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Relevant spaces in quantum dynamics and statistical physics
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A systematic method for the decoupling of a relevant subspace of the Hilbert space from the rest
of it is developed, on the basis of the dynamical properties of the observables one is interested in.

I. INTRODUCTION

Recent developments concerning applications of infor-
mation theory (IT) to physical problems' deal with the
time evolution of the Lagrange parameters entering the
definition of the density operator p(t). The basic feature
of this approach is that a set of coupled equations of
motion for these multiphers is obtained, which is
equivalent to the time-dependent Schrodinger equation,
provided that one includes in p all those operators 0
that close an algebra under commutation with the Hamil-
tonian H of the system. 6

In this work we wish to place this closure (of a partial
Lie algebra ) within a much more general context, by
relating it to some characteristic aspects of the many-body
problem. In this way, the corresponding closure relations
arise in a natural fashion, without any a priori reference to
information theory.

Let us consider then the following situation. Given H
and its corresponding Hilbert space =, any basis spanning
:",even if it is finite, is so large that a diagonalization is
out of the question. Physical intuition, which takes into
account the most salient aspects of the problem at hand, is
often the only guide at our disposal in order to truncate "
so as to render the concomitant problem a manageable
one.

We wish here to propose a systematic way of decou-
pling some relevant portion of:- from the rest of it, where
the term "relevant" will be understood as follows. As-
sume our knowledge of the corresponding system stems
from the experimental determination (say, at the time
t =to) of the expectation values of M (linearly indepen-
dent) operators 6;,

for all t &tv. Another (and related) way of defining our
version of the term relevance would run as follows: if
(6;), i =1, . . . , M, are the observables we are interested
in, we would like to find that subspace =R of:- that whol-

ly encompasses the time evolution of these quantities.

II. FOR.'MALISM

p= g I i)p I(m I
(2.1)

in terms of a given basis
~
l) of:-. The scalars pI are

members of the field of the complex numbers. Notice
that, within the framework of Schrodinger s representa-
tion (the one to be employed throughout), p depends upon
the time because the vectors

~
i) possess such a depen-

dence. Now, the Liouville operator L is a linear operator
on I; as for any two scalars a,b and two arbitrary vectors
Gi, 62

L(aGi+bGi) =aLGi+bLG2, (2.2)

A. The vector space of the operators on =

We shall focus our attention upon the vector space I
spanned by the set of (linearly independent) operators G;
that are (at least in principle) accessible to measurement in
connection with the physical system one is interested in.
For the sake of definiteness let us call p the number (in
general infinite) of such operators. The density matrix is
an operator belonging to I, although one usually
expresses it in terms of vectors belonging to the Hilbert
space ",where it adopts the familiar appearance

We call relevant the set of operators
6;, i =1, . . . , M, . . . such that knowing (6;), enables

one to build up a density operator p that is a solution of
the Liouville equation

—= [H,p] =Lp (1.2)
dt

and we may consider that the physics of the system is to
be derived from the action of L upon the vectors belong-
ing to I". Our aim is to decompose it into a direct sum

(2.3)

(2A)

with

L=[H, ],
in which I R is the (physically) relevant portion of I and
j."NR the "nonrelevant" one. Assuming that N is the di-

33 3446 1986 The American Physical Society



33 RELEVANT SPACES IN QUANTUM DYNAMICS AND. . . 3447

mension of I R we have

p =%+dim(I'NR}, (2.5)

T=TR+T~R, TR CFR, T~RFI NR

PT= TR,

PTNR

(2.6)

(2.7)

(2.8)

P =P, (2.9)

so that finding the structure of P neatly solves the prob-
lem posed in Sec. I, as we can confidently assert now that
there exists a unique decomposition

p=pR+pNR s (2.10)

and we may say that I ~ and I NR reduce I .
Among the set of linear operators on I' (which from

now on, and in order to avoid misunderstandings) we shall
call superoperators, we will look for a projection super-

operator P such that, for all TE I [that can uniquely be
written as TR+TNR, with TRODI R and TNRGI NR (Ref.
9)]

(Q, T)=(T,Q)',

{aiQ1+a2Q2 T) al (Qi T)+a2 {Q2

{T,{aigi+a2Q2)) ai(T, Q1)+a2(T, Q2),

(Q, Q) &0,

where

(2.19}

(2.20)

if and only if Q =0.
Let [A; ] be a complete orthonormal basis of I, which

obeys

(A;, Ai) =5;i, j &lV

(A;, A~) =0, j)le

(2.21a)

(2.21b)

8. The structure of the projection operator

In order to make further progress we must provide I'
with a richer structure by considering it as an inner-
product vector space. ' The inner product of any two vec-
tors Q, T (a, and a2 are scalars) is a scalar (Q, T) such
that

Pp=pa

P)P PNR ~

(2.11)

(2.12)

such that the subset I A;, i & 1V I spans I R. Consequently,
a general expression for any Q GI is of the form
(remember, ii is the dimension of I )

d
{PR+PNR) =L{PR+PNR} ~

dt
(2.13)

Our goal must be that of decoupling the time evolution
of pR from that of pNR. To this end let us operate twice
on (2.13), by applying in one case, P on the left, and in the

other case, I P in a similar fas—hion. We obtain

where I is the identity superoperator.
Enter now the dynamics of the problem, embedded in

Eq. (1.2), which we recast as
Q =gw; A;

with

=(A;,Q ).
We propose the following expression for P,

(2.22)

(2.23)

(2.24)

and

dpR
i fi =PLpR+PL pNRdt

dpNR A A A
iA ={I P)LPR+(I P—)LpNR—

(2.14)

(2.15)

so that, if Q E I,

PQm = g AJ (AJ Qm }

N
= g ioJ~AJ ——Q~ RE I'R (2.25)

PL =LP (2.16)

[cf. Eqs. (2.11) and (2.12)]. In other words, if we find a
superoperator P that complies with (2.7)—(2.9) and with
(2.16), we can recast the dynamical problem in the fashion

a set of coupled equations, which is immediately seen to
transform itself into a set of decoupled equations if and proceed to demonstrate both that P is an idempotent

superoperator and that (under certain conditions) it com-
mutes with the I.iouville superoperator L.

(i) Idempotency. We have

P Q =P bio; A;

dpR
l A =LpR,

dt

dpNR.
=LPNR

dt

(2.17)

(2.18)

= QQAk(Ak, io; A;)

mAt =Qm,R'
(2.26)

and forget henceforth about (2.18), concentrating all ef-
forts upon (2.17).

which is the result of Eq. (2.25).
(ii) Commutativity (with L). We start with
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N

PLQ = QAJ(Aj, [H, Q ]) (2.27) (3.2)

and expand Q according to (2.22},which leads to

PLQm = gfjmAj
J

(2.28}

where fj stands for the scalar product. Using Eq.
(2.2 lb)

f, = A, , Hgw;A; (2.29)

On the other hand,

LPQ =g[H, A, (A, , Q )]

S
= gw; [HA;] . (2.30)

The right-hand sides of Eqs. (2.28} and (2.30) are easily
seen to coincide if the following set of conditions is ful-
filled:

in terms of a set of M + 1 Lagrange multipliers A, which
are determined so as to fulfill the set of relations (3.1).

The statistical operator is, then, given by

p(t}=exp —g A. Q (3.3}

where the dm„and the c;j are related by (using an under-
bar to denote a matrix)

d = Lrr c w (3.4b)

Let us introduce into this formalism our equation (2.31}
which decouples the general p into two portions, the
relevant and the nonrelevant ones. Equation (2.31) was
first employed by Levine et al. s with reference to this
particular and specific context. Then, using (2.22) and
(2.31), we obtain

[»Q ]= gd .Q. (3.4a)

N

[H,A;]= gci;Ar, i =1, . . . , i' .

Under these conditions the fj become

N

firn = KeirÃ m~'

(2.31)

(2.32}

Using now the P superoperator we obtain

N

Pp= pR gA; A;, ex——p —'g A, Q
l 78

N m

P 1np=(inp)R ———gA; A;, gA, Q

(3.5a)

(3.5b)

so that
N

LPQm g g cjiwimAj ~

J l

which guarantees that, for any Q

(2.33}

and if we define the scalar product operation in I [see
Eqs. (2.19)—(2.21)] in the following fashion, namely

(Q,Qj)=Tr(Q Qj), (3.6)

Eq. (3.5) can be rewritten as

LPQ =PLQ (2.34) j R(r)= g A, (A, /p)„ (3.'7a)

An important point to be stressed here is the following

one: our projection operator P commutes with L and

hence with the Hamiltonian. As P does not explicitly de-

pend upon the time, P is thus seen to be a constant of the
motion, and its expectation value is a constant. The pro-
jected relevant space I'„ is, consequently, invariant and
remains the same as time evolves.

N

(lnp)R= g A;A;(t)w;.
i=0

(3.7b)

B. A simple example

where in general A; is not Hermitian and, consequently,
(A; ), can be a complex scalar.

III. APPLICATION TO INFORMATION THEORY

A. Generalities

(Q )=q =(Q /p), 0&m &M (3.1)

with M &X (Qo= 1, identity). Maximization of the en-
tropy' '0 leads to an expression for Inp

In this section we shall apply the results of the preced-
ing paragraphs to the density operator defined within the
information theory framework. ' 8' This formalism
yidds a definite prescription that allows one to construct
the density operator (or matrix} starting from the
knowledge of the measurrxl expectation values of, say, M
operators

In order to exemplify the above formalism let us apply
it to the Larmor precession Hamiltonian,

H =cgr, sz, cor = eB /2rtl c— (3.8)

for an electron with charge e and mass m, bound in an g

state in the presence of a magnetic field of strength 8 in
the Z direction, whose Larmor precession frequency is
denoted by coL, . In this situation we deal with a set [Q j of
four operators

Qo=1 (identity), Q, =S„Q2——S~, Qr ——S„ (3.9)

where the 5; are the spin angular momentum operators.
Our interest here revolves around the time evolution of
their expectation values
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P' (t)=Tr[p(t)S, ],

A„(t)=Tr[p(t)S, ],

A, (t) =Tr[p(t)S, ],
1=Tr(p),

and the statistical operator p is of the general form

p=exp( —Q —A, iS» —A.2Sr —A,3S, ) .

(3.10)

(3.11)

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 2

L

so that [cf. Eq. (3.4b)]

(3.20)

(3.21)

as

Qo=~2~o Q3= 2 ~»

Qi ———,(A i+A2), Q2
——(i/2)(A t

—A2) .
(3.13)

This [Q] set can be expanded, as prescribed in Eq. (2.22),
by the following [A] set:

A o
——I /~2, A i

——S, A z
——S+, A 3

——2S» (3.12)

in this particular instance.
This pR [cf. Eq. (3.17)] is easily seen to lead to the

well-known Larmor results. Thus the whole dynamical
problem can be solved via the (A;), expectation values,
a&hose temporal evolution is completely determined by
recourse to the information theory formalism.
Due to the relationship (2.22), the [(A; ) ] set can be ex-
pressed as a linear combination of the (measured) I ( Q; ) ]
which, of course, are real scalars. In particular, P'„P'„
and P', were evaluated, using information theory tools, in
Ref. 6.

we immediately verify (2.21), using

(S~,S+ ) =TrSt~S+ =TrS S+
=Tr(S —S, —S, ) =1,

(S,S~ ) =TrS S+ =TrS+ =0,
(S»,S» )=TrS» ———, ,

(3.14}

(3.15a)

(3.15b)

(3.15c)

+4S,Tr(S,S„),
while for pR we find

pR(t) = —,
'

+a i(t)S++a2{t)S +a3(t)S, ,

with

a, (t) =[P'„(t)—iW„(t)],

a2(t) =[P*„(t)+iP'r (t)],

a, (t) =2&', (t) .

The matrix d [cf. Eq. (3.4b)]

(3.16)

(3.17)

{3.18)

and so on. The action of the superoperator P upon, say,
S„,reads

PS„=—,'Tr(S„)+S+Tr(S S,)+S Tr(S+S, )

rV. CONCLUSIONS

Our goal has thus been achieved, and we have [cf. Eq.
(2.24}] a superoperator P that decouples the relevant por-
tion I'it of I from the rest. The set of conditions (2.31)
that must be fulfilled in order that P commute with L
provides us with some fresh insight into the physics
underlying our procedure.

The subset [A;] of orthogonal dimension E employed
in the definition of P, closes a partial Lie algebra under
commutation with the Hamiltonian. This is clearly a
dynamical requirement that selects the relevant operators
[cf. the paragraph following Eq. (1.1)] according to their
behavior under commutation with H.

The procedure is then quite simple. Starting with the
initial set (the "data" set) of Eq. (1.1), one must add to
that set a certain number of (linearly independent) opera-
tors that arise as one commutes the original G; with H,
and this process is to be continued until an algebra is
closed. We can then guarantee that the time evolution of
the N primitive observables is totally decoupled from the
rest of the universe.

We have thus justified the closure condition that is the
basic ingredient of the work performed in Refs. 6—8 and
10, and that in particular guarantees the conservation of
the entropy, ' ' from a rather general and even more
natural point of view, that is not a priori related to infor-
mation theory.

while

0 0 0
coL 0 0

0 0 0

0 0 0 0

(3.19)

ACKNOWLEDGMENTS

Three of us (D.O., A.N.P., and A.P.) acknowledge sup-
port from the Consejo Nacional de Investigaciones
Cientificas y Tecnicas (CONICET), Argentina, and one of
us {S.M.) from the SINEP and CNPQ, Brazil.

'Permanent address: Physics Department, La Plata National
University, C.C. 67, 1900 La Plata, Argentina.

~E. T. Jaynes, Phys. Rev. 106, 620 {1957);108, 171 (1957).
2Y. Alhassid and R. D. Levine, J. Chem. Phys. 67, 4321 (1977).

%'. T. Grandy, Jr., Phys. Rev. 62, 175 (1980).
O. Penrose, Rep. Prog. Phys. 42, 1937 (1979); A. Katz, Princi

ples ofStatistical Mechanics (Freeman, San Francisco, 1967}.
5A. Hobson, Concepts of Statistical Mechanics (Gordon and



D. OTERO, A. PI ASTINO, A. N. PROTO, AND S. MIZRAHI 33

Breach, New York, 1971).
D. Otero, A. Plastino, A. N. Proto, and G. Zannoli, Phys. Rev.

A 26, 1208 (1982).
7D. Otero, A. Plastino, A. N. Proto, and G. Zannoli, Z. Phys. A

316, 323 (1984).
SY. Alhassid and R. D. Levine, Phys. Rev. A 18, 89 (1978};J.

Chem. Phys. 65, 3284 (1976).
P. R. Halmos, Finite-dimensional Vector Spaces (Van Nos-

trand, Princeton, 1958}.
t%. Duering, D. Otero, A. Plastino, and A. N. Proto, Phys.

Rev. A 32, 24SS (198S).
E. Duering, D. Otero, A. Plastino, and A. N. Proto, Phys.
Rev. A 32, 3681 (198S}.

t2H. D. Zeh, Foundations of Quantum Mechanics, International
School ofPhysics, "Enrico Fermi, "Course 49 (Academic, New
York, 1971),p. 263.


