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from structural data for dense classical liquids
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First, we demonstrate that careful simulations of fluids have enough accuracy that the resulting

radial distribution function can be used to test inversion methods. Second, we introduce a method

which allows extraction of the pair interaction starting from structural data for simple liquids even

under triple-point condition. The method is an iterative predictor-corrector method in which the

predictor is the modified hypernetted-chain equation and the corrector is simulation. We have veri-

fied the convergence of the method for the Lennard-Jones fluid and for a model potential for alumi-

num. We find that other methods of inversion give unreliable results. As a first application of our

method we have inverted the experimental structural data of Na at 100'C.

I. INTRODUCTION

Central to most present day theories of static properties
of classical fluids is the study of the correlation func-
tions, ' in particular of the radial distribution function
(RDF) g(r). The basic problem is the determination of
g (r) given an interaction law between the particles. Usu-
ally this is assumed to have a spherical symmetry and a
pairwise additive form for a one-component fiuid of
spherical particles. The method of integral equations for
g(r) and the perturbative approach have been developed
for this direct problem and both approaches have reached
a high degree of accuracy and flexibility, both with
respect to the form of the two-body interaction U(r} and
to the thermodynamic state, low or high density, and low
or high temperature.

A very significant aspect of the correlation function ap-
proach to the fluid state is that any such theory for g(r)
can be used in the reverse way, i.e., assuming known g (r)
one can solve the equation with respect to u(i'). This
gives the possibility of obtaining information on the in-
teratomic forces in the condensed phase starting from the
measured structure factor S(q) related to g (r) by

S(q)=l+p I d re'~'[g(r) —1) . (1.1)

Since in a real system many-body forces are present, the
extracted U(r) will be an effective two-body interaction
and it will in general be state dependent. Starting from
the pioneering work of Johnson, Hutchinson, and March
this inverse problem has attracted much attention and
over and over again experimental structure factors have
been analyzed and effective interactions deduced.

Ideally one would like to have an inversion method
whose accuracy does not depend on the detailed shape of
v(r), otherwise this could bias the result, in particular
when we compare U(r) of different substances. In addi-
tion, the method should have a comparable accuracy both

at high and at low density. This is for two reasons. First,
some of the most interesting systems, the liquid metals,
are only found as a very dense fluid. The second reason is
to be sure that any state dependence found in u (r) reflects
the presence of many-body forces and is not an artifact of
the inversion method.

It turns out that this inverse problem is much more dif-
ficult than the direct one and this is easy to understand.
At low density g(r) is a faithful representation of U(r)
and, in fact, the low-density limit of g (r } is

exp[ —v (r)/kii T]. On the contrary at high density, in the
triple point region, g(r) is very insensitive to the detailed
shape of v(r) and is mainly determined by the packing
fraction of the system in terms of the excluded volume
due to the repulsive part of v(r). This, in fact, lies at the
basis of the success of the perturbative approach to the
liquid state starting from the hard-sphere system. The
consequence of this in the inverse problem is that u (r) has
a very strong dependence on the precise value of g (r) used
as input. In addition, any small error of the theory in ex-

pressing g (r) as a function of v (r) gives an extremely am-
plified error on U(r) when the same theory is used in the
inverse problem.

Given this difficulty, it is important to figure out ways
for testing any proposed inversion scheme. Simulation of
model systems is ideally suited for this purpose. Starting
from the g (r) obtained from simulation one should apply
the inversion method under a test and then directly com-
pare the extracted U(r) with the interaction used in the
simulation. The first purpose of this paper is to deter-
mine if the accuracy of present-day typical simulation
computation can be enough for the purpose of testing in-
version methods.

The second purpose of our paper is to introduce an
iterative predictor-corrector method for the solution of
this inverse problem. In fact, we reach the conclusion
that no theory of correlations so far introduced is accurate

33 3451 1986 The American Physical Society



L REATTO, D. LEVESQUE, AND J. J. WEIS 33

enough for general use in the inversion problem. We
overcome this difficulty by using a suitable theory of
correlation, in our case a modified hypernetted-chain
(MHNC) relation, 3 only as predictor of a trial pair in-
teraction. Then a corrector stage follows in which simula-
tion is used in order to obtain the "exact" RDF corre-
sponding to the trial interaction. This cycle can be iterat-
ed until the trial interaction gives a RDF in agreetnent
with the starting g(r). This approach was introduced
some time ago by one of us in a formally similar problem

in the theory of Bose quantum fluids and found to con-
verge. Here we apply this iterative predictor-corrector
method to the case of classical fluids. First we test the
method for two models, the Lennard-Jones (LJ) fiuid and
a fluid of particles interacting with a model interaction
suitable for liquid aluminum. The general scheme of our
method is similar to one used by Schommers. We differ
in a substantial way from Schommers in the choice of the
predictor. This is crucial and in fact we have tested
Schommers's scheme in the case of the LJ fluid and we do

TABLE I. Tabulation of the following correlation functions: g(r), e(r), E(r), and S{q)for the Lennard-Jones fluid at po'=0. 84
and AT/@=0.75 and with the potential cut off at r, =4o. Beyond this distance g (r) is extended with the algorithm (2.10). To take
into account the finite size in the computation of E(r) from (2.6) we have used PU(r) =1n[exp( —Pu) j, where the average is over the
grid size centered at r.

0.04
0.08
0.12
0.16
0.20
0.24
0.28
0.32
0,36
0.40
0.44
0.48
0.52
0.56
0.60
0.64
0.68
0.72
0.76
0.80
0.84
0.88
0.92
0.94
0.96
0.98
1.00
1.02
1.04
1.06
1.08
1.10
1.12
1.14
1.16
1.18
1.20
1.22
1.24
1.26
1.28
1.30
1.32
1.34
1.36

g(r)

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.013
0.078
0.279
0.690
1.286
1.928
2.468
2.813
2.945
2.906
2.742
2.513
2.269
2.031
1.808
1.604
1.431
1.282
1.152
1.042
0.950
0.875
O.S15

—35.512
—35.532
—33.116
—31.455
—29.687
—27.892
—26.107
—24.350
—22.628
—20.944
—19.302
—17.706
—16.160
—14.671
—13.242
—11.8SO
—10.588
—9.367
—8.219
—7.144
—6.140
—5.209
—4.338
—3.872
—3.291
—2.519
—1.584
—0.624

0.212
0.831
1.215
1.406
1.451
1.410
1.333
1.244
1.150
1.059
0.982
0.914
0.851
0.795
0.745
0.703
0.665

—2.738
—2.425
—2.148
—1.886
—1.645
—1.428
—1.229
—1.047
—0.883
—0.737
—0.610
—0.501
—0.405
—0.322
—0.253
—0.200
—0.155
—0.120
—0.097
—0.083
—0.074
—0.069
—0.066

0.31
0.61
0.92
1.23
1.53
1.84
2.15
2.45
2.76
3.07
3.37
3.68
3.99
4.30
4.60
4.91
5.22
5.52
5.83
6.14
6.44
6.75
7.06
7.36
7.67
7.98
8.28
8.59
8.90
9.20
9.51
9.82

10.12
10.43
10.74
11.04
11.35
11.66
11.97
12.27
12.58
12.89
13.19
13.50
13.81

0.041
0.041
0.041
0.040
0.040
0.041
0.043
0.045
0.049
0.055
0.064
0.076
0.093
0.118
0.155
0.213
0.309
0.477
0.788
1.356
2.190
2.678
2.2S3
1.652
1.202
0.930
0.770
0.678
0.628
0.608
0.612
0.636
0.680
0.745
0.830
0.933
1.045
1.147
1.222
1.262
1.268
1.249
1.208
1.147
1.073

1.38
1.40
1.42
1.44
146
1.48
1.50
1.52
1.56
1.60
1.64
1.68
1.72
1.76
1.80
1.84
1.88
1.92
1.96
2.00
2.04
2.08
2.12
2.16
2.20
2.24
2.28
2.32
2.36
2.40
2.44
2.48
2.52
2.56
2.60
2.64
2.68
2.72
2.76
2.80
2.84
2.88
2.92
2.96
3.00

g(r)

0.764
0.720
0.684
0.653
0.630
0.615
0.602
0.593
0.592
0.605
0.633
0.680
0.744
0.817
0.904
0.991
1.071
1.140
1.198
1.239
1.265
1.275
1.258
1.221
1.166
1.103
1.036
0.974
0.927
0.884
0.855
0.842
0.837
0.843
0.859
0.885
0.917
0.951
0.990
1.024
1.053
1.077
1.091
1.097
1.096

c(r)

0.627
0.589
0.551
0.511
0.475
0.442
0.406
0.371
0.306
0.248
0.197
0.161
0.140
0.129
0.132
0.136
0.135
0.124
0.105
0.076
0.047
0.029
0.017
0.015
0.017
0.020
0.020
0.018
0.020
0.012
0.005
0.001

—0.005
—0.010
—0.014
—0.014
—0.012
—0.012
—0.007
—0.005
—0.003
—0.002
—0.004
—0.007
—0.008

—0.068
—0.075
—0.085
—0.100
—0.112
—0.119
—0.131
—0.143
—0.155
—0.159
—0.154
—0.131
—0.098
—0.064
—0.025
—0.002
—0.014
—0.011
—0.005
—0.031
—0.056
—0.068
—0.070
—0.059
—0.042
—0.026
—0.018
—0.016
—0.014
—0.023
—0.031
—0.035
—0.041
—0.043
—0.043
—0.037
—0.030
—0.026
—0.019
—0.016
—0.015
—0.014
—0.016
—0.019
—0.020

14.11
14.42
14.73
15.03
15.34
15.65
15.95
16,26
16.57
16.87
17.18
17.49
17.79
18.10
18.41
18.71
19.02
19.33
19.63
19.94
20.25
20.56
20.86
21.17
21.48
21.78
22.09
22.40
22.70
23.01
23.32
23.62
23.93
24.24
24.54
24.85
25.16
25.46
25.77
26.08
26.38
26.69
27.00
27.30
27.61

s(q)

0.998
0.933
0.884
0.853
0.840
0.841
0.856
0.883
0.920
0.963
1.007
1.047
1.080
1.101
1.109
1.104
1.088
1.066
1.041
1.015
0.990
0.967
0.950
0.939
0.934
0.935
0.943
0.955
0.971
0.989
1.007
1.023
1.035
1.042
1.046
1.044
1.038
1.028
1.017
1.006
0.995
0.986
0.978
0.973
0.971
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TABLE II. The same as for Table I for the model Al potential ~ith r, =2.04rp at p=0.0527
atoms/A and T=1051 K I'rp ——4.234 A, qp ——rp ').

r /rp

0.04
0.08
0.12
0.16
0.20
0.24
0.28
0.32
0.36
0.40
0.44
0.48
0.52
0.56
0.58
0.60
0.62
0.64
0.66
0.68
0.70
0.72
0.74
0.76
0.78
0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
1.00
1.04
1.08
1.12
1.16
1.20
1.24
1.28
1.32
1.36
1.40
1.44
1.48
1.52
1.56
1.60
1.64
1.68
1.72
1.76
1.80

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.001
0.149
0.588
1.422
2.375
2.983
3.033
2.677
2.173
1.695
1.317
1.044
0.857
0.733
0.654
0.607
0.584
0.578
0.586
0.605
0.633
0.670
0.765
0.889
1.023
1.122
1.168
1.186
1.197
1.173
1.094
0.992
0.910
0.869
0.869
0.895
0.938
0.984
1.022
1.047
1.056
1.053
1.041

—38.547
—35.971
—32.768
—29.542
—26.494
—23.646
—20.979
—18.475
—16.125
—13.922
—11.855
—9.911
—8.090
—6.273
—5.070
—3.529
—1.931
—0.744
—0.182
—0.093
—0.215
—0.368
—0.475
—0.523
—0.526
—0.503
—0.465
—0.421
—0.376
—0.332
—0.289
—0.250
—0.213
—0.176
—0.102
—0.025

0.041
0.054

—0.001
—0.082
—0.125
—0.117
—0.087
—0.059
—0.041
—0.031
—0.023
—0.019
—0.017
—0.021
—0.029
—0.037
—0.044
—0.043
—0.036

—1.445
—1.420
—1.165
—0.927
—0.689
—0.481
—0.315
—0.191
—0.109
—0.058
—0.033
—0.027
—0.035
—0.053
—0.077
—0.105
—0.135
—0.162
—0.186
—0.205
—0.215
—0.202
—0.145
—0.073
—0.034
—0.047
—0.085
—0.098
—0.074
—0.041
—0.028
—0.039
—0.055
—0.060
—0.056
—0.045
—0.034
—0.028
—0.026
—0.027
—0.026
—0.025

5.881
3.769
2.434
1.514
0.946
0.625
0.470
0.420
0.427
0.458
0.491
0.511
0.512
0.491
0.450
0.393
0.324
0.248
0.171
0.098
0.032

—0.067
—0.114
—0.114
—0.081
—0.033

0.012
0.044
0.056
0.050
0.031
0.007

—0.015
—0.028
—0.031
—0.025
—0.013

0.001
0.012
0.018
0.018
0.013

0.80
1.60
2.40
3.20
4.00
4.80
5.60
6.40
7.20
8,00
8.80
9.60

10.40
11.20
11.60
12.00
12.40
12.80
13.20
13.60
14.00
14.40
14.80
15.20
15.60
16.00
16.40
16.80
17.20
17.60
18.00
18.40
18.80
19.20
20.00
20.80
21.60
22.40
23.20
24.00
24.80
25.60
26.40
27.20
28.00
28.80
29.60
30.40
31.20
32.00
32.80
33.60
34.40
35.20
36.00

0.020
0.022
0.025
0.030
0.036
0.045
0.060
0.085
0.128
0.204
0.361
0.719
1.462
2.237
2.314
2.157
1.859
1.520
1.214
0.974
0.801
0.684
0.610
0.568
0.552
0.555
0.576
0.611
0.660
0.722
0.796
0.883
0.980
1.084
1.260
1.318
1.264
1.170
1.063
0.955
0.871
0.827
0.826
0.865
0.934
1.018
1.089
1.122
1.115
1.082
1.038
0.995
0.960
0.938
0.931
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not find convergence to the correct answer. On the con-
trary, with our MHNC predictor we find the correct
answer with high precision.

Having proved that our predictor-corrector method can
be used to deduce the pair interaction with high accuracy,
we apply the method to the experimental data for Na at
100'C.

The contents of the paper are as follows. In Sec. II we
study whether simulation data can be accurate enough in
order to test inversion procedures and in addition test the
MHNC procedure. In Sec. III we discuss predictor-
corrector methods. In Sec. IV both our predictor-
corrector method and Schommers's method are tested in
the case of the LJ fluid. In Sec. V we apply our method
to the model Al problem. In Sec. VI we discuss the appli-
cability of our method to invert experimental data and as
an example in Sec. VII we invert the experimental data
for Na. Section VIII contains a discussion of our results
and the conclusions. In Tables I and II we tabulate some
of the correlation functions for the LJ fluid and for the
model Al fluid.

II. SIMULATION AND THEORIES OF FLUID
FOR THE INVERSE PROBLEM

We consider a one-component fluid of spherical parti-
cles interacting via a pair interaction

V= —,
' g v(r,&) . (2.1)

PuHN&(r) =g (r)—1 —c (r) —ln[g (r)] (2.2)

Standard integral equations' for the RDF g(r) like the
Percus- Yevick (PY) and the hypernetted chain (HNC) can
be easily used in the inverse problem. For instance, the
HNC closure

c (r) = Pu (r)+g (r—) 1 —ln[g (r)]—,

where P=(k&T) ', for the Ornstein-Zernike (OZ) direct
correlation function c(r} immediately gives the inversion
formula

r 8 r —SHs r9 EHsrg g=0, (2.7)

which determines i} uniquely if gHs and EHs are assumed
to be known.

MHNC used in the inversion procedure leads immedi-
ately to the expression

This approach suffers from the difficulty that the equa-
tions contain free parameters which can be determined by
use of additional information on the properties of the sys-
tern. For instance, the equation used by Brennan et aI."
contains two parameters and these are fixed by two ther-
modynamic constraints, the value of the pressure and that
of the internal energy. The presence of state-dependent
interactions and of many-body forces in a real system
makes ambiguous the use of similar constraints, in partic-
ular in the case of liquid metals when, in fact, more ela-
borate constraints' have been used.

Recently3 the accuracy of the integral equation ap-
proach has been greatly improved, elaborating on the no-
tion of a reference fluid first established with the pertur-
bative approach of liquids. Starting from the insensitivity
of g(r) on the detailed shape of v(r) under triple-point
conditions, the perturbative approach obtains g (r) and the
thermodynamic properties of the system by an expansion
around the values of a suitable reference fluid, usually the
hard-sphere fluid. With the MHNC equation one starts
with the formally exact relation

g (r) =exp[ —Pu (r)+g (r) 1 —c (r—)+E(r ju)] (2.6)

obtained from a resummation of the cluster expansion of
g (r). E(r jv), the so-called bridge function, is the sum of
the elementary diagrams, an infinite series of diagrams in
terms of h =g —1 bonds. From the observation that
E(r jv) has a dependence on the shape of v (r) even small-
er than the one of g (r},MHNC consists in approximating
E(rjv) in (2.6) with the bridge function EHs(r, i})of hard
spheres. The bridge function of hard spheres depends on
only one parameter, the packing fraction rj=npdi/6,
where p is the number density and d the diameter. The
variational principle for the free energy gives the equa-
tion~

if g(r) of the system is known. c(r) is related to g(r) by
the OZ relation PvMHNc g «) —1 —c (r) —»[g (r)]+EHs« i}) . (2.8)

g(r) 1 =c(r)—+p f d r'c(r')[g(
~

r—r'
~

) —1], (2.3)

so that it is given explicitly in terms of the structure fac-
tor S(q) by

c(r)= s f d q 1—1 3 1

p(2~)' S(q)
(2.4)

In a similar way the PY closure leads to the inversion for-
mula

Pupv(r) =in[1—c(r)/g(r)] . (2.5)

Both the PY and the HNC equations are not very accu-
rate for fluids at high density so that also the inversion
formulas {2.2) and (2.5) are not expected to be accurate.
Many computations ' have, in fact, verified this.
Mixed integral equations between PY and HNC have been
introduced and also used as an inversion procedure. ' "

uLi(r) =—4s[(~/r) —(o/r)" ] (2.9)

under triple-point conditions, p' =per =0.84 and
T'=kzT/a=0. 75. We have generated by molecular
dynamics g(r) for a system of 864 particles with three
long runs. Two runs are of 16800 integration steps and
uLi is truncated at r, =2.5o. One run is of 6800 integra-
tion steps with r, =4o In both ca. ses g (r) is computed up

Since MHNC used in the direct problem gives excellent
results for g(r) when compared with simulation results
for a number of pair interactions, it might be anticipated
that {2.8}should give an accurate inversion of g (r)

In fact, the MHNC relation has already been used' '
to extract the pair interaction from experimental data and
claimed' to be accurate. Here we test this method start-
ing from g (r) obtained from simulation.

First are consider the Lennard-Jones potential
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to the respective r, . In order to obtain c (r) from (2.4) the
structure factor S(k) has been computed by first extend-
ing g(r) for r &r, with Verlet's algorithm: the OZ rela-
tion (2.3) has been solved with the condition

Pyle

2Q— {a)

g (r) =g„(.r), r ~ r,

where g„(r). is the raw simulation result and

c(r)= pv(r)—, r &r, .

(2.10a)

(2.10b)

'1,0—

For the particular case where r, is chosen equal to r„
(2.10b) reduces to c (r) =0 for r & r, Th. en pvMHNc is ob-
tained from (2.8) with i) determined by solving (2.7). We
find that the extracted interaction is not satisfactory as
can be seen in Fig. 1(a); the minimum of PvLi is underes-
timated by -20% and a spurious structure appears at
r-1.7a. Before accepting this negative result we must
critically examine if the input data g»~ are adequate for
our purpose. In fact, there are many possible sources of
errors. First, g(r} is known over a finite range and the
data must be extended to large distance. The method
(2.10) is only approximate and this introduces an error in
c (r) and thus in pvMHNC also for r & r, . We have extend-
ed the results with cutoff r, =4o for two values of r, =4cr
and 2.5cr. The change in PvMHNC is rather small and, in
particular, negligible compared with the difference be-
tween pvMHNc and pvLi. Use of PY or HNC closures for
c (2.10b) leads to a similar conclusion so that we believe
that the extension scheme in itself is quite accurate even
for cutoffs as small as 2.5o.

Despite this satisfactory result we want to stress that
the extension procedure (2.10) may not be easy to use near
triple-point conditions, where the convergence of the
iterative solution of the OZ equation is slow and quite
sensitive to statistical noise in the g (r)

A second source of error is the use of an approximate
EHs and gHs in (2.7) and (2.8). We have used for gHs the
Verlet-Weis'6 parameterization gHs of simulation data
for hard spheres and this is not exact. Therefore, also
EHs obtained from

EBS {r) cHs {r) gHS {r)+1+inyHS {r)

y (r) =e~"'"'g(r) (2.11)

is only approximate. Again we estimate that this source
of error is minor. In fact, we have obtained pvMHNC also
starting from the same g(r) but using for EHs and gHs
the PY approximation. Equation (2.7) gives now a slight-
ly different value for iI and this to a large extent compen-
sates the difference between EHs given by the two approx-
imations for the same i). As a result, pvMHNC shows only
modest changes with respect to the result shown in Fig.
1(a).

A further problem derives from the statistical noise
that affects g„(r) due to the statistical nature of the
simulation methods. Using separately the two g„{r)ob-
tained from the long runs with r, =2.5o' we have extract-
ed two pvMHNC and in Fig. 1(b) we plot the corresponding
deviation bpvMHNc. Even if MHNC does not accurately
give the interaction, this deviation b,pvMHNc can be taken
as a very accurate representation of the intrinsic effect of
the noise in g„(r). In fact, the error introduced by
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MHNC due to the approximation of the exact but un-
known E(rlv) with EHs(r) will cancel out to a large ex-
tent when we take the difference between the two extract-
ed potentials. From the result in Fig. 1(b} we conclude
that the statistical noise of simulation for long runs is
very small, giving an uncertainty in the extracted pv
which typically is below +0.02, becoming somewhat
larger in the core region but below the 1% level. Howev-
er, the error becomes much larger for short runs. As an

20 r/o

FIG. 1. (a) The potential PvMHNc extracted from the comput-
er simulated g(r) of a I.ennard-Jones system at p =0.84 and
T =0.75 by means of the MHNC equation (2.8). The open cir-
cles and the crosses denote results corresponding to g(r) ob-
tained with potential cutoffs r, =4' and 2.5o, respectively, and
extended beyond r, =r, via Eq. (2.10). The solid line represents
the exact Lennard-Jones potential. (b) Effect of the statistical
noise in the computer simulated g (r) on the extracted potential
pvMHNc. The open circles represent the difference between the
extracted pair potentials corresponding to two independent
molecular-dynamics runs of 16800 time steps each for a
Lennard-Jones system with potential cutoff 2.5o at p =0.84
and T =0.75, the triangles represent the difference between the
extracted potentials from a run of 16800 time steps and from
g(r) obtained by averaging over a block of 1600 time steps in
the same run.
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example, in Fig. 1(b) we plot also the deviation APuMHNc

between the extracted potential from one of the long runs

and from g (r) obtained by averaging over a block of 1600
time steps in the same run.

As a second test of inversion procedures we have con-
sidered a model potential' u~i for aluminum. We have

chosen this potential on one hand because it has the typi-
cal oscillations of the effective ion-ion interaction of
liquid metals. In addition, it appeared a priori very diffi-
cult to reproduce because of several unusual features: it
has a well-defined structure also at short distance where

Pu is positive (see Fig. 2); the subsequent oscillations have
a rather small amplitude and the first peak of g (r) for the
Al density (p=0.0527 atom/A ) is at r'=0. 66
(r'=r/rp with rp 4.234——A), where Pu is still well posi-
tive. In addition, the system is very incompressible at the
temperature we consider, T = 1051 K, with

S(q =0)=0.02, which is about half of the value of the LJ
at the triple point. This means that the screening of the
weak features of Pu~ by the repulsive part of the interac-
tion is even more pronounced than in the case of the LJ
fluid.

We have performed with u~~ several Monte Carlo runs
for 864 particles with a cutoff r,'=2.04. Usually, g(r)
has been computed up to r,' but in one run it has been
computed up to 2.5. In Fig. 2 we plot the extracted

PvMHNc obtained from g (r) of a run of 8400
moves/particle. MHNC gives the basic features of Pu~i,
in particular the positions of some of the extrema of vzi,'

however, the values at the extrema are given with rather
large errors. In order to test if the cutoff distance
r,' =2.04 is large enough such that the results are not af-
fected by the extension procedure (2.10), we have extended
the g(r) of the run with the larger cutoff starting both
from r,'=2.5 and also from 2.04. In Table III we give
positions and values of the extracted PuMHNc in a number
of cases. Again the conclusion is that simulation can give
g(r) with enough accuracy to test inversion procedures.
An additional conclusion is that MHNC is not accurate
enough to represent an inversion procedure of quantitative
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FIG. 2. Potential PuMHNc (solid line) extracted from the
MHNC equation (2.8) for an aluminumlike model system. The
dots represent the aluminum model potential and the open cir-
cles the corresponding RDF obtained by a Monte Carlo simula-

tion for p=0.0527 atom/k and T =1051 K.

value. Notice that this conclusion does not depend on the
criterion (2.7) for the choice of the hard-sphere diameter.
For instance, in the case of the LJ system no choice of rI
is able to eliminate the spurious shoulder at r'=1.7 and
the value of sl can be chosen so that pvMHNc has the

TABLE III. Test of the inversion procedure (3.2) for a model aluminum potential. The first line gives the positions (in units of
rp=4. 234 A) alld values of the minima (m;, Pu ~) and maxima (M~, PuM;) of the exact Al potential {Ref. 17). The four next lines com-

pare the initial potential Pup obtained from the MHNC equation {2.8) for different Monte Carlo runs and different ways of extension

of the RDF. A: run of 10 configurations, r, (potential cutoff) is 2.08rp, r, [cutoff used in the extension procedure (2.10)] is 2.08rp.
8: run of 10 configurations, r, =2.08ro, r, =2.50ro (in this run the RDF has been calculated up to 2.5ro). C: same run as 8 but

r, =2.08ro. D: run of 8400 moves/particles, r, =r, =2.04ro. The next lines give the potentials extracted after the first, fourth,
sixth, and eighth iterations and the last line (Pu4 s ) the average potential from iterations 4—8.

PuM,

Exact
PupA

Pup8
PupC
PupD
Pui
I3u4

Pus
Pus

Pu4 s—
0.71
0.69
0.69
0.69
0.69
0.71
0.71
0.71
0.71
0.71

0.420
0.472
0.485
0.487
0.525
0.535
0.38
0.44
0.36
0.39

0.79
0.79
0.79
0.79
0.79
0.79
0.79
0.79
0.79
0.79

0.512
0.673
0.675
0.673
0.743
0.58
0.50
0.54
0.49
0.50

1.06
1.12
1.12
1.12
1.12
1.06
1.06
1.06
1.06
1.06

—0.119
—0.092
—0.095
—0.106
—0.025
—0.084
—0.12
—0.07
—0.09
—0.10

1.29
1.28
1.27
1.27
1.28
1.28
1.28
1.28
1.28
1.28

0.056
—0.0008
—0.020
—0.027

0.060
0.065
0.062
0.095
0.10
0.08

1.51
1.47
1.49
1.49
1.50
1.50
1.54
1.50
1.50
1.52

—0.031
—0.061
—0.117
—0.111
—0.015
—0.011
—0.006
—0.016
+ 0.017
+ 0.002
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E(rluo) = g—o(r)+1+co(r)+ ln[yz(r)],
Puo(r I

y.(.}=. g.(.),
(3.1}

-1.0—

l

1.0

FIG. 3. Pair potential extracted from the RDF af a
Lennard-Jones system at p =0.65 and T =1.036. The open
circles represent PuMHNc used as initial potential in the iterative
predictor-corrector scheme (3.2). The crosses and the solid tri-
angles represent the potentials extracted after the first and the
last (fifth) iteration, respectively. The solid hne represents the
exact Lennard-Jones potential (divided by kq T).

correct value at the minimum but in this case the poten-
tial is strongly underestimated in the core region.

Our conclusions regarding MHNC as an inversion pro-
cedure refer to triple-point conditions. At smaller density
this procedure becomes rather accurate. As an example,
see Fig. 3 where PvMHNc is shown for the LJ system at
po =0.65 and ksT/a=1. 036.

For reference purposes we tabulate in Tables I and D
some correlation functions for the LJ fluid under triple-
point condition and for the Al model potential. We give
g(r) and S(q), the direct correlation function c(r), and
the bridge function E(r).

III. PREDICTOR-CORRECTOR METHODS
FOR INVERSION

Suppose that using MHNC me have obtained a pair in-
teraction uMHNC starting from a given RDF g(r). As
shown in Sec. II, uMHNC differs from the true u(r) be-
cause of the approximation inherent to MHNC. We can
improve on this if we consider uMHNC(r) only as an initial
estimate, which we call uo(r), of the exact u(r). In fact,
given vo(r) we can compute "exactly" the corresponding
RDF, which we call go(r), by use of simulation methods.
If the predictor, MHNC in our case, were exact we should
find go(r) =g (r) within the statistical noise. This will not
be so because vu(r) differs from u(r) but we can use the
difference g(r) —go(r} to correct our first estimate. In
fact, for the system uo(r } we can construct its bridge func-
tion

where we have used (2.4). $ince simulation gives g;(r)
only up to a finite distance, use of (3.2) requires a suitable
extension of g; (r) at large distance like (2.10) in order to
obtain S;(q) without cutoff errors. The iteration will stop
when both g;(r) g(r) and —S;(q)—S(q) are below a set
standard of error which must take into account the pre-
cision of the starting g (r) and S(q) and the statistical er-
ror of g;(r) and S;(q).

It is clear that many variants on this basic scheme can
be considered. For instance, Schommers, who first ap-
plied a similar approach, considered the function
y;(r)=g;(r) exp[Pu;(r)]. Assuming that one could neglect
the change of y (r) when the potential is changed, he used
as predictor

Put(r)=Pu& i(r)+ln[g(r) jg; i(r)],
with the initial condition

Pu, (r) = —ln[g(r)] .

(3.3)

(3.4)

Another predictor derives from a random-phase approxi-
mation (RPA) in which the variation of the direct correla-
tion function is equal to the variation of the pair interac-
tion multiplied by P. This gives

Pu;(r) = Pv; i(r)

+(2n) ~p ' f 1 q e 'q'[S '(q) —S;,(q)] .

(3.5)

Et is easy to obtain the predictors corresponding to other
approximations, for instance, the crossover MHNC equa-
tion.

Notice that both (3.3) and (3.5) can be obtained from
(3.2) by dropping some of its terms. From what is known
in the direct problem we expect that the predictor (3.2)
should be very good at short distance in the core region
due to the "universality" of the bridge function. It
should be less accurate at larger distance where the RPA
function (3.5) should be better. Therefore, one could even
consider performing some iterations with the predictor
(3.2) and some with (3.5). Less clear is what to expect

where cz(r) is the direct correlation function correspond-
ing to go(r}. Since uo(r) will be, in any case, closer to
v(r) than the hard-sphere potential, it must be expected
that we will get an improved estimate of the interaction
u (r) if we approximate the unknown E(r lu) with
E(rluu) and not with EHs, as done in (2.8). This will
generate a new estimate ui(r) of the interaction and it is
clear that the procedure can be iterated by computation of
the "exact'" gi(r). In this way we obtain, at the ith itera-
tion,

Pu;(r) = Pu; i(r)+g (r) —g; i(r)

+»[g(r) ~g i«)]

+(2n) 'p ' f diqe 's'[S '(q) —S; i(q)],

(3.2)
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from Schommers's predictor (3.3},since only at low densi-

ty the function y(r) becomes really weakly dependent on
u (r}. The use of the crossover MHNC equation' as pred-
ictor seems to also be indicated because it should have
both the advantages of MHNC and of RPA.

With this kind of approach to inversion it is iinportant
that both the starting point uu(r) and the predictor are as
good as possible in order to have fast convergence. This is
because at each iteration cycle there is one simulation so
that an intrinsic noise is introduced. In this respect, an
important difference between the predictors (3.3}and (3.5}
compared with (3.2) is that (3.2) contains a direct compar-
ison of g;(r} and S;(q) with g(r) and S(q}. With (3.3}
only g;(r) and g(r) enter and with (3.5) only the structure
factors. In a strict mathematical sense this should not
make any difference at convergence because one function
is the Fourier transform of the other. But this is not so
when we take into account the noise in g;(r). For in-

stance, on the basis of (3.3) one could be led to believe to
have reached convergence because g(r) —g;(r) is belaw
this statistical noise. However, if the deviations

g(r) g;(r) ar—e small but not of random character, the
difference S(q) —S;(q) ean be significant in some range of
q and on the basis of (3.2) one should continue the itera-
tion. In Sec. IV we will present an example of this.

IV. INVERSION FOR THE LENNARD-JONES
FLUID

We have first tested the iterative predictor-corrector
method with the MHNC predictor in the case of the LJ
potential (2.9), a prototype of a simple dielectric fiuid, in
the triple-point region. The RDF of the molecular-
dynarnies run with cutoff at 4o, extended to large distance
with the algorithm (2.10), and the related S(q) were used
as the input structural data from which the interaction is
extracted. As starting potential uo(r) we use (2.S) with the
hard-sphere bridge function EHs corresponding ta the
Verlet-Weis parametrization' of gHs(r) extended inside
the core by Henderson and Grundke' and the packing
fraction is determined by the Lado criterion (2.7). We
stress that all this does not require any a priori know1edge
of the pair interactian which we want ta extract.

Starting fram this uo(r) we have performed twelve
iterations using (3.2) and we plot some of the results for
pu in Fig. 4. For the first five iterations g;(r) have been
computed by Monte Carlo simulations of 10b configura-
tions for a system of 864 particles with a cutoff r, =3o'.
Already at the first iteration the spurious structure at
r-1.7o contained in uMHN~ ——vo is eliminated and the
position of the minimum is given with high precision.
However, the value of u(r) at the minimum takes longer
to converge but at the fifth iteration (also shown in Fig. 4)
the computation could be considered as converged. In
fact, the differences g5(r) g4(r) and Ss(q) —S4(q} w—ere
below the level of statistical noise. It can be seen in Fig. 4
that puz(r) deviates from pu~(r) in the attractive region
rather uniformly by -0.05. In order to understand the
origin of this small deviation, starting from u~(r) we have
performed seven additional iterations using as the cutoff
the same value r, =4o of the input computation. Runs of
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FIG. 4. Test of the iterative predictor-corrector scheme (3.2)
for a Lennard-Jones system near triple point (p =0.84,
T =0.75). The initial potential (open circles) is obtained from
the MHNC eqgation (2.8). Crosses and triangles represent the
potentials extracted after the first and the fifth iteration, respec-
tively. The solid triangles represent the average of the potentials
obtained from iterations 8—12 and the solid line the exact
Lennard-Jones potential.

10 configurations have been performed with the last two
of 2&(10 . The last five iterations give u;(r} which oscil-
lates around the correct answer uLi by —+0.1 and the rel-
ative g, (r} differs by less than the statistical noise. It
should be noticed that an increase of the value of r, with
simulations of the same number of configurations has the
effect of increasing the fluctuation in pu;. This is a conse-
quence of an increase in the fluctuation of S(q) at small

q, which is strongly amplified because S; '(q} enters the
predictor (3.2). Thus, within this noise level the computa-
tion could be considered as converged and in order to im-

prove the statistics we have taken the average of the last
five iterations as the final prediction of the potential. In
the range 1 & r/tr & 2 the typical deviation of this average
from putJ is -0.02 and in the core region the deviation is
below 3%. For r/o &2.5, where ~PuLt ~

is below 0.02,
the extracted potential shows some small oscillations
around zero, it has a maximum of 0.019 at r/o=2 72.
and a minimum of —0.012 at r/cr=3. 56. In addition,
the positions of these extrema fluctuate widely (up to
—15%) from one iteration to the next even for the last
ones. It is clear that these small structures are an effect of
the statistical noise of our simulation runs. From a prac-
tical point of view it would have been better to use longer
runs and a smaller number of iterations. However, in this
test computation we wanted to check also if the method
has some problem of instability due to the noise. Our
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FIG. 5. Test of Schommers's iterative inversion scheme [Eq.
(3.3)] for a Lennard-Jones system near triple point (p*=0.84,
T =0.75). Open circles, difference between the RDF's corre-
sponding to the Lennard-Jones potential I,'gLJ) and the initial po-
tential Pvo [Eq. (3.4)]; crosses, difference between gLi and g»,
RDF at the 13th iteration; solid triangles, difference between

gLJ and the RDF of iteration 12 in our scheme.

computations show that no such problem arises.
As a further test of the method we have considered the

same LJ system at per =0 6.5 and kiiT/a=1. 036. Now

pvMHN& is rather good (see Fig. 3) and after four itera-
tions vLi(r) is reproduced with very high precision. At
such a smaller density the value of the cutoff is less cru-
cial and in these computations we have used r, =2.5u.

The Schommers's scheme (3.3) is attractive because it is
easier to use, not requiring the extension of g(r) at large
distances. For this reason we have tested this method
under the same conditions. For the triple-point state we
have considered the computation as apparently converged
after 13 iterations, starting from the initial potential (3.4).
In fact, the g; (r}s of the last few iterations and the initial
g(r) differ by less than the statistical noise (see Fig. 5).
However, the extracted potential (Fig. 6} differs greatly
from v~.

The data shown in Figs. 5 and 6 illustrate very well the
difficulty encountered in the inversion under triple-point
conditions. Two radically different potentials like vLJ and

vis (cf. Fig. 6) give a RDF which differs everywhere by
less than 0.01. This is the screening of the weak features
of the potential by its hard part. However, it can be no-
ticed from Fig. 5 that the difference between these two
RDF has a systematic dependence on r. This gives rise in
the corresponding structure factors to deviations well
above the noise level. As a comparison in Fig. 5 we give
also the difference between the g(r) of the LJ system and
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FIG. 6. Test of Schommers's inversion scheme [Eq. (3.3)] for
a Lennard-Jones system near triple point (p =0.84, T =0.75).
The solid triangles represent the potential Pv~i extracted at the
13th iteration, the open circles the potential obtained from the
MHNC equation (2.8), and the solid line the Lennard-Jones po-
tential.

V. INVERSION FOR A MODEL ALUMINUM
POTENTIAL

The second test of our inversion procedure has been for
the model Al potential' already described in Sec. II. The

the RDF corresponding to convergence of our scheme as
discussed above. This deviation is very small but also of a
more random nature.

The initial estimate (3.4) for pvo(r) is much worse than
the MHNC one and one could suspect that the poor per-
formance of Schommers's scheme is due to such a bad
starting point. Now there is no reason for not using, for
instance, pv MHNc as the initial potential also in
Schommers's iterative loop (3.3). We have performed this
computation for the LJ system at the intermediate density
po =0.65. pvMHNc is rather close to the correct answer
(see Fig. 4) and we have performed six iterations with
simulations of 10 configurations. The v; so obtained do
not show a global improvement with respect to the start-
ing vMHNC,

' in soine regions of r, v; becomes closer to vLi
but in other regions v; moves away from vLi. We cannot
say if much longer simulation runs could resolve this dif-
ficulty but it is clear that this scheme is, at the least, im-
practical and can lead to an apparent convergence to a
wrong answer.
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procedure follows exactly the same pattern as in the ease
of the LJ fluid. The starting g (r) considered as "exact" is
obtained from a Monte Carlo simulation of 7)&10 con-
figurations and extended from r, =2 04. rn, where

rQ —4.234 A is the size of the Wigner-Seitz cell. Starting
from un ——uMHNC with rl given by (2.7) we have performed
eight iterations with (3.2) and g;(r) are computed with
simulations each of 4X 10 configurations with the same
cutoff r, =2.04rv. Already ui(r) (see Fig. 7) reproduces
with good precision the positions of the extrema and these
remain very stable during the subsequent iterations. As in
the case of the LJ potential, the convergence of the values
of v(r) at the extrema is slower and this is in part due to
the effect of statistical noise. Hawever, already at the
fourth iteration one has a reasonably accurate estimate of
u~) and at the eighth iteration there is almast no change
in g(r), so that the computation was considered as con-
verged. Table III shaws that the agreement between Pus
and PvA) is very good everywhere, the deviations being
typically of order +0.02 and of order of 5% in the core
region. From results of simulations of different lengths

which we have performed it is clear that this residual er-
ror could be reduced still further by longer simulations.

The oscillations of uz) in the tail region have a very
small amplitude, for instance, Pu~ ———0.03 and 0.02 at
the two last extrema before r =2ru. Therefore, the ex-
tracted interaction reproduces the amplitude of these
structures with only modest relative precision. We want
ta stress, however, that our inversion procedure leaves no
doubt about the existence of these structures. In fact, in
all iterations one finds these weak structures almost at the
same positions, the variation in these positions being less
than 3%%uo. This behavior can be contrasted with the one
found for the weak and spurious structures for r jo & 2.5
in the case of the extracted potential for the LJ system.
In that case, not only do the values of Put at these extrema
fluctuate but also their positions have very large fluctua-
tions. In this way one can very well discriminate genuine
weak structures fram spurious ones. On the other hand, if
one needs ta know with high precision the amplitude of
these weak structures, simulations longer than the ones we
have performed are needed.

VI. INVERSION OP EXPERIMENTAL DATA
O'ITH THE ITERATIVE PREDICTOR-CORRECTOR

METHOD

1.0 2'.0 r/ro

FIG. 7. Inversion procedure {3.2) applied to an aluminumlike
model. The solid line is the potential PuMnNc obtained from the
MHNC equation {2.8) (input). The open circles and the crosses
represent the potentials extracted at the first and fifth iteration,
respectively, the triangles the average potential of iterations
4—8, the solid circles and dashed line the model aluminum po-
tential.

The application of our inversion scheme to experimen-
tal data raises many questions which we try to answer in
this section. First is the questian of many-body forces
present in a real fluid but absent in the models tested in
the previous sections. It is clear that in the case af inver-
sion of experimental data the three-and-more —body in-
teractions will be replaced by an effective two-body in-
teraction added to the genuine one. We do not expect that
this will give any serious problem of convergence to our
method. In fact, we have already a test of this' in the case
of a quantum Bose fluid. In that case, the farmally iden-
tical problem is to find the Jastrow function, which has
the role of exp[Pv(r)] in the present case, which repro-
duces a given RDF g(r) corresponding to the ground
state %n of the system. This g (r) was obtained from the
Green-function Monte Carlo method, which gives an ex-
act sampling of this ground state. This %n contains impli-
citly correlations between inore than two particles and, in
particular, it is well established ' that triplet correlations
in %n, the equivalent of a triplet interaction in the classi-
cal case, are very important. The inversion method we are
using here had no difficulty of convergence in that case.

The second problem arises from the long-range tail of
u(r) beyond the cutoff r„which one must ntx:essarily use
in a simulation. An estimate of the effect of the long-
range tail of u (r) on the short-range part of the RDF g (r)
can be obtained by comparing the runs with cutoff 4' and
2 5cr performed . for the LJ fiuid (cf. Sec. II). The differ-
ence between the g(r) with cutoff 4o and the two g(r)'s
with cutoff 2.5o is within the statistical error on these
g(r)'s. We further have studied the effect of the tail of
the LJ potential under triple-point conditions when
r, =4o by computing g (r) by solving a MHNC equation
obtained from (2.6) by replacing E(rluLJ) of the untrun-
cated potential with the one of the truncated potential.
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This bridge function is obtained from a formula similar to
(3.1) by using the simulation result for g(r). The effect
on g (r) is extremely small so that the error introduced in
the extracted potential at short distance by the neglect of
the tail of u(r} is completely negligible. On the other
hand, if scattering data of extremely high precision at
very small q were available, this information could be
used to obtain information on the tail of u (r) beyond the
cutoff r, even with our method. In this case, the predic-
tor based on the crossover MHNC (Ref. 18) should be
used due to the built-in RPA approximation, which is ex-

pected to be very accurate for a long-range tail. The itera-
tion procedure does not modify the extracted interaction
beyond r, .

The finite size of the system in the simulation affects
our inversion procedure in two ways, First, because it
gives g(r} only up to a finite range and one has to extend
g(r) at larger distances. Since the extension algorithm
(2.10) is only approximate, this introduces an error in the
extracted potential. We have shown in Sec. II that for
commonly used values of r, (r, -2.5o—4.0o) the residual
error is rather small. On the other hand, if the quality of
the input data is so high as to warrant this, one could use
a better extension scheme.

The second effect of finite size is due to the N depen-
dence of g(r). For the large systems which we use the
dominant contribution is the N term, which is known
to have the form '

g (r) =g~(r)+ bg(r), —1
(6.1)

(6 2)

where g(r) is the RDF of the infinite system, N is the
number of particles, and S(0) pk&Tkz is the reduced
isothermal compressibility. In (6.2), g (r} and S(0) can be
either the quantities for the infinite system or those of the
finite one. In the computations of Secs. IV and V, we did
not have to worry about this 1/N effect because both the
starting g(r) and those obtainai with the iterations are
similarly affected and in this way no bias is introduced in
the extracted potential. This is no longer true when the
starting g(r) derives from experiment and our inversion
procedure will interpret the absence of this 1/N contribu-
tion in the experimental data by a suitable modification in
the extracted potential. There are different ways in which
one can correct this error and the following is one. It has
already been shown that the MHNC equation can be
used to compute bg(r) as defined by (6.2) by solving that
equation at neighboring densities with the hard-sphere
bridge function at a packing fraction determined at each
density by (2.8). Suppose that with our predictor-
corrector method we have extracted an interaction which
we call uz(r) because it is affected by the finite-size effect.
Using this u~(r} we can now compute bg(r) with S(0) and
8 g(r)/Bp given by MHNC as explained above. Notice
that for this purpose 8 g(r)/i3p must be computed keep-
ing uN(r) fixed even if in the real system the pair interac-
tion is density dependent. If we now approximate the
bridge function corresponding to the unknown u(r) with
the one of a hypothetical infinite system interacting with

u~(r) we find

pu(r) =pv~(r)+g(r/u) g(—r/u~) c(—r/u)

+c(r/u~) —ln
g(r/v)

g(r/v~)
(6.3)

+ln 1+—
N g r/v~

(6.&)

Here, (I/N)bc(r/u~) is the 1/N correction term corre-
sponding to the (I/N} ~(r) variation of the RDF as given
by the OZ relation. Equation (6.4) is correct to order 1/N
and the only significant approximation is the computation
of b,g(r/vz) with MHNC.

The final point concerns the step size b,r used in simu-
lation. Simulation in reality gives a histogram for the
RDF and hr is chosen to be not too small, typically
br/o-0. 01—0.02, in order to have sufficient statistics.
In the core region g (r) has a strong curvature so that the
average of g (r) over b, r is rather different from the value
of g(r) at the mean position. On the contrary, no such
problem is present in g (r) deduced from the experimental
data. One can take care of this problem by taking the
average of g (r) deduced from the experimental data over
the step size used in simulation. The other possibility,
which is preferable, is to obtain from simulation directly a
sampling of y(r) =e~""g(r) because this function is
smooth also in the core region.

VII. INVERSION OF EXPERIMENTAL
STRUCTURAL DATA FOR Na

In this section we present the results of the application
of our inversion scheme to Na at temperature T=100'C
and density 0.929 g/cm . For this thermodynamic state
an experimental structure factor S(q) is available in the
domain of wave vectors q from 0 to 8.9 A '. This
domain, unfortunately, does not extend to sufficiently
high values of q in order to obtain the two-body pair dis-
tribution function g(r) by direct Fourier transform of the
experimental structure factor S,„z,(q). In fact, when
Fourier transforming the experimental structure factor we
obtain a correlation function go(r), which is nonzero and
oscillates in the range of distances 0—2.7 A corresponding
to the range where the interaction of two sodium atoms is
strongly repulsive. In order to correct this defect of go(r)
we extrapolated S,„&,(q) for values of q larger than 8.9
A ' in the following way. We first force go(r) to be zero
between r=0 and 0.75r~, where r~ corresponds to the
position of the main peak of gv(r). We take the Fourier
transform of this new function go(r) for q vectors varying
froin 0 to 80 A ' and obtain a function So(q) which
differs obviously from S,„~,(q) in the domain 0—8.9 A
We then construct a function Si (q) b~ substituting the ex-
perimental values for 0~q ~8.9 A into So(q) and cal-
culate a new RDF g, (r). The function gi(r) has still
some spurious oscillations for small values of r and we re-

and using (6.1) for g(r, v~) and the fact that
g(r/v) =gz(r/uz) we finally have

pv(r) =puz(r) —(1/N)hg(rlu~)+(1/N)bc(r/u~)
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peat the preceding procedure until a function g(r) is ob-
tained which is reasonably close to zero for r &0 75. rsvp

[ ~
g(r)

~

-0.005]. When g (r) is now taken as zero in this
interval, its Fourier transform is in good agreement with
S,„&,(q) for q&8.9 A '. For low k values (k &0.3 A ')
the difference between S,„~,(q) and the S(q) obtained by
Fourier transform of g,„~,(r) is less than 0.001; for
0.3 & k &0.7 A ' the difference is smaller than 0.01~ the
maximum discrepancy occurs for 0.7 & k & 1.5 A
where it is of the order -0.03 with a maximum of 0.044
at k=1.2 A '. For k ~ 1.5 A ', the difference is always
smaller than 0.016. One also can notice that for k &6
A ', the error on the experimental values is quite large.
It is worth noticing that in the iteration process just
described the values of g (r) for r & 0.85 rsvp are very stable,
for instance, the value of g(r) at r& is modified by less
than 0.5%.

In order to obtain a first estimate of the potential from
the MHNC equation (2.8), we need not only g(r) but also
c(r). The direct correlation function has been calculated
from (2.4) using for S(q) the final result of the iteration
process [i.e., S(q) =S,„~,(q) for 0 &q & 8.9 A ' and
is extrapolated for q ~8.9 A ']. This c(r) is not com-
pletely consistent via the OZ relation with a g(r), which
vanishes at short distances. This introduces an intrinsic
limit to how well our iterative procedure can converge and
we estimate that this limit is LLg & 0.10—0.15 for
0.7r~ & r &0.85rsr corresponding to the range of r, where

g,„~,(r) is corrected by the extension procedure of S(k).
We stress that the extension procedure is needed for the

reason that, S,„~,(q) being known only in a limited
domain of q vectors with an error of 0.5—1.0%, a precise
estimate of g (r) is precluded for small r and, consequent-
ly, the determination of the repulsive part of the effective
two-body interaction potential is made difficult.

The potential PUO obtained from the MHNC relation
(2.8) is shown in Fig. 8; it is determined using the Verlet-
Weis bridge function EHs(r, il) at q=OA7 corresponding
to a hard-sphere diameter of 3.33 A. Starting from this
potential we have performed five iterations following the
scheme summarized by relation (3.2). The Monte Carlo
simulations were preformed with a system of X=864 par-
ticles interacting by the potentials PU; (i =0, 1, . . . , 5)
truncated at 8.7 A and for each simulation 10 configura-
tions were generated.

After the second iteration the potentials found by inver-
sion are very similar. As discussed for the LJ and Al
cases the differences between the potentials subsequent to
the second iteration are mainly due to the statistical un-
certainties on the simulated correlation functions. Figure
8 shows the potentials Pvq and PU6 together with potential
Pu2 6 (average of Pui, Pui, . . . , Pu6). This last potential
crosses zero at r =3.3 A, has two minima at r-3.9 and
7.44 A corresponding to —456 and —38 K and a max-
imum at 5.76 A of value —5 K. The mean-square devia-
tion of U2 6 varies between 25 K at the first minimum
and +12 K at the second minimum. The potential Pvi
is very similar to the interaction used by Lee et a/. in a
numerical simulation of Na. This interaction potential
has two minima at -3.9 and 7.3 A with values ——475
and —20 K, respectively, and a maximum at 5.6 A with

1.0—

-10—

4Q

I

6.0
I

8.0

FIG. 8. Inversion procedure (3.2) applied to the experimental
structure factor of Na at 100'C. The solid line represents the
input potential obtained from the MHNC equation (2.8); the
open circles, crosses, and solid circles the potentials extracted
after 1, 4, and 6 iterations, respectively, the triangles the average
potential for iterations 2—6.

value -50 K; when used in a molecular-dynamics simula-
tion, it gives a correlation function g(r) in good agree-
ment with the experimental g (r). Our potential is also in
qu~Jitative agreement with the potential used by Murphy
and Kleinis in a numerical simulation of Na; this poten-
tial has minima located at 3.82 and 7A3 A with values
—356 and —11 K and a maximum at 5.6 A with value 50
K. Gonzales and Toma have done a systematic study of
five different potentials for Na by molecular-dynamics
simulation. These potentials are rather different from the
potential found in our inversion scheme. In fact, we re-
mark that the heights of the main peak of g (r) calculated
from these five potentials differ by 5% from the experi-
mental one.

From Table IV, it is seen that the simulated pair corre-
lation functions corresponding to the potentials
Pro, Pui, . . . , Puq and g(r), average value of the g(r)'s of
the three last simulations, are in agreem. ent with the ex-
perimental g (r), taking into account the inconsistency be-
tween Ii —c and g,„~, for small r.

%'e conclude that the inversion scheme applied to ex-
perimental structure factor seems to be a convergent pro-
cedure and able to give a good estimate of the effective
two-body interactions in liquid metals. However, we re-
call that in the present calculations for Na the potential



33 ITERATIVE PREDICTOR-CORRECTOR METHOD FOR. . . 3463

0

depends for distance r ~ 3 A on the correlation procedure
described above, which is necessary for obtaining accept-
able values for the experimental g (r) for r g 3 A. This un-

certainty is due to the fact that experimental values of

S,„u,(q) at large q are missing and could obviously be re-
moved if these experimental values were known. In view
of this uncertainty we have not pushed the iteration pro-
cedure to the same level of convergence as in the case of

TABLE IV. g (r) functions from puo, pu&, . . . , pu5 potentials for Na at IOO'C and p=0.949 g/cm, g3 q(r) is the average of g3(r),
g~(r), and gq(r). g,„z,(r) is obtained from S,„p,(q) following the procedure described in Sec. VII (o =3.0 A).

0.92
0.94
0.96
0.98
1.00
1,02
1.04
1.06
1.08
1.10
1.12
1.14
1.16
1.18
1.20
1.22
1.24
1.26
1.28
1.30
1.32
1.34
1.36
1.38
1.40
1.42
1.44
1.46
1.50
1.54
1.58
1.62
1.66
1.70
1.74
1.78
1.82
1.86
1.90
1.94
1.98
2.02
2.06
2.10
2.14
2.18
2.22
2.26
2.30
2.34
2.38
2.42
2.46
2.50

go(r)

0.001
0.006
0.017
0.048
0.143
0.313
0.536
0.794
1.077
1.360
1,627
1.887
2.121
2.310
2.437
2.506
2.523
2.473
2.370
2.229
2.069
1.898
1.723
1.558
1.404
1.265
1.139
1.029
0.861
0.739
0.651
0.581
0.534
0.502
0.493
0.507
0.543
0.603
0.680
0.776
0.891
1.007
1.106
1.188
1.243
1.279
1.311
1.327
1.295
1.252
1.203
1.160
1.119
1.077

0.001
0.009
0.022
0.0S6
0, 185
0.404
0.665
0.955
1.259
1.552
1.815
2.038
2.206
2.325
2.395
2.405
2.364
2.282
2.170
2.040
1.896
1.742
1.587
1.441
1.306
1.187
1.0SQ

0.984
0.842
0.746
0.678
0.634
0.601
0.584
0.582
0.591
0.619
0.662
0.727
0.800
0.882
0.969
1.051
1.125
1.192
1.241
1.274
1.294
1.293
1.266
1.226
1.177
1.119
1.063

0.001
0.007
0.015
0.038
0, 140
0.324
0.546
0.809
1.100
1,399
1.689
1.948
2.170
2.344
2 AAA

2.493
2.487
2.420
2.318
2.185
2.031
1.870
1.704
1.543
1.392
1.247
1.123
1.020
0.844
0.720
0.638
0.587
0.547
0.526
0.522
O.S41
0.573
0.628
0.699
0.790
0.894
0.992
1.090
1.166
1.220
1.261
1.287
1.291
1.282
1.263
1.230
1.181
1.130
1.076

g3(r)

0.001
0.010
0.022
0.051
0.183
0.399
0.653
0.942
1.240
1.533
1.794
2.017
2.190
2.307
2.379
2.391
2.349
2.271
2.169
2.045
1.900
1.756
1.611
1.468
1.337
1,210
1.099
1.006
0.859
0.758
0.691
0.641
0.610
0.589
0.583
0.591
0.619
0.662
0.720
0.793
0.874
0.956
1.036
1.107
1.175
1.222
1.261
1.282
1.279
1.261
1.228
1.180
1.130
1.075

g4(~)

0.000
0.008
0.016
0.041
0.151
0.334
0.560
0.829
1.119
1.420
1.709
1.961
2, 167
2.331
2.439
2.485
2.470
2.409
2.308
2.173
2.019
1.854
1.689
1.529
1.374
1.239
1.122
1.014
0.844
0.728
0.644
0.584
0.549
0.530
0.528
0.544
0.582
0.633
0.707
0.795
0.893
0.997
1.084
1.162
1.218
1.260
1.286
1.289
1.278
1.258
1.220
1.180
1.131
1.078

0.000
0.010
0.020
0.045
0.171
0.375
0.615
0.897
1.194
1.494
1.772
2.015
2.212
2.346
2.420
2.442
2.415
2.340
2.225
2.093
1.944
1.781
1.624
1.469
1.327
1.203
1.087
0.9S6
0.837
0.731
0.665
0.619
0.580
0.563
0.559
Q.S73
0.603
0.654
0.719
0.804
0.892
0.979
1.068
1.142
1.204
1.248
1.280
1.293
1.293
1.265
1.227
1.176
1 ~ 118
1.054

g3 5(~)

0.001
0.009
0.018
0.044
0.161
0.358
0.593
0.869
1.164
1.462
1.741
1.985
2.185
2.332
2.420
2.453
2.430
2.360
2.255
2.124
1.974
1.816
1.657
1.502
1.357
1.225
1.108
1.006
0.846
0.734
0.660
0.608
0.572
0.552
0.548
0.562
0.594
0.644
0.711
0.796
0.888
0.981
1.069
1.144
1.204
1.248
1.278
1.289
1.283
1.262
1.226
1.179
1.127
1.071

gexpt(~)

0.000
0.007
0.016
0.033
0, 147
0.320
0.545
0.809
1.098
1.392
1.672
1.924
2.132
2.288
2.390
2.432
2.426
2.369
2.276
2.153
2.010
1.856
1.698
1.543
1.397
1.261
1.141
1.036
0.870
0.755
0.677
0.623
0.585
0.564
0.560
0.573
0.604
0.652
0.717
0.796
0.882
0.969
1.050
1.119
1.175
1.218
1.250
1.267
1.269
1.255
1.227
1.186
1.138
1.084
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the model systems considered in the previous sections.
The trend of the successive U;(r) is similar to that found
for the model systems and this leaves no doubt that the
same level of convergence could be obtained if longer
computations had been done. For the same reason we
have not computed the I/X correction term given by
(6.4). We also remark that the published experimental
values of S,„~,(q) for Na at T=100'C (Refs. 24 and 28)
and higher temperatures ' differ noticeably, so that use

of experimental data different from Ref. 24 would have

led to a potential different from the one given in Fig. 8.
In view of the uncertainty in presently available data, we

stress the fact that the Na potential calculated in this
work is consistent with the data of Ref. 24, but not neces-

sarily with all published data for structure factors of Na.

VIII. DISCUSSION

The main result of the present study is that the inver-

sion scheme for static structure factors summarized by
Eqs. (3.1) and (3.2) is a reliable one and allows a precise
determination of effective two-body potentials up to
triple-point conditions. Two lessons have been drawn.
First, because experimental structure factors for liquid
metals, in particular Na, are generally measured accurate-
ly in a limited domain of q vectors and low q values are
sometimes missing, both the determination of the short-
range repulsive part of the potential and that of the long-
range part are problematic. These difficulties are obvious-

ly also present in inversion schemes' which use as input
directly the experimental structure factor but not also the
corresponding pair correlation function as in the present
case. The second lesson concerns the convergence of the
iterative inversion scheme. Convergence of the method
does not depend in a crucial way on the initial estimate
vo(r) of the potential as due, for instance, on the choice of
the value of the hard-sphere diameter in the bridge func-
tion or on the use of the PY approximation for the bridge
function in place of a more accurate one. However, the
method might not converge if Uo(r), which initiates the
iterative process, is too far from the correct result. This
last point was the reason why we were unable to apply our
inversion scheme to the experimental structural data for
Na at 550'C. For this thermodynamic state the evalua-

tion of the initial potential UMHNC was poor [due to a very
imprecise determination of c(r) from the experiinental
data also due to lack of data for q ~ 0.5 A] and the corre-
sponding simulated pair correlation function too far from
the experimental g (r) to obtain convergence of the itera-
tive process. However, we have verified that potential Pv&

(drawn on Fig. 8), when used in a MC simulation of g (r)
at 550'C gives results in excellent agreement with the ex-
perimental g(r) outside the core region for r &3 A. For
instance, the positions and heights of the two first maxi-
ma of the experimental g,„p,(r) and calculated gMC(r} are,

respectively|, g,„~,(3.63 A) =1.87, gMc(3.63 A) =1.87, and

g,„~,(6.90 A) =1.15, gMC(6. 96 A) =1.14, and those of the
two first minima are g,„~,(5.16 A) =0.76, gMC(5.25

A)=0.73, and gex&t(8.40 A)=093~ gMc(8 52 A}=092
This result shows that the potential found by inversion of
the data at 100'C also reproduces the experimental data at
550'C. Comparison of the MC and experimental g(r)'s
for r ~3 A is not significant due to the imprecise deter-
mination of both the repulsive part of the potential and of
g,„~,(r) at 550'C in this domain.

Finally, the inversion scheme is readily successful for
thermodynamic states away from the triple point. Under
triple-point conditions the method is also successful pro-
vided that experimental data are sufficiently accurate and
known on a wide range of wave vectors so that a reliable

g (r) can be deduced.
We have inverted the scattering data of Na at 100'C as

a test of our method. The necessity of a significant exten-
sion of the data at large q and the presence of substantial
deviations between these data and those of other measure-
ments suggests that it is too premature to make a detailed
comparison between the extracted potential and the results
of theoretical computations.
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