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It is observed that the Frenkiel-Klebanoff-Huang turbulence data for the longitudinal correlation function

at grid Reynolds numbers from 12800 to 81000 are subsumed by the simple empirical expression

f= [1+(r/2L)] 3, where r denotes the separation distance between two points in the turbulent fluid flow

and L =L(t) is the integral scale. Hence, the longitudinal velocity correlation is rescaled by the self-

similarity dilatation factor A. under the separation-distance transformations r Xr+(A. —1)2L at fixed t.

TABLE I. Comparison of experimental values for the longitudi-
nal correlation function [Fig. 2 of Ref. 3 with the Taylor approxima-
tion f = R (r/U)] and values given by the empirical relation (1).
Since the measurements in Ref. 3 were made at wind and water
tunnel locations for which L =0.65M, the integral scale L in (1) is

eliminated in favor of' the mesh length M,

r/M 0
f[=R {r/U)] 1

Aby (1)l

0.10 0.20 0.30 0.40 0.60
0.80 0.65 0.52 0.45 0.32
0.800 0.651 0.536 0.447 0.320

r/M 1 1.60 2 2.40 2.80 3.20
f [ = R (r/U) ] 0.19 0.09 0.06 0.04 0.03 0.02-0.03
flby (1)1 0.180 0.090 0.061 0.043 0.032 0.024

It has recently been shown that statistical-dynamical self-
similarity must be featured in the free decay of inertia-
dominated incompressible fluid turbulence, with the experi-
mentally established decay law u'c l 6' and integral scale
dependence Lc t' ' following deductively and without any
additive assumption from a Gaussian normal probability dis-
tribution over velocity fields at the initial instant t =0.'
This symmetry property of incompressible fluid turbulence
at large Reynolds numbers holds for values of the decay
time t greater than the small time associated with the
viscosity-dominant interval of time-evolution of an initially
Gaussian normal probability distribution. Correspondingly,
one expects the longitudinal correlation function of isotro-
pic homogeneous turbulence to manifest a related symmetry
for values of the separation distance r greater than the small
distance associated with viscosity-dominant dynamics. The
purpose of the present paper is to point out that such a
symmetry is indeed evident in the longitudinal correlation
function according to the measurements of Frenkiel,
Klebanoff, and Huang. ' For grid-generated turbulence at
Reynolds numbers UMl v from 12 800 to 81000 and decay
times such that L =0.65M, the data reported by Frenkiel,

as shown by the comparison in Table I.
Under the self-similarity dilatation transformations withx- ~x and t A.

' t for all parameter values A, & 0, one has
r Ar, u P 'u, and L AL; thus the correlation
function (1) is invariant, while the two-point velocity corre-
lation tensor' is rescaled by the factor P '. The same re-
scaling of the longitudinal part of the velocity correlation
tensor, i.e. ,

' (ut(x+re, r)ut(x, r)) = u'(t) f(r, i) with
e (1,0, 0), is realized by the purely spatial group of
transformations at fixed t (hence, with u' and L invariant)
under which

r- )r+(Z-1)2L (2)

and therefore f' X 'f as a consequence of (1). This
separation distance scaling -symmetry manifest in (1) is ex-
pressed equivalently for f =f (r, t ) by

f(Xr+ (X —1)2L, r) = X 3f (r i) for all X & 0 . (3)

Conversely, the scaling symmetry property (3) and the nor-
malization condition f(0, t) =1 imply that the longitudinal
correlation function takes the form (1) with L = L (r ) iden-
tified as the integral scale. '

It should be observed that this separation-distance scaling
symmetry appears to be distinct and not directly related to a
possible Kolmogorov invariance in the fine-scale (inertial
subrange of wave numbers) at high Reynolds numbers. 6

Changing the distance between the two spatial points in the
longitudinal velocity correlation in the indicated inhomo-
geneous fashion that brings in the integral scale additively,
the effect of the separation-distance transformations (2) is
identical to that of the self-similarity dilatation transforma-
tions, ' which also rescale (ut(x+ re, r)ut(x, r)) by the fac-
tor A.

Klebanoff, and Huang are subsumed by the simple empiri-
cal expression

f = [1+(r/2L ) ]-'
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'G. Rosen, Phys. Rev. A 32, 2549 (1985). The initial value of the
probability distribution over velocity fields involves the single
constant c2 with physical units of (length) /(time); it follows that
u - (numerical constant) e / t and L = (numerical constant)
c / t . Empirically one has [e.g. , K. R. Sreenivasan, S. Ta-
voularis, R. Henry and S. Corrsin, J. Fluid Mech. 100, 597
(1980)] p2 0 04U4/SMe/s, —e/s and L 0 13U2I5~3lsI2/Is re
tions consistent with c = (numerical constant) U2M .

The longitudinal correlation function f=f (r, t) is the scalar quanti-

ty which generates the two-point velocity correlation tensor of iso-
tropic homogeneous incompressible turbulence,

(

(u (x+ r t ) u (x, t ) ) = u 2 f + r~ —S. — rr ~—8~ 1 8~
r '& 2r '~gr

where u2=u2(t) ~
3 ((u(x, t)(2) and r ~ [r(. In particular, for

r=re with e=(1,0, 0), one obtains the longitudinal velocity
correlation as

(u, (x+re, t)u, (x,t)) =u2f .

F. N. Frenkiel, P. S. Klebanoff, and T. T. Huang, Phys. Fluids 22,
1606 (1979).

40bserve that formula {1}features the integral scale in a manner re-

quired by the general definition: L =L(t)—=f f(r, t)dr It .is
0

also noteworthy that formula (1) is consistent with the asymptotic
dependence for large r, lirn, r 3f (r, t ) = (function of t),
predicted by G. Birkhoff [Commun. Pure Appl. Math. 7, 19
{1954)]and P. G. Saffman [J. Fluid Mech. 27, 581 (1967)].

sFor example, F. H. Champagne, J. Fluid Mech. 80, 67 (1978).
eIt is clear however that the one-parameter separation-distance scal-

ing symmetry is rooted in the inertia-dominated Navier-Stokes
dynamics, and in this sense it shares a common origin with a pos-
sible Kolmogorov invariance. Maintaining the dilatation invari-
ance symmetry which underlies self-similarity, the essentially
correct analyses of nonlinear inertial transfer [R. H. Kraichnan, J.
Fluid Mech. 47, 525 (1971); 83, 349 (1977); S. A. Orszag, ibid.

41, 363 (1970); R. G. Deissler, Phys. Fluids 22, 185, 1852
{1979)]should also imply the large-scale longitudinal correlation
function symmetry described here.


