March, J. Chem. Phys. 78, 6187 (1983).
- ⁴L. C. Snyder and H. Basch, Molecular Wave Functions and Properties: Tabulated from SCF Calculations in a Gaussian Basis Set (Wiley, New York, 1972).