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A density-functional theory for the Frank elastic constants described in an earlier paper is refor-
mulated and simplified. The excess free energy of aligned nematic liquids subjected to curvature
(i.e., "splay, " "twist, " and "bend") deformations is written in terms of the direct correlation func-
tions of the isotropic liquids. This leads to expansion of the elastic constants in successively higher-
order direct correlation functions. The truncation of this series at an early stage is found to intro-
duce large error. The number of terms explicitly considered and the use of a [1,0) Pade approximant
make our calculation reliable. The other expansion which our theory involves is one in powers
(products) of order parameters. These order parameters are the coefficients of a spherical harmonic
expansion of an orientational singlet distribution. The convergence of this series is also tested for a
simple model of hard ellipsoids of revolution. Quahtative features exhibited by our calculation for
both ordinary and discotic nematics are in agreement with the results of previous workers and ex-
periments. %'hile this paper focuses on the role of packing forces the theory can be generalized to
include dispersion and other long-range interactions, noncylindrical geometry, and nonrigidity of
molecules.

I. INTRODUCTION

In a previous paper' (hereafter referred to as I) one of
us developed a formal theory for the statistical mechanics
of nonuniform liquid crystals and used it to derive expres-
sions for the Frank elastic constants of nematic phases.
The purpose of this paper is to present and discuss the nu-
merical results obtained for systems composed of hard el-
lipsoids of revolution conveniently parametrized by the
length-to-width ratio xo ——2a/2b, where 2a and 2b denote
the lengths of the major and minor axes of the ellipsoids.
The model includes as limiting cases both hard-platelet
and hard-needle systems. All these systems are of physi-
cal interest because they represent primitive models for
the real liquid crystals.

The Frank elastic constants are a measure of the free
energy associated with long-wavelength distortions of the
nematic state in which the local preferred direction of
molecular orientation varies in space. If the local pre-
ferred direction at the point r is parallel to the director
n(r), the free energy associated with the distortion may be
written as '

Ir= —,
' f dr[Xi(V.n) +Iti(n Vxn) +Its(nxV&(n)'] .

The distortions corresponding to Kl, K2, and E3 are
called splay, twist„and bend, respectively. The Frank
elastic constants E; characterize the free-energy increase
associated with the three normal modes of deformation of
the ordered nematic state.

Understanding of elastic constants of liquid crystals is
important for a number of reasons. In the first place,
they appear in the description of virtually all phenomena
where the orientation of the director is manipulated by
external fields (in display devices). Secondly, they provide

unusually sensitive probes of the microscopic structure of
the orientationally ordered state. Valuable information
can be obtained from their study regarding the nature and
importance of various anisotropies of intermolecular po-
tentials, and of spatial and orientational correlation func-
tions.

There are several calculations ' of the elastic con-
stants of the nematic phase based on assumptions as to
the relative importance of the repulsive and attractive
parts of the intermolecular interactions. In these works
the potential energy function plays an explicit role
whereas the structure of the liquid crystal (which enters
via a variety of considerations concerning excluded
volume correlations, packing geometry, etc.) plays only an
implicit one. The complexity of the intermolecular poten-
tial for sptx:ies that form liquid crystals is such as to make
such calculations both difficult and subject to uncertainty.
The theory outlined in I, in contrast, makes the role of the
structure of the medium explicit while leaving the role of
the intermolecular potential implicit. The direct correla-
tion functions in terms of which the elastic constants are
expressed have broad functional similarities for systems
with rather different intermolecular potentials.

Prior to I, Poniewierski and Stecki derived expressions
for the Frank elastic constants in terms of the direct pair
correlation functions using a very laborious star-integral
approach. The same expressions were recently rederived
by Lipkin et al." following a method similar to that
described in I.

In Sec. II we summarize and reformulate some results
of I which are relevant to our present study. The theory
developed here is based on a density-functional formalism
which is conceptually simple, contains as few independent
approximations as appears presently feasible, and is solved
without resorting to such simplification as the low-density
approximation. It requires as input the direct correlation

33 1986 The American Physical Society



YASH%'ANT SINGH AND KALYAN SINGH 33

function of a uniform system as a function of number
density and temperature, as well as the local free energy.
The latter, of course, may be obtained from the former in
various ways, e.g., by means of a compressibility sum rule.
The formalism correctly reproduces linear-response
theory.

The density-functional formalism has already been used
to give a formal description of the isotropic-nematic"2
and the nematic —smectic-A (Ref. 13) transitions. In a
separate paper' (hereafter referred to as II), we applied
the theory to study the properties and characteristics of
isotropic-nematic and isotropic-plastic transitions in a sys-
tem of hard ellipsoids of revolution. Prolate as well as ob-
late ellipsoids were considered. We have found, in agree-
ment ~ith computer simulation results, ' a remarkable
symmetry between systems with inverse length-to-breadth
ratios. Such symmetry is not found in the case of the
elastic constants (Sec. IV).

The model system which we investigate in this paper is
described in Sec. III. %e also discuss in this section the
approximations used for numerical enumerations. The re-
sults are presented in Sec. IV. The molecular theory of
the curvature elasticity as presented in Sec. II involves ex-
pansion in successively higher-order direct correlation
functions and in products of the order parameters. The
convergence of these expansions is tested in Sec. IV. The
numerical values of all three elastic constants are given as
functions of the length-to-breadth ratio of the molecules.
The paper is concluded in Sec. V with a discussion of ex-
tensions and implications of the present work.

II. STATISTICAL MECHANICS
OF A NONUNIFORM SYSTEM

AND THE FRANK ELASTIC CONSTANTS
OF A NEMATIC PHASE

We consider a classical system of nonspherical mole-
cules of arbitrary symmetry contained in a volume V at
temperature T. When there are N particles in the system,
the configuration energy U is approximated by

N N

U(xipxzpx3p ~ ~ . , xiv ) = g u (x) ) + g u (xi,xj )

PF=l3F g+H, (2.2}

where P ' is Boltzmann's constant times temperature and

(2.1)

where, for economy of notation, we use vie;tor x; to indi-
cate both the location r; of the center of the ith molecule
and its relative orientation 0; described by Euler's angles

g, P, and g. The volume element dx; is equal to d r;dQ;,
where d r = dx dy dz and

dQ; = singdgdgdg,
1

8

u'(x;) is the potential energy of a molecule at position r;
with relative orientation Q; due to external forces, and
u(x;, xj } is the intermolecular pair potential for molecules
i and j.

The Helmholtz free energy Fof the system is

l3F;z the reduced Helmholtz free energy for the ideal gas

PF &
—f—p(x)[lnp(x)A+Pu'(x) —1]dx, (2.3)

g 5p(x;)
i=1

= —c„(xi,xp, . . . , X„,[pj)= —c„[pj, (2.4)

where c„are direct n-body correlation functions. The
functional dependence of c„on p(x) is indicated by curly
brackets. —kTci(XJ;[pj} is considered to be a solvent
mediated effective potential field acting at xi. The func-
tion c2(xi, x2,'[pj) is the Ornstein-Zernike direct pair
correlation function (DPCF) and is related to the pair
correlation function h(x„x2)=g(xi, xz) —1 as follows:

h (x»x2)=c2(x»x2)+ f p(x3)h(x2, x3)c2(x»x3)dx3 .

(2.5)

If we start from zero density and want to build up a
system in which density at xi is p(x, ) and at x2 is p(x2),
etc., then H of the resulting system is most conveniently
obtained by functional integration of (2.4) for n =2,
which leads to

H[pj= —f dxi f dxzp(xi)p(x2)cz[pj, (2.6)

1 s

c2[pj = f ds f ds'cz($'p) . (2.7)

The existence of the functional PF guarantees that the
above results are independent of path of integration. This
fact helps enormously in simplifying the statistical-
mechanical theory for a nonuniform system. ' ' In a
nonuniform system p(x) is a function of position and
orientation and c2 is a functional of p(x).

A homogeneous nematic phase is translationally invari-
ant. Thus

p(x) =p(r, Q) =po f(Q), (2.8)

where po is the mean number density and f(Q) the singlet
orientational distribution function normalized to unity,

f f(Q)dQ=1 . (2.9)

For a uniform nematic, f(Q) is independent of position.
In a distorted nematic the orientational distribution

varies spatially in a very complicated way. However, for
our purpose it is sufficient to allow it to vary only to the
extent that the director n(r) does, i.e., the distribution of
angles that the molecular long axis makes with the locally
preferred direction remains the same throughout the sam-

A= f exp( PE—k)dpi dp, lh',
s being the number of degrees of freedom of a molecule,
Ek is its kinetic energy, and h Planck s constant. 0 is the
excess reduced Helmholtz free energy arising from the in-
termolecular interactions and is a functional of the
single-particle density distribution p(x) and pair potential
Q.

The function H can be used as a generating functional
for the correlation functions, ' '
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pie; only the director changes. To be more specific, let

f(8)=f (cos8=e.z ) describe the probability in the homo-
geneous nematic of finding a molecule whose long axis e
makes an angle 8 with respect to the space-fixed z axis.
Then in the case of distortion, the orientational distribu-
tion at r is given by f(8)=f(e n(r)}, i.e., it looks the
same as in the undistorted nematic except for the locally
preferred direction changing according to n(r). In gen-
eral, however, any deformation will cause the orientation-
al distribution to be distorted in space from whatever
form it had in the perfectly ordered nematic. But the
difference between f(e n(r)) and the actual f in the case
of long-wavelength distortions makes no contribution to
the Frank elastic constants.

%ith any distortion we may associate a wave number q.
The increase in the free energy due to a long-wavelength
distortion will be proportional to q because the symmetry
of the system ensures that distortions corresponding to q
and —q are equivalent. A.ny change in f(6), apart from a
rotation of the preferred direction due to a distortion, will
also be of order q . Since the thermodynamically stable
state [n(r)=z] is stationary with respect to variation of
the form of f(8), changes in the form of f(6) due to dis-
tortions will make no contributions of order q to the in-
crease in the free energy.

Since C2[pI is a functional of f(8), any change in c2
due to distortion will be of the order q . Therefore the
change in c2[p due to distortion will make no contribu-
tion of order q to the increase in the free energy. Thus
we take for c2 the value corresponding to the undistorted
IleIIlatlc, i.e., c2 Ip j in (2.6) should be replaced by

l

C2(paf(Q) }. The free energy of a distorted nematic phase
correct to the order of q is

PF A'Q po f dxi f dx2f (Qi, ri )f(Q2 ri )c2(pof (Q) )

—po f dx, f dx2f(Q„r, )[f(Q2,r2) —f(Q2, ri)]

Xc2(pof(Q)) .

In the notations adopted here and below

c„(pof(Q) }=c„(xi,x2, xnpof (Q) } .

(2.10)

(2.1 1)

Functional Taylor expansion can now be used to express
the direct correlation function of a uniform nematic phase
in terms of the direct correlation functions of the isotropic
liquid at the same number density po. Thus

p gp g p gp(n)
a=a

where

(2.13b)

C2()oof«»
=c2(po)+pa f c3(po)[f(Q3) —1]dx3

+Typo f f c4(po)[f(Q3) —1][f(Q4) 1]dx3dx4 .

(2.12)

Substituting this in (2.10) we get

(2.13a)

with

(2.14)

PF"(pof(Q))=PFid —po f dxi f dx2f(Qi, ri)f(Q2, ri)c2(ppf(Q)) (2.13c}

P~"'= —po f dxi f dxzf(Qi ri)[f(Q2 r2) —f(Q2 ri)lc2(po)

P~+ = —po f dxi f dx2 f dx3f(Qi ri)[f(Q3 ri) —1][f(Q2 r2) —f(Q2 ri)]C3(po) (2.15)

P~' '= —'pt f dxi f dx2 f dx3 f dx4f(Qi, r, )[f(Q,,r, ) —1][f(Q4,ri) —1][f(Q2,r2) f(Q2 rl)]C4(po)

The quantity pF"(pof(Q)} is the reduced Helmholtz
free energy of a system of undistorted nematic phase with
preferred axis corresponding to that at ri and which
remains constant throughout the sample. pdd' is the free
energy associated with the distortion. In (2.14)—(2.16) the
phd'"' are expressed in terms of the direct correlation
functions of the isotropic liquid of the same number den-
sity I30. The subscript n in p~'"' indicates the order of
contribution to the excess free energy arising from the
correction in the direct correlation function of the isotro-
pie liquid owing to orientationa1 ordering in a uniform
nematic phase. Thus pdd' ' represents the contribution
which Is found when the isotropic liquid DPCF is used'„
phI'"' and phd ' are due to first- and second-order
corrections to the DPCF. The series (2.13b) is found to
converge fast (see Sec. IV).

In order to derive molecular expressions for the K s we
first choose an arbitrary point at R=O in the deformed
liquid crystal as the origin of space-fixed coordinate sys-

n(R) =x sinX„(R) +z cosX„(R) . (2.17)

X„(R) is the angle between the director at R and the
director at the origin, i.e., cosX„(R)=z n(R). The long-
wavelength distortions correspond to the change in the
director over some characteristic length of the system be-
ing small, i.e., 7„-qd ~g1; d may be taken to be the
range of the direct correlation function. In this limit

qx —q xz+O(q ) for splay

X„(R)= qy for twist

qz+q xz+O(q ) for bend.
(2.18)

From (1.1) we get for the distortion free-energy density

tern. The z axis of this system is taken parallel to the
director at the origin, i.e., z=n(R=O). For pure splay,
twist, and bend deformations, the variations in n(R) are
always confined to a plane. If the x axis is chosen such
that (x,z) is the plane containing n(R),
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around the origin

—,K i q +O(q ) for splay

b, a(0)= ,'K—2q +O(q ) for twist

—,K&q +O(q ) for bend,

(2.19)

where

hF= f ha(R)d R.
Since in pure splay, twist, and bend the deformed

nematic has the same local structure every~here, the
above results do not depend upon the choice of the origin.

From (2.13)—(2.16) we get the following expression for

the free-energy density around R=O;

PE= f d RPa(R)

= f d R[Pa "(R)+P ha (R}], (2.20)

where

0a "(0)=po f d0 f(0,0)[lnf(0, 0)+lnpo+ in& —1]

—po f dr f dQ, f dQ, f(0,,0)f(0,,0)

XCi(pof(0)) (2.21)

Pb,a(0)=Pb,a' '(0)+@ha'"(0)+Pea' '(0) (2.22a)

with

Pba'0'(0)= —po f dr f dQi f d02f(Qi, 0)G(X„(r))c2(po),
r

Pba'"(0)= —po f dr f dQi f d02[f(Qi, 0)—1]G(X„(r)} + f dr& f d03[f(03 0) 1]c3(po)
Po

Pha' '(0)= ——,'po f dr f dr3 f dQi f dQz f d03[f(0„0)—1][f(030) 1]G(X (r))
P

(2.22b)

(2.22c)

(2.22d)

Here

G(X„(r))—=[f(02,X„(r))—f(Qi, ,O)] .

pa "(R) is the free-energy density at point R of an unde-
formed nematic liquid crystal and pea(R) is the free-
energy density of deformation expressed in terms of the
direct correlation function c„(po) of the isotropic liquid.
Since X„(r) is the angle between the director at r (where
molecule 2 is located) and the director at the origin, we
write in (2.22) f(Q,R+r}=f(Q,X„(r)). For an unde-
formed system X„(r}=0.

In writing (2.22} we have made use of the following ex-
act relations. ' '

&ci(po) f c3 (po)dx3
Po

(2.23)
5c3(pc)

C4 Po X4 .

If the distortion angle is small, i.e., X„(r)&& 1, we can ex-
pand f(Q,X„(r)) as a power series in X„. Keeping terms
to order q, one gets

G(X„(r))=f(02,X„(r)) —f(02,0)

=f'(Q2, 0) qy

qz +q xz

where x, y, and z are the Cartesian components of r in
the space-fixed coordinate system and

f'(02, 0) =[Bf(Qz,X„(r))/BX„]

f"(0,0)= [8f(Q,X„(r))/BX„]
(2.25)

f(Qi, O)PL (cos8i)sin8, d8,0

is the orientational order parameter of the nematic phase.
The prime on the summation in (2.26) indicates the re-
striction that only even I.' have to be considered. The
odd terms vanish because molecules do not distinguish
"up" from "down. " Molecule 2 has the same distribution
function, but its orientation is defined with respect to the
local director at vector r, i.e.,

f(02,X„(r))=—f(cos82)

For a uniaxial nematic phase with a symmetry plane
perpendicular to a director and composed of cylindrically
symmetric molecules, the singlet orientational distribution
f(0) has to depend only on the angle 8 between the direc-
tor and the molecular symmetry axis, where the director is
parallel to the space-fixed z axis, and we have'

f(Qi 0)=f(cos8i) = 1+ g (2L + 1 )Pl. 'Pl. '(cos81}
L'&2

(2.26)
where

g X

+—f"(02,0) q y +
Z

(2.24)

=1+ g'(2L +1)PLPL, ((cos82)) . (2.27a)
Lp2

Here 82 is the angle between the long axis of molecule 2
and the local director, cos8i ——e2.n(r).
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Using the addition theorem for spherical harmonics we
can rewrite (2.27a) in terms of the space-fixed angles 02
and the distortion angle X„(r):

f(02+„(r))=1+ g' PL g I'L3r(02)&)sr(X„(r),0),
1.&2 M

(2.27b)

' 1/2

PL', o(1)= —TL (L +1}1 2I. +l
4m

PL 1(1)= P—L 1(1)

(L —1)! 2L+1
(L +1)! 4m

]/2

(2.27c)

where

I'Lsr «2) = I'L3r(~2 m2)

PL'2(1) =PL' 2(1)= , (L ——1)L (L + 1)(L +2)
' 1/2

X
(L —2)! 2L+1
(L+2)! 4~

Using (2.27c) we get

and

PL3r(cosX„)= YLM(X„,O)

f (02 0) =PL [FL, 1(02) F—L 1(02)]PL 1( 1 )

(0»0) PL l ~L„0(02}PL,O(1 }

(2.28)

is the associated Legendre function of degree L and order
M.

Equation (2.24) involves the first and second derivative
of f(02,0). Using the explicit forms of the Legend«
functions it can be shown that PL3r(1) =0 for»1 ~%+1
and PLY(1}=0 for all M&0, +2 and that

sc, = gee,
'"' (2.30)

with

+[~L,2(02)+ ~L, —2(02)]PL,2(1}I (2 29)
From (2.20), (2.23), (2.24), and (2.19) we get for the elastic
constants

(2.3 la)

E "= 2pOkT f r—12dr12 f dQ1 f dQ, [f(01,0)—1]Fi(t12,01,02)

&l '= —2pOkT f dr12r 12 f d01 f d02f(Qi 0)F (r12,01,02}c2(po}

5c2(po)
+ f dr3 f 103[f(03,0)—l]c3(po)

po

'= —pOkT f dr12r12 f dr3 f d01 f d02 f d03[f(01,0)—1][f(Q3,0)—1]F;(r»,0„02)
5po

(2.31b)

(2.31c)

where

—(912 x)(r12 z)
F~(r12,01,02}=f'(Q2, 0) '

r12 x r12 z

(r12 "*)'

+—f"«2 o} (r129)'
2

(r12.z}

(2.32)

appear in (2.3lb) and (2.31c) are not known even for a sys-
tem of hard spheres. The decoupling approximation
which is described in the following section, however, al-
lows us to reduce the integrals involving c3 in terms of
the derivative of c2. More will be said on this point in
Sec. III.

III. APPROXIMATIONS AND DERIVATION
OF WORKING EQUATIONS

and i stands for 1, 2, and 3 and x,P,z are unit vectors
along the space-fixed x, y, and z axes. Since the isotropic
liquid is translationally invariant the direct correlation
functions c2 and c3 appearing in (2.31) depend only on
the relative separation of molecules and not on their indi-
vidual positions. Thus

oo, r12 &D(0,2}
u(112,01,02)= '0 (3.1)

The potential energy of interaction of a pair of hard el-
lipsoids of revolution is represented as

c2(pO) =c2(r,2,01,02),
(2.33)

c3(pO} c3( 12 r23 r13 Ql 02 03}
The three-body direct correlation functions c3 which

where D(012}[—:D(r12, 012)] is the distance of closest ap-
proach of two molecules with relative orientation 012.
For D(012) we use the expression given by the Gaussian
model of Berne and Pechukas,
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D(012)=D(912,012)
r

(r12 el) +(r12 e2} 2~(r12 el)(r12 e2)(el e2)
=Do 1 —7

1 —X (el e2}

' —1/2

(3.2)

~here e1 and e2 are unit vectors along the symmetry axes
of two interacting hard ellipsoids, Dp =2b, and

2

x= (3.3)
&o'

1.e.,
C2(r12~01~02) C2(r12/D(Q12))

=a
1 +b 1 r 12+ —,

'
a12}(r12) for r 12 ( 1

=0 for r;2 &1, (3.4)
where

912 is a unit vector along the intermolecular axis.
The correlation functions appearing in (2.31) are not

known for this system. The solution of the integral equa-
tions of the liquid state theory, such as the hypernetted-
chain (HNC) equation, the Percus-Yevick (PY) equation,
the mean spherical approximations (MSA), etc., are diffi-
cult to obtain.

In II we used an approximation in which we took the
analytic solution of Wertheim and Thiele for the
DPCF in the PY approximation for a system of hard
spheres of diameter do and replaced the diameter do by
the distance of closest approach D(012) (Refs. 25 and 26),

r 12
——r12/D ( Q12),

a 1
= —(I+2' )'/(I —g )',

b 1
——62}(1+—,

'
g) /(1 —2})

and ri =POD, u =(m /6)xo(2b), the molecular volume.
This approximation decouples the translational and orien-
tational degrees of freedom and is therefore called the
decoupling approximation. We have already seen in II
that this form of the DPCF gives reasonable results for
the properties of the isotropic-plastic and isotropic-
nematic transitions.

For the direct three-body correlation function we use
the following relations:

C 3 ( r l 2r r 13' r23 a 01' 02& 03 )

12 ~13 ~23

D(Q12)
' D(013) '

D(023)

C3(r12 13 r23 } (3.5)

In the decoupling approximation, the expressions for the
elastic constants reduces to

Ki 2pokT—c2(po) f d01 f d02drl2f(Ql O)pi(r12 Ql 02)D (r12 Q12)

EC;"'= 2pokTc2—(pp) f d01[f(Q1,0)—1]

y, f d02 f dr12F, (r12,01,02)
r

D'(r12, 012)+ f d03[f(03,O) —1]

(3.6a)

x f dr» f dr23D (r, 2, 0,2)D (r23 023)D (r13,013), (3.6b)

K;"'= ppkTc2'(pp) f—dQ1[f(01,0) 1]f d0—3[f(03,0) 1]f dQ2—f dr12 f dr23 f dr13D (r12, 012)D (r13 013)

(~23 023)+'( 12 01 02}

(3.6c)

Here
1

c2(pp)= f dr (r ) c2(r,pp)

=(8—282}+17' )/1691}(1—g)

+ln(1 —2}}/2&t}

5c2(pp) 5 c2(po)
c2(PP) = c 2'(po) =

&po
'

&po

(3.7)

(3.8)

In the decoupling approximation, as mentioned above, the
translational and rotational degrees of freedom are decou-
pled. As a result we get integrals of the type f C3(pp}dr 3

and 3 po/5podr3 which are reduced to 5c2 po 5po
and 5 c2(PO)/5Pp2, resPectively.

In Fig. 1 we plot the quantities —c2(po), —2}c2(po), and
—g c 2'(pp}/2 as a function of the packing fraction 2}. As
density increases the derivative terms became more impor-
tant. Thus the convergence of the series of the Frank
elastic constants in the ascending order of the direct corre-
lation functions may be slower as density increases.
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FIG. 2. Definition of angular variables for two linear mole-
cules in space- and body-fixed frames of reference. Body-fixed
frame is labeled by a prime.

FIG, 1. Variation of —@(po), —pC'(po), and —0 5g & "(pp)
with packing fraction g. cule 1 and 2, respectively. The relationship between the

primed and unprimed coordinate system is given by the
transformation matrix'

IV. CALCULATIONS AND RESULTS

We begin this rather long section with general remarks
on the calculational procedure. Then the details of results
for the hard ellipsoids of revolution are described and
compared with the results of other workers whenever pos-
sible.

A. Calculational procedure

Z

1Z2 3 2Z1

sin(8iz)

Z1X2 —Z2X1

sin(8iz)

X 172 —3'2X1

sin(8iz)

X1 —X2 X1+X2
2 sin(8, z/2) 2 cos(8iz/2)

X
3'1 —3'2 71+72

2 sin(8, z/2) 2 cos(81z/2)

Z1 Z2 Z1+Z2

2 sin(8iz/2) 2 cos(8,z/2)

(4.2)

coSQ1 =COS8 coS( 81z/2) +Slil(81z/2)stn8 Sing,

cosaz ——cos8 cos(8iz/2) —sin(8, z/2)sin8 sing&,

(4.1)

where (8,g) represent orientation of intermolecular axis
r12 and a1 and a2 are angles between r12 and axes of mole-

We may recall that molecule 1 is at the origin with
orientation Q1 and molecule 2 is at r with orientation 02
with respect to the space-fixed frame of reference. The
integrations over Qi and Qz in (3.6} are carried out only
after integrating over Viz. For this we find it useful to
transform to a "body-fixed" frame of reference.

Let the body-fixed yz plane (hereafter denoted by a
prime) be the plane which contains the first molecule axis
and which is parallel to the axis of molecule 2. Further-
more, let the body-fixed z' axis be obtained by rotating ei
clockwise in the y'z' Plane by the angle 8iz/2. 81z is, of
course, the angle between the two molecular axes. Thus
e2, which lies in a plane parallel to y'z' and a distance x'
froin it, makes an angle 8iz/2 with respect to the z' axis.
x'y'z' form a right-handed coordinate system as shown in
Fig. 2.

With the help of geoinetry in the body-fixed frame of
reference, we can write

where xi,y, ,z, are the coordinates of the unit vector
parallel to Qi and xz,yz, zz are those of that parallel to
Qz. In terms of these quantities we now have

(yizz —yzzi ) (xi —xz)2 2

xz= (x') + . , (y')'
sin (8iz) 4 sin (8iz/2)

(xi+xz) (z'} +cross terms .
4cos (8iz/2)

(4.3)

R'"(8iz)= f dr'(r'. x') D'(Qiz),

R~ (8,z) = f dr '(r '
y ')zD'(Q, z),

R'"(81z)= f dr'(r' z') D'(Q, z)

(4.4a)

(4.4b)

(4.4c)

with t=4 and 5. They are first evaluated in the body-
fixed geometry and are then transformed to the space-
fixed geometry using (4.2).

In (3.6) the f dr integrals sit under

There are corresponding terms for yz, zz, xz, etc. Due to
reflection symmetry in three coordinate planes, cross
terms do not contribute to the integral. Hence the in-
tegrals which need to be evaluated are of the type
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f dQ, fdQ,
n' 2n' 2nf sin8]d81 f dp] f sin8zd8z f diaz

the expansion coefficients can be obtained from the au-
thors on request. Thus the problem of evaluating the elas-
tic constants of the nematic phase is reduced to one which
can be done on a hand calculator.

(4.5)

integrals. For each value of 81, 8z, (I])], and (pz in the outer
fourfold integrals, one can compute

8]z=cos [cos8]cos8z+ sln8]sln8zcos((pz —(p])] (4.6)

and evaluate RJJ(8]z) for this value of 8]z. However, in
actual calculation we first compute Rij(8]z) at equally
spaced values of 8]z between 0 and m. ~and then used a
linear interpolation scheme to evaluate them at the 8~2
values arising from the outer Qi and Qz integrations. We
found that 120 values of 8]z were sufficient for the linear
interpolation.

All that remains now is evaluation of complicated in-
tegrals over Q, and Qz. These fourfold integrals are re-
duced to onefold by following a method suggested by
Priest. The details of this reduction and the values for

I

K, = g K,'"'. (4.7)

As mentioned above, E ' contains the pair correlation
function, K " the three-body correlation function, and so
on. K "consists of two terms:

(4.8a}

where

B. Contributions of the individual terms
and convergence of the series

The theory developed above involves expansions in the
increasing (i) order of direct correlation functions and (ii)
degree of the order par-ameter products PI.Pl and
PLPI PL -. Thus

K '"= 2pokTc—z(po) f dQ][f(Q],o) —1]f «z f ~»P;(r]z Qi Qz}D'(rlz Q]2)

k!'"= 2pf]kTc,'(po) f—dQ, f dQ, f dQq[f(Q~, O) —)] f dr, z f dr„ f dr„[f(Qq, o)—1]p;(r„,Q„Qz)

(4.8b)

XD (r,z, Q]z)D (rzz, Qzz)D (r]z,Q») .

(4.8c)

The contribution to each elastic constant arising from
K' ' and K""can be written as a double sum over con-
tributions which are quadratic in the order parameters
PI . Thus

K~'"——g'g'K "(L,L') . (4.9)
I. L'

Similarly E ' ' and E ' can be expressed as a triplet sum
over contributions which are cubic in the order parameter
PL

(4.11a)

E(m) K(m)(2 2 2)+. . .

where

Ki (L)L ) ip-PLPL

(4.11b)

K; (L,L',L"}~PIPI Pl- .

K(m) y) y) y)K(m)(L Li L)i)
L L' L"

Here and below the superscript (1) stands for (0} or (1,1)
and ( m) for (1,2) or (2).

From symmetry considerations it is straightforward
to show that K; (L,L') =K;(L',L), K;(L,L',L")
=K;(L',L,L")=K;(L",L',L), etc. for all i, n, and L, L',
L" We also find. that K '(O, L')=0 for all i and L'.
Thus each term of the series (4.9) and (4.10) can be writ-
ten, respectively, as

K '=K '(2, 2)+2Ki'"(2,4)+ .

2K' '(2,4)

K,'"(2,2)
(4.12)

Since Pz&P4&P6& and P4/Pz-0. 25 for a typical
nematic, we evaluate only those terms which are written
explicitly in the series (4.11).

The convergence of the series (4.7) and (4.11) is expect-
ed to be good for xo-1 but poor for a system of mole-
cules with large anisotropy in intermolecular interactions.
To test this we list in Table I the contributions of indivi-
dual terms of the series (4.7) and (4.11) for xo ——4.0 and
0.25. All the results tabulated and graphed here and
below are for Pz ——0.5, P4 ——0. 15, 11=0.45, 2b=5.0 A,
and T=400 K.

A number of observations can be made from Table I.
Though series (4.11a) is found to converge rapidly the
number of terms written explicitly are not enough for
large xo (prolate) and 1/xo (oblate). For prolate ellipsoids

~
2K "(2,4}/K "(2,2)

~
is of the order of 0.27, 0.21, and

0.37, respectively, for K'1', Kz', and Kz", indicating the
non-negligibility of higher-order terms for xo ——4.0. The
situation appears little better in the case of oblate
elhpsoids;

~
2K; (2,4)/K '(2, 2)

~

is of the order of 0.21,
0.05, and 0.028, respectively, for K'q', Kq', and E3',
values showing better convergence than the one found in
the case of prolate ellipsoids. The contribution of higher-
order terms in the series (4.11a) can be approximated with
the help of a simple [1,0] Pade approximant. Thus
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TABLE I. Contributions of individual terms of the series (4.7) and (4.11) to each elastic constant for
both systems of prolate (xo ——4.0) and oblate (xo ——0.25) ellipsoids of revolution. For the results shown

here P2 ——0.5, P& ——0. 15, ran=0. 45, T=400 K, 2b =5.0 A. The values for K; are given in units of 10
dyne.

X,(o)(2,2)
2E' '(2, 4)
g (o)

l

g (0)P
l

4.831

5.240

xo=40
E2

—0.615

2.209

2.320

6.675

2.458

9.133

10.570

8.599

1.843

10.442

10.940

xo ——0.25
Kp

12.450

0.614
13.064

13.100

8.599
—2.458

6.141

6.690

It.,""(2,2)
2E '"{2,4)

g(1,1)

~(1,1,)P

I(). ' '(2, 2, 2)
x")

f

g ( l )P

4.866

5.290
—0.509

4.376

4.781

2.855
—0.621

2.234

2.340
—0.391

1 ~ 843

1.949

6.750

2.486

9.236

10.685
—0.746

8.490
9.939

8.696
1.864

10.566

10.980
—1.522

9.038

9.640

12.589

0.621

13.210
13.240

—1.596

11.614
11.820

8.696

6.211

6.760
—1.374

4.841

5.620

K' '(2, 2, 2) —0.510 —0.392 —1.524 —1.598 —1.376

E;
sc,
'

EPP
l

8.700

9.510
9.560

3.660

3.880

3.940

16.880

19.763

19.820

17.960
18.870

19.260

23.080
23.150

23.510

9.060

10.700

11.200

These values are also IIiven in Table I for each K " and
are compared with K =K "(2,2) + 2k "(2,4}. We find,
as argued above, that the contribution of higher-order
terms in the series (4.11a) are small but not negligible, at
least for large xu (prolate) and 1/xo (oblate}. This is ob-
vious from Figs. 3 and 4 in which we plot the contribu-
tion of individual terms of the series (4.11a), respectively,
as a function of xo for prolate molecules and 1/xo for ob-
late molecules. We find that as xo deviates from unity,
the contribution of higher-order terms increases.

The magnitude of E '(2, 2, 2) is found to be small for
both prolate as well as oblate ellipsoids. This led us to
neglect the contribution of higher-order terms in the series
(4.11b). We believe that the error caused due to this
would be negligible.

Next we examine the convergence of the series (4.7).
We find that for both prolate as well as oblate molecules

However, K '(2, 2, 2) &~K'"(2,2). Thus, while K;"' are
almost as important as K, K ' are very small in magni-
tude compared to K ' or E;"'. The magnitude of
K '/K,"' is found for the prolate ellipsoids of x0=4.0 to
be of the order of 0.11, 0.20, and 0.08, and for the oblate
ellipsoids of 1/xo ——4.0 to be 0.16, 0.14, and 0.25, respec-
tively, for i = 1, 2, and 3. These numbers indicate that the
series (4.7) converges fairly rapidly. However, we can ap-
ply the [1,0] Pade approximant to assess the contribution
of higher-order terms in (4.7). Thus

x,."'
X"'=X"'"+X-""l— (4.13)1 ( 1.)PE;

It may be recalled that in case of molecular liquids the

[1,0] Pade approximant has been found to yield excellent
results for thermodynamic properties even for a diverging
series. ' We therefore believe that the Pade approxi-
mant given by (4.12) and (4.13) to sum the series (4.11a)
and (4.7), respectively, would yield accurate results for all
values of xo.

The last row of Table I lists the values of K; . They
are compared with K;=E '+ E '"+I(:' '+E ' and

K; =K ' + E" + K '. From this table and Figs. 5

and 6, in which we plot the contribution of the individual
terms « the series (4.7), as a function of xo and 1/xo,
respectively, it is obvious that the contributions of
higher-order terms of the series (4.7) are small and in
some cases negligible.

C. Results

For prolate ellipsoids we find that E'i"(2,2)
=K'i'(2, 2) &K2"(2,2) for all xo. The fact that Ki~K3
is primarily due to the contribution of 2K,.'"(2,4). In par-
ticular, we find that 2K "(2,4) is positive for K& and neg-
ative for Ki and K2. This suggests Ki &Ki in agreement
with experiment. On the other hand, for oblate ellip-
soids K2 (2,2) &K, (2,2)=K3 (2,2) and 2K' (2,4) is
negative for E3 and positive for E] and Kz. Since the
magnitude of 2K "(2,4) is small, we find the general rela-
tion K2 ~ E& ~K3 for oblate ellipsoids which is intuitively
correct. ' ' The fact that the twist deformation is most
difficult to apply in a discotic phase is thus borne out by
our calculation.

In agreement with the results of previous workers, our
calculation suggests the following general relations:
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and

-'E'"(2 4) =IC2 (2,4)= —
4E— = ' ' = ——'Ki '(2,4),3 1

E'i '(2, 2) =Kg '(2, 2),

tios found in the case of a phase dia-1 th-to-breadth ra io
does not exist in case o e ogram

7).
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If we neglect all terms except E ' in (4.7) and take the

zero-density limit for DPCF, i.e.,
—Pu(rl2, 0),02) —1, (5.1)c(ri2, 0„0,2)~e

the expression for the elastic constants given in Stx:. II
wt11 reduce to those of Priest and Straley. Their theory
is in fact a direct extension of the Onsager theory of
orientational ordering in hard-rod gases; only the second
virial coefficient is retained in the density expansion of
the free energy.

Though Poniewierski and Stecki gave expressions for
the Frank elastic constants which are equivalent to that of
E ' of this work, they used (5.1) in evaluating the numer-
ical values of E;. Thus their calculation fails to consider
higher than two-body-packing entropy effects. The result
of Gelbart and Ben-Shaul for the repulsive interac-
tion can be found from the expression of E ' by using the
following relation:

21-~ ' (5.2)

The factor 1/(1 —t)) is believed to take care of the effect
of the higher-body-packing entropy effects. As shown by
Barboy and Gelbart, ' however, though (5.2) is a signifi-
cant improvement over (5.1), it is not good enough to
yield the correct compressibility factor for hard sphero-
cylinders. The contributions of order 1/( 1 —g ) and
higher must be included to provide accurate 13P/p data.

Before our theory can be used to interpret real experi-
ments, the calculational part of our work must be extend-
ed in several ways. First, it is important to account for
the long-range dispersion interactions. ' In particular,
the coupling between isotropic attraction and anisotropic
hard core repulsion through pair correlation function is
important in determining the relative values of the three
principal elastic constants. The effects due to softness in
the repulsive core and the dependence of the pair interac-
tion r Q should be taken into account. It may also be
remembered that the symmetry of the nematogenic tnole-
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FIG. 5. Contribution of individual terms of the series {4.7) to
each elastic constant as a function of xp for prolate ellipsoids.
The results obtained from [1,0] Pade approximant (4.13) are
compared arit those found from the relations

K, =EL"+ X,"'+K,'" and I;; =SCL"' + X~I" + X;"'. For
g=0.45 we find I(

& ~;. These taro quantities are indistin-
guishable on the scale of the graph and are shown by one graph
only. This indicates the convergence of the series {4.7).

0.0
—2.5 2.5 3 5 4.Q

FIG. 6. Same as Fig. 5, but a function of 1/xp for oblate el-

lipsoids.
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FIG. 7. The three elastic constants as a function of xo for
prolate and 1/xo for oblate ellipsoids.
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cules is never as high as D „h, the real molecules are more
lathlike than cylindrical. 33 Further, the flexibility in the

alkyl chain of molecules is believed to be important in

many instances.
These topics are all worthy of future quantitative inves-

tigation. It wou1d seem most appropriate at present, how-
ever, to first develop some information concerning the ac-
curacy of the approach we have presented. The approach
is based upon (1) the density-functional formalism and the

functional Taylor expansion to express the free energy of
a deformed nematic phase in terms of the direct correla-
tion functions of the uniform isotropic liquid of the same
number density po and (2) the decoupling approximation
which expresses the DPCF of a system of ellipsoids of re-
volution in terms of DPCF of a system of hard spheres.

The truncation of the series (2.12) or (4.7) at an early
stage is bound to introduce large error. This fact, as
pointed out above, has been ignored in most of the pub-
lished work. " The number of terms explicitly con-
sidered here and the use of the [1,0] Pade approximant
make our calculation reliable.

Though the decoupling approximation introduces an-
isotropy in the pair correlation function and is exact at
very low density, it cannot be exact at liquid density. It is
easy to see that when two molecules are parallel, c is most
anisotropic and the surfaces of constant c are prolate
spheroids of axial ratio xo, with the long axes of
spheroids pointing along ei and ei. When eileen, c is
most isotropic, the surfaces of constant c are then oblate
spheroids with the

symmetry
axis along ei X et, the axial

ratio of this spheroid being —,(1+xo)'~ &xo. It therefore
seems that the decoupling approximation overemphasizes
the anisotropy in DPCF for the parallel configuration and
underestimates that for perpendicular configurations.

The decoupling approximation has, however, been
found to yield the values of the compressibility factor in
very good agreement with the computer simulation re-
sults. ' ' This justifies the use of it for the DPCF for a
system of hard ellipsoids.
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