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Via Nelson s stochastic mechanics, a method for the solution of the hydrodynamical version of
the logarithmic nonlinear Schrodinger equation (LNLSE), with a time-dependent forced-harmonic-
oscillator potential, is presented. Based on a new interpretation of the interplay between dispersion
and nonhnearity, a revealing general spreading-eave-packet solution is found. The complete sto-
chastic process associated with the LNLSE is also derived and decomposed into underlying process-
es of independent nature (classical and quantum). Physical consequences and conditions which al-
low the existence of solitonlike (nonspreading) solutions are described: Among them, it is found that
the zero-point energy is given by eo ——ililo/2, where I10=(A,/2)+ [(A, /2)t+cooi]'~2 with coo and A, be-

ing the harmonic frequency and the nonlinearity strength, respectively.

Nonlinear Schrodinger equations (NLSE's) have been
ari essential and pervasive ingredient of many physical
theories. ' 3 As is well known, these equations possess
special particlelike solutions, which propagate without
change of form, and have some well-defined shape (soli-
tons, kinks). One of the most remarkable NLSE's is that
with a logarithmic nonlinear term ( —b 1 ~ng ~

). This
was proposed by Bialynicki-Birula and Mycielski (BBM)
(Ref. 4) and has recently been a center of considerable
research. " While retaining many of the known
features of the linear Schrodinger equation, BBM showed
that only such a nonlinear term satisfies the condition of
separability of noninteracting systems. In all other types
of nonlinearities, the existence of even an isolated subsys-
tem would influence the physics of all other subsystems of
the Universe. Thus, they concluded that such an equa-
tion was the best candidate for a nonlinear Uariant of the
linear Schrodinger equation

The physical reality of the logarithmic nonlinear
Schrodinger equation (LNLSE) has been tested by neutron
interferometer experiments. The results indicate that, as
far as atomic physics is concerned, there is no definite
basis for such an equation. '

Very recently, however, Hefters has given robust physi-
cal grounds for the use of the LNLSE by applying it to
nuclear physics and obtaining qualitative and quantitative
positive results. He argues that the only consistent inter-
pretation of such an equation is that the LNLSE holds
true for extended objects, e.g., nucleons and a particles,
and not for point particles (in the sense of atomic physics)
as originally suggested by BBM and subsequently as-
sumed in the experimental tests. Thus, he explains the
negative results of the previous tests.

Further, it has been shown that the BBM nonlinear
term emerges naturally in the stochastic formulation of
quantum mechanics. ' " A remarkable fact has been
found: The logarithmic nonlinear term originates from an
internal stochastic force due to quantum fiuctuations (re-
sulting from the action of a hypothetical invariant back-

ground field)' and its strength is an A-dependent parame-
ter (b =trtA, /2). This implies that such a nonlinearity does
not contribute in the classical limit, 'o as will become trans-
parent with the results of this work.

Another distinct feature of the LNLSE is that it admits
special Gaussian-shaped solitonlike solutions (we show
below that this is a particular case of a more general solu-
tion generated by the crucial interplay between nonlineari-
ty and spreading). This is a central and fundamental
point in the experimental tests, which have focused on the
investigation of changes in the (longitudinal and lateral }
spreading of wave packets.

In this paper, we address this fundamental point from a
new perspective. Via Nelson's stochastic mechanics we
present a method for the solution of the hydrodynamical
version of the LNLSE with a time-dependent forced-
harmonic-oscillator potential. Based on a new interpreta-
tion of the crucial interplay between dispersion and non-
linearity, we find a general spreading-wave-packet solu-
tion and describe the physical consequences and condi-
tions for the very existence of solitonlike solutions. We
also derive the complete stochastic process associated with
the LNLSE and decompose it, within the same scheme,
into underlying processes of independent nature (classical
and quantum}. Then, we find that the zero-point energy
is iven by eo ——410o/2, where Qo= (A. /2) + [(A,/2)
+coo]'/ with coo and A, being the harmonic frequency and
the nonlinearity strength, respectively. So, we propose
that the present theory uses stochastic mechanics only in
as much as it allows an alternative representation of the
LNLSE, and provides physically intuitive and mathemati-
cally more transparent outcomes. Thus, our findings per
se provide a bridge to a relatively simple alternative way
for new investigations on the LNLSE, irrespective of
whether stochastic mechanics is fully equivalent to ordi-
nary quantum mechanics, or, at its present status, just sig-
nificantly overlaps with it. '

Let us begin by reformulating the LNLSE through
Nelson's stochastic mechanics ' a stochastic formula-
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dx(t)=b{x(t),t)dt+(A/m)'~ dw(t), (la)

where dw (t) is a Wiener process with expectations
(dw (t) ) =0, (dw (t) ) =dt and fi /m is the diffusion coef-
ficient. The forward drift velocity b is a dynamical vari-
able given by

b (x, t) = v (x,t)+ (A/2m)[B 1np(x, t)jc}x], (lb)

where p and U are the probability density and the current
velocity of the process determined through

c}p c}(pv)
(2a)

c}t c}x

tion of quantuin mechanics in terms of quantum fluctua-

tions of a system, resulting from the action of a stochastic
background field. The basic assumption here is that the

system under consideration consists of a quantum extend-

ed particle in a time-dependent forced-harmonic-oscillator
potential [ V= ,'m—cv (t)x F—(t)x], whose quantum state

corresponds to a Markov process x (t), which is a solution
of the stochastic differential equation

md(u) /dr+mcus (t)(x ) =F(t), (5a)

where (u) represents the velocity of the coordinate (x )
[(x ) =—x, (t)) of the center of mass of the system and is
given by

(u) =d(x)jdt=x, (t) . (&b)

Accordingly, the above discussion suggests that Eq. (2b)
can be split into (an ansatz}

time-dependent external potential of the form as in Eq. (3)
is present. As we will show below, no solitonlike solution
exists unless co(t) is a constant (a necessary condition).
This answers affirmatively an open question recently for-
mulated by Hasse on "whether there exist solitons in oth-
er potentials besides the linear potential. " Further, we
will verify that, as in Hasse's work, Fq„=O is a suffi-
cient, but restrictive (co=0), condition for the existence of
a solitonlike solution of the LNLSE. In any case, Eq. (4)
will be self-consistently satisfied.

Thus, Eq. (2b) can be reduced to'

and

au au 1aV 1 a
+v +— = —— {Vqu+ VBBM}

c}t c)x m c}x m Bx

c} R 1 c}ip'n AA.
lnp =k(t)(x —(x ) )

2m' p'" ax'

where V is the time-dependent forced-harmonic-oscillator
potential, and Vq„= —(fi /2m)p '~ (c}p'r~/c}xi) and
VaaM= —(SL/2)lnp are the Madelung-Bohm and the
Bialynicki-Birula and Mycielski quantum potentials,
respectively. In doing so, one can show that the wave
function g(x, t) p'/ (x, t)exp[iS(x, t)], where S(x,t) is
such that u(x, t) =(A/m)(BS/c}x), satisfies the LNLSE:

.„a@ rP a'@
Bt 2m

+ , mcus (t)x F—(t)x— ln—
~ g ~

(3)

We turn now to the central point of our method, i.e.,
the essential feature emerging from Vq„and VaaM (which
are responsible for the dispersion and nonlinearity in the
LNLSE, respectively). This feature is noteworthy in that
the force arising from the total quantum potential
( Vq„+ VBBM) is not like the mechanical force of a wave
pushing on a particle with a pressure proportional to the
wave intensity. Rather, it acts more like an intrinsic,
self-information content intimately attached to the sto-
chastic background field. ' So, we assume that the expec-
tation (classical) value of the total quantum force vanishes
for all times, i.e.,

«,.)-=-(~(V,.+V,. )/~ )=o, (4)

where (A) = f Apdx is the expectation value of A taken
over an ensemble of equivalent particles. This is a new as-
suinption as far as treating the LNLSE, on which bears
our central interest, and will later be justified self-
consistently. In fact, previous methods for the investiga-
tion of solitonlike solutions of the LNLSE (in a similar
hydrodynamical form } cannot be employed when a

k (t)= [A /m o (t) —RA, /mcr(t)],

(x)—=x, (t) . (8c)

Next, substituting Eq. (8a) into Eq. (2a) and integrating,
one obtains

u(x, t) =[cT'(t)/2o(t)][x —x,(t)]+x,(t),
where the constant of integration must be zero to keep u

finite as p~O. Notice that Eq. (9) satisfies clearly Eq.
(5b}.

Inserting Eq. (9}into Eq. (7) it follows that, after simple
manipulations,

[(cr/2o) (o' /4o )+co (—t)+(fiA/mcr),
(fi /m cr )][x—x,(t)]-

+[x,+co (t)x, —F(t)/m]=0 . (10)

Notice also that by averaging Eq. (10), one self-

c}u Bu i F(t)+u +co (t)x — =k(t)(x —(x ) ),
c}t Bx 172

where k (t) is an arbitrary function of time, which will be
determined simultaneously with (x ).

The time development of p and u can be uniquely deter-
mined from the system of Eqs. (6) and (7) if boundary
conditions are imposed on them. The particle is prepared
initially in a Gaussian wave packet centered at x =0,
p(x, O)=[acr(0)] '/ exp[ —x /o(0)], and with an initial
velocity u (x,O) =uo(x ).

Integration of Eq. (6), consistent with the boundary
conditions, yields

p(x, t)=[mr(t)] '~ expI —[x —x, (t)] /cr(t)I,

where
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consistently recovers Eq. (5a). So, it may be inferred
readily that Eq. (10) is satisfied if

turn force [with the help of Eqs. (6), (8b), and (11)] is
given by

a'+to (t)a+A/a , —1/a =0
Fqu—= —@I'qu+ I'asM)/» =too[x —x, (t)1 (16)

x, +co (t)x, F(—t)/m =0, (12)

dx, (t) = [p, (t)/rn]dt,

dp, (t) = mto2(t)x, (t)—dt +F(t)dt,
da(t) =P(t)dt,

(13a)

(13b)

(14a)

dP(t) = —a) (t)a(t)dt —[)(,/a(t)]dt+ [1/a (t)]dt,

dg(t) = I[p(t)/a(t)] —[1/a'(t}]]g(t)dt+(irt/m)'~'dw(t) .

(14b)

Now, from Eqs. (8) and (11) an evident condition for a
solitonlike (nonspreading) solution, i.e., a(t)=ao (a con-
stant), is given by co(t) =F00 (also a constant). Then, it fol-
lows that the main physical consequences are the follow-
ing. (1) The current velocity is "incompressible"
(BU/» =0) and is given by U =x,(t). (2) The total quan-

where o = (A'/m )a has been used in Eq. (11).
This emerging picture contains the two significant re-

sults which completely determine the solution of the hy-
drodynamical version of the LNLSE [Eqs. (2a) and (2b)]
given by Eqs. (8) and (9): Eq. (11) governs the internal-
structure motion of the spreading wave packet while Eq.
(12) dictates its external centroid motion. The separabili-
ty, decomposed as in Eqs. (11}and (12), corroborates the
fact that the BBM nonlinearity does not contribute in the
classical limit (as we promised to make transparent) and
that its nature and effect are purely quantum. This is a
direct consequence of assumption (4), which must hold
true even when A, ~O, since the LNLSE is supposed to be
the best candidate for a nonlinear variant of the linear
Schrodinger equation' (see also discussion at the begin-
ning of this work).

To the best of our knowledge, Eq. (11}is a new result.
The presence of A, , however, makes it possible for the
LNLSE, with or without the quadratic potential, to admit
more localized solutions, resembling classical particles, in-
stead of the spreading wave packet of the linear
Schrodinger equation. In particular, if )L, =F(t}=0 we
reduce the system of Eqs. (11}and (12) to what is called
the Ermakov pair of equations, ' which, by elimination of
to (t) between them, yields a time-dependent invariant of
motion. ' In the sense of Ermakov, we have not been able
to find a general time-dependent invariant from Eqs. (11)
and (12), unless some restrictive and nontrivial conditions
are imposed on F(t) We will r.eport on this remark in a
future work.

Next, by following Ruggiero and Zannetti, ' the sto-
chastic process x(t) can be written as a sum of two in-
dependent components [x(t)=x,(t)+g(t)]: the classical
solution x, (t) and the pure quantum fiuctuations g(t)
Then, with the help of Eqs. (1), (8), and (9), the stochastic
process, associated with the LNLSE, can be written in the
five-dimensional representation [x,(t),p, (t),a(t),P(t), g(t)]

This is also a new result.
If too ——0, we have Fq„=O (Ref. 17) which recovers the

case treated by Hasse, via the "inverse method. " Here,
we also answer affirmatively his proposed open question
on whether there exist solitons in a quadratic potential for
the LNLSE. Notice that the presence of the time-
dependent linear term in the external potential does not
affect the behavior of the internal structure of the wave
packet, whatsoever. (3) The stochastic process x ( t)
reduces to the three-dimensional representation:

dx, =(p, /m)dt,

dp, = mtoox—,dt +F(t)dt,

dg= Q(gd—t+(h/m)'~2dio,

(17a)

(17b)

(18)

where Qo=-(A/2)+[(A/2)2+coo2]'~~.
These equations portray a revealing physical panorama

if compared with those obtained by Ruggiero and Zannet-
ti (in the frictionless case) The unique effect of the
BBM nonlinearity can be identified only through the
"modified frequency" Qo in the stochastic differential
equation for the pure quantum fiuctuations [Eq. (18)].
Thus, the zero-point energy will be given by

ep ——A'Qp/2 . (19a)

In the case when A, &&cop,

co=&[too+ (A./2) ]/2, (19b)

which agrees with the result one would obtain by other
means, e.g., via the perturbative method provided by Roy
and Singh. ' As pointed out by Machado, ' the latter re-
sults [Eqs. (19)] provide a relatively simple alternative
way for a numerical investigation of the strength of the
BBM nonlinearity: The essential idea is to find the quan-
tum correction on the zero-paint energy of our system due
to A, , by proceeding along the line of shell-model theories
in nuclear physics. (4) The constant solution for Eq. (11),
with too ——0, is (R/m)ao ——irt/ml, =irt /2mb—=i, which is
the radius of the Gaussian-shaped solitonlike solution
originally found by BBM.
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