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A generalized mode-coupling theory of shear and ultrasonic relaxation in viscous supercooled
molecular liquids is presented. The theory is based on ideas recently proposed to describe dynamical
properties of dense simple liquids and then extended by several authors to discuss the glass transi-
tion in such systems. The mode-coupling theory naturally involves a continuum of relaxation times
leading to a nonexponential decay of the response to mechanical shear and compressional distur-
bances. The theory provides a good fit of shear and ultrasound data in supercooled molecular

liquids over the entire relaxation region.

I. INTRODUCTION

The origin of nonexponential relaxation of mechanical
and dielectric disturbances in highly viscous supercooled
molecular liquids is a long-standing problem' which has
recently received renewed interest.” The results of experi-
ments in such liquids can often be fitted by assuming that
the time dependence of the response function follows the
empirical Kohlrausch-Williams-Watts (KWW) form, i.e,
~exp(—t/7)8, with r and B system-dependent parame-
ters.! ~® The KWW form, as well as other related empiri-
cal forms such as those proposed by Barlow, Erginsaw,
and Lamb (BEL) and by Cole and Davidson, can be justi-
fied by assuming a continuum of microscopic relaxation
times with a certain distribution."* The classical Debye
theory, in contrast, predicts an exponential decay of the
correlations (B=1), characterized by a single relaxation
time, and fails to describe experiments.

In spite of recent successful attempts to construct
models that exhibit a relaxation of the KWW type,’ there
is still not a complete understanding of the microscopic
mechanism that leads to the nonexponential behavior in
real supercooled liquids.

In this paper a generalized mode-coupling theory is
used to describe propagation and absorption of compres-
sional and shear waves in highly viscous liquids over a
wide range of frequencies. The generalized mode-
coupling theory was recently proposed by Kirkpatrick® to
explain the discrepancy between the size of the coefficient
of the long-time tail (~¢~3/2) of the stress-tensor auto-
correlation function predicted by hydrodynamic mode-
coupling theory and the value measured for such a coeffi-
cient in computer experiments in dense simple liquids.
Conventional hydrodynamic mode-coupling theory
predicts the t~3/2 decay law for long times, but the
theoretical coefficient of this long-time tail is approxi-
mately 500 times smaller than the observed coefficient.
The generalized mode-coupling theory studies the
intermediate-length and time-scale contribution to the
correlation function® by using a mode-coupling formalism
where the modes are extended—to large wave numbers—
hydrodynamic modes. The theory predicts that at inter-
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mediate times the stress-tensor autocorrelation function
has a slowly decaying contribution that can be fitted by a
t—3/2 law, with a coefficient of the correct order of mag-
nitude. At larger times—larger than those considered in
computer experiments—this generalized mode-coupling
contribution decays exponentially and the usual hydro-
dynamic long-time tail dominates. At such long times the
correlation function has, however, almost decayed to zero.
The hydrodynamic long-time tails are therefore not ex-
pected to be relevant for any observable behavior of the
system. The basic idea of the theory is to recognize that
in a dense, highly viscous liquid structural rearrangements
on a molecular length scale are very slow, because of the
compactness of the microscopic structure. The slowing
down of the dynamics of density fluctuations on a molec-
ular length scale affects, in turn, the macroscopic dynami-
cal properties of the fluid via a nonlinear mode-coupling
or feedback mechanism. This slowing down of structural
relaxation becomes even more dramatic when a liquid is
cooled or compressed rapidly below its freezing point and
is therefore expected to affect considerably the dynamical
properties of supercooled liquids. Furthermore, the self-
consistent description of this mode-coupling mechanism
was recently used by several authors to discuss the glass
transition in simple liquids.'°~!* The self-consistent
theory was found to give a solution where the density-
density correlation function acquires a nondecaying com-
ponent. This was identified with the transition to a glassy
state with vanishing coefficient of self-diffusion. The
work of Leutheusser'® and of Mazenko!? differs from the
present one because these authors used a simplified model
where the wave-vector dependence of the mode-coupling
integral was neglected. This approximation is justified
when discussing the glass transition in simple liquids,'?
but cannot be used here, as will be discussed below.

The coupling of slowly decaying density fluctuation on
molecular length scales is shown here to provide a good
description of ultrasound and shear relaxation experi-
ments in molecular supercooled liquids. These are highly
viscous liquids—the viscosity can change by several or-
ders of magnitude over a change of temperature of a few
decades—exhibiting viscoelastic behavior.

The quantities of interest are the frequency-dependent
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shear viscosity 17s(w) and longitudinal viscosity 7; (), to
be defined below. They are directly related to the shear
and longitudinal elastic moduli, G(w) and K (), and to
the speed of propagation and the coefficient of absorption
of a shear or compressional wave in the fluid, respective-
ly.! The mode-coupling theory presented here provides a
good fit of the frequency dependence of the viscosities
over a very wide range of frequencies, covering the transi-
tion from a purely viscous response—the imaginary part
of the viscosity vanishes with frequency—to a purely elas-
tic response where, for instance, 15(w)~G ., /( —iw), with
G, the high-frequency shear modulus. The wave-
number dependence of the mode-coupling integrals leads
to a continuum of microscopic relaxation times and plays
an essential role in determining the spread of the relaxa-
tion region and the deviation from the classical Debye
theory. The theory also predicts the correct order of mag-
nitude of all the quantities of interest.

The fit to experiments is, in general, not as good as that
provided by the empirical laws of the KWW type. The
main value of the present theory lies in its semimicroscop-
ic character and in the contact it makes with recent pre-
dictions for the dynamical properties of dense simple
liquids.®~13 It shows that the same physical mechanism
proposed there can account for properties of molecular
liquids that can be supercooled in the laboratory.

Finally, it should be mentioned that rather successful
phenomenological theories of shear and sound propaga-
tion have been developed in the past.!*!* These theories
already contained, even though in a somewhat different
context, some of the physical ideas employed here and
will be discussed below.

The paper is organized as follows. In Sec. II the mode-
coupling theory is outlined and the basic physical approxi-
mations are stated. In Sec. III the mode-coupling contri-
butions to the shear and longitudinal viscosities are
evaluated by successive approximations. The results are
compared with shear and ultrasound experiments in gly-
cerol and hexanetriol. The paper concludes with a brief
discussion.

II. MODE-COUPLING THEORY

The basic quantities to be evaluated for a microscopic
theory of sound and shear relaxation in liquids are the
generalized shear and longitudinal viscosities, defined by

Tsle2)=p [)" die* - Gl 7o) @1

where the thermodynamic limit is intended and Rez > 0.
The angular brackets denote a grand-canonical ensemble
average. Here, B=(kyT)~!, with kz Boltzmann’s con-
stant, () is the volume of the system, ffL a microscopic
transverse or 1ongitudinal momentum current at wave
vector k, and L a microscopic N-particle evolution opera-
tor. Their definition is given elsewhere.'®
The propagation speed and the attenuation coefficient
of shear and longitudinal waves are directly related to the
frequency-dependent viscosities, defined by!’
Ns,(w)= lim %g (k =0,z =€e—iw) . (2.2)

€—>

If the coupling to temperature fluctuations, which is not
expected to affect the frequency dependence of the
viscosities, is neglected, the speed of sound c¢(w) and the
sound-attenuation coefficient a(w) are given by

1 al@) o . -172
“@) +i . =[co—iwnL(®)/p)] ,

(2.3a)
with co=(pX7)~!/? the isothermal zero-frequency speed
of sound and Xr=(1/p)3p/dp);r the isothermal
compressibility. Here p=mn is the mass density, with m
the molecular mass and n the number density, and p is
the pressure. Similarly, the propagation speed cg(w) and
the attenuation coefficient ag(w) of a shear wave are re-
lated to the shear viscosity 75(w) by

1 cas(w)

=[—ions(w)/p]~"72. (2.3b)

cs(w) + 1)
Experimental data are often reported in terms of the
finite-frequency elastic shear, bulk, and longitudinal
moduli, G(w), K(w), and M (w), respectively. They are
related to the viscosities by!" '8

Glo)=—ions(w), (2.4a)

M(0)=K(0)++G(0)=Ko—ion,(») , (2.4b)
with Ko=1/X7r.

Finally, experimental results are also reported in terms
of the complex compliances (the inverse of the moduli),
which are defined as the ratio of strain to stress. The def-
inition of the various response functions, as well as a table
of the relationship among them can be found, for in-
stance, in Ref. 1.

The objective here is to evaluate the frequency-
dependent viscosities by using a generalized mode-
coupling theory that takes into account phenomena occur-
ring on a molecular length scale, where the liquid struc-
ture is important. It is known that in a dense liquid the
decay of density fluctuations on molecular length scales,
i.e., length of the order of 27 /g, with g, the wave vector
where the static structure factor has its first maximum,
becomes very slow and occurs via self-diffusion.!®—22
This follows from both general considerations and
kinetic-theory calculations for a dense hard-sphere
fluid.>*2! Furthermore, evidence for such a slowing down
comes from neutron scattering experiments in supercooled
liquids of moderate viscosity.”> The basic assumption of
the present work is that also in a supercooled and highly
viscous molecular liquid, i.e., liquids with 7g~ 10°—10'°
P, the slowest structural rearrangements (and consequent-
ly those that give the most important contribution to the
feedback or mode-coupling mechanism) occur on molecu-
lar length scales and take place via self-diffusion. This
approximation neglects the contribution from more
cooperative structural rearrangements involving groups of
molecules. Its validity will be discussed below.

The generalized viscosities depend via mode-coupling
effects on the density-density correlation function which,
in turn, depends on the longitudinal viscosity. Via this
nonlinear feedback mechanism the slowing down of the
decay of density fluctuations near g, affects the decay of
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the correlation function that determines the transport
coefficients.

On the basis of general considerations, the generalized
viscosities can be written as the sum of a bare and a
mode-coupling contribution,'% '8

s, (k,2) =7 § L (k,2)+7 ¥E(k,2) . 2.5)

The bare contribution can be identified with that predict-
ed by a short-time kinetic equation. For hard spheres, for
instance, it can be identified with the value given by the
Enskog kinetic equation and it has been computed in de-
tail elsewhere.® Its frequency dependence is negligible
compared to that of the mode-coupling contribution.

The mode-coupling contributions to the viscosities can
be calculated in several standard ways.'®?> The most im-
portant of these contributions is that involving the prod-
uct of two density fluctuations—it decays the slowest and
with the largest amplitude. One then obtains

_ 1 " d Y+iew dz;
k27 MC k,z)= — _aq —_— _
15262=25 ) mp Jymie 2gi V52O K@)
X ®(q,z;)

X®(|k—q,z~z),

(2.6)

where Vg is the mode-coupling vertex or amplitude, to
be specified below for the case of interest, and ®(q,z) is
the normalized dynamic structure factor, given by

®(g,2)=[“dte

nS (lq)n <§ > e+iq.rjm> ’

i=1 j=1
(2.7a)

with S (k) the static structure factor and r; the position of
the ith particle. The prime on the g integration in Eq.
(2.6) indicates that the integral should be truncated at an
upper cutoff g, of the order of 27 /I with ! the mean free
path. In a very dense fluid the mean free path is smaller
than the molecular diameter. The extended hydrodynam-
ic description leading to Eq. (2.6) applies then even at
lengths of the order of fractions of a molecular diameter.
The dependence of the results on this upper cutoff will be
discussed below.

Finally, using number- and momentum-conservation
laws, ®(q,z) can be written in terms of the generalized
longitudinal viscosity as'®!8

1

®(g,2)= 5 e .
z4+q°/BmS(q)[z +q*7.(q,2)/p]

(2.7)

The frequency-dependent viscosities probed in an ul-
trasound or shear relaxation experiment correspond to the
k =0 limit of the generalized viscosities of Eq. (2.5). The
corresponding mode-coupling contribution is given by

MC _ l . qL‘ 2
nsLle)= 4,,23511%‘+fo dqq
[rH= g (@olgz)
y—iw 2mi 5,.1q9)Pq,z,
XPlg, e—iw—2z),
(2.8a)
with
= d
VS,L(Q)=f4j7;‘Vs,L(q,—q) (2.8b)
or, explicitly,
2
7 dnc(q)
Vs(gq)= T S(q)q Y } (2.8¢)
and
1% (l]):l[S(q)]zf1 du q___q_anc( )u2+n_q__8nc( )
L 2 -1 dq on |,
— I_—_I_M (2.8d)
a aT |,

Here, nc(q)=1—1/S(q) is the direct correlation func-
tion, y=c,/c, is the specific-heat ratio, and
a=—p~'(3p/3dT), the coefficient of thermal expansion.
The last term in parentheses in the integrand in Eq. (2.8c)
vanishes for hard spheres.

III. RESULTS AND COMPARISON
WITH EXPERIMENTS

In this section the evaluation of the mode-coupling con-
tribution to the frequency-dependent viscosities is outlined
and the results are discussed and compared to experi-
ments.

Equations (2.6) and (2.7) constitute a set of self-
consistent equations that could, in principle, be solved nu-
merically. This would be in the spirit of the mode-
coupling theories of the glass transition.!~!* Such
theories predict, however, a behavior of the zero-
frequency shear viscosity 75 as a function of density or
temperature that only fits rather moderate viscosity data,
i.e., 7s<1—10 P.!! Here we are interested in liquids with
viscosity up to 7g~10® P, i.e., in a region where the
fully-self-consistent theory would predict the liquid has
already formed a glass. The theory presented here differs
from the mode-coupling theories of the glass transition in
that it is not a truly self-consistent theory. More precise-
ly, instead of evaluating the zero-frequency viscosities
self-consistently, their experimental values are used on the
right-hand side of Eq. (2.8a). Physically, this approxima-
tion is an ad hoc way of taking into account the effect of
some of the structural relaxation mechanisms that are not
included in current mode-coupling theory (such as activat-
ed molecular rearrangements).

Before proceeding, one more approximation is intro-
duced to simplify the wave-vector dependence of the
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right-hand side of Eq. (2.8a). The wave-number depen-
dence of ®(q,z) is almost entirely governed by the factor
g%/BmS (q) appearing in the denominator of Eq. (2.7b).
In dense fluids this factor has a rather deep minimum
around g, and is responsible for producing the de Gennes
narrowing observed in neutron scattering experiments.2
At such short distances momentum is no longer a con-
served quantity and momentum fluctuations relax very
quickly via single-particle collisions, with a relaxation rate
[proportional to g2%,(q,z)/p] that becomes essentially
wave-vector independent. For the purpose of evaluating
Eq. (2.8), one can then replace ¢27j,(g,z) in Eq. (2.7b) by
937.(q0,z). The density-density correlation function in
Eq. (2.8a) is then approximated by

1

z244%/BmS @)z +437i.(q0,2)/p]

P(g,2)~ (3.1)

In the remainder of this section the right-hand side of Eq.
(2.8a) is evaluated by successive approximations.

A. Lowest-order mode-coupling theory

To lowest order the set of Egs. (2.8a), (3.1), and (2.5)
can be closed by neglecting the mode-coupling contribu-
tion to the longitudinal viscosity in ®(g,z). This is then
approximated by a single Lorentzian of the form

1
z+4%/BmS(q)givE(q0)

with v2(go)=72(qo)/p the kinematic viscosity. The ex-
plicit z dependence of the second term in the denominator
of Eq. (3.1) can be shown to be negligible for all the fre-
quencies of interest here and has therefore been neglected.
There is both theoretical and experimental evidence, as al-
ready mentioned, that the decay of density fluctuations on
molecular length scales, i.e., at wave vector near g,
occurs via self-diffusion. The half-width of the dynamic
structure factor in such a g range is Dg’/S(q), with D the
coefficient of self-diffusion.'®=?? One is then led to the
identification

[Bmg§vE(qe)]1~'~D?, (3.2b)

with D?® the bare coefficient of self-diffusion. One then
obtains

cb(l)(q,z)_:

(3.2a)

1
z+D3%/5(q)

When Eq. (3.2b) is inserted in Eq. (2.8a), the frequency in-
tegration can be trivially performed, with the result

o(g,z)= (3.2¢)

MC(I)(CU):

ns,L (3.3)

chd 9’ Vs.(q)

4B —io+2D%*/S(q)
Equation (3.3) has been evaluated numerically, using the
hard-sphere form for the direct correlation function c(q)

(Percus-Yevick approximation??), with an effective hard-
sphere diameter o to be considered weakly temperature
dependent. For comparison with experiment, the Stokes-
Einstein relation between D and 7g is also assumed to
hold,

D =1/(amBons) , (3.4)
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where a is a numerical constant whose value is in the
range 2—3. Making use of Eq. (3.4) and letting x =qo,
Eq. (3.3) becomes

x Vs (x/0)
—iwfg +2x2/S(x/0) ’

with x, =g.0 and 75 =0?/D%.

As discussed at the beginning of this section, a self-
consistent evaluation of 7g; using the mode-coupling
equation does not lead to the correct order of magnitude
for the viscosities for very viscous fluids and would there-
fore not be appropriate here. Instead, in order to approxi-
mately include in the description some of the physical
mechanisms governing structural relaxation that are im-
portant to determine 7 ; in the fluids of interest, but are
not contained in the self-consistent theories, the bare
transport coefficients on the right-hand side of Egs (3.3)
and (3.5) are replaced with their experimental values,
denoted by 15 and D.

Since the bare viscosity is always negligible compared
to the mode-coupling contribution for the high densities
of interest here, from Eqgs. (2.4) the elastic moduli are
found to be

n8L M) 11s4 f 3.5

MC(w) , (3.6a)

(3.6b)

GMw)=—iony

MM w)=Ko—ion) V(o) .

The results can be summarized as follows.

(i) The theory predicts the correct order of magnitude
for mg;=ns,(w=0). The calculated G'"(w) and
M"W(w) fit the results of shear and ultrasound experi-
ments in viscous supercooled liquids such as glycerol in
the low-frequency region, i.e., for w7y=<1, where 7, is the
longest relaxation time for density fluctuations, i.e.,
To=[Dq3/5(qy)]~". In Fig. 1 the lowest-order theory is

2.5

00 1 L 1 N
108 107 108 10°

FIG. 1. ReG(w) as a function of logo(w), with @ =2mv, for
glycerol at T=263 K (A) and T =275 K (0), from Ref. 5.
The solid curves are the result of the low-order mode-coupling
theory. The values of the parameters are given in the text.
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compared to data in glycerol from Piccirelli and Litovitz’
for T=263 and 275 K. The quantity plotted is
G'(w)=ReG(w) as a function of angular frequency
@=2mv. The theoretical curves are obtained with 0=4.6
A (corresponding to no3=0.82 and 0.81, respectively)
and a =2. At high frequency the lowest-order theory
breaks down—it becomes cutoff dependent, as discussed
below, and fails to predict an elastic behavior as @ — .

(i) The value of the zero-frequency viscosities as
predicted by Eq. (3.5) is rather cutoff dependent (it can
change of a factor of 2). When the zero-frequency value
is subtracted out, the frequency-dependent viscosities are
essentially independent of the upper cutoff up to wry~ 1.
On the other hand, they become very strongly cutoff
dependent, even in their functional form, at high frequen-
cy. Uncertainty in the numerical value of the viscosities,
even at low frequency, also arises from the rather rough
approximation used for the static correlation functions in
Eq. (3.5) (even for hard spheres the Percus-Yevick approx-
imation overestimates the static correlations near g).>*

(iii) The results of the lowest-order mode-coupling
theory for ng',’f(w) are well represented by the following
analytical form,

¥ 10)

l+bS,L _bS,L(l_‘ia)TDcS,L )1/2 ’

n¥E e =

3.7

where 7p=0?/D and, typically, for no 3-0.8—1, one
finds bg; ~0.25—0.50. The coefficients cs and cL are
found to be of the order of 7o/7p=[x3/S(xy/0)]"".

is important to realize that the four constants bg and
cs,r are not adjustable parameters, but are calculated by
the theory. Equation (3.7) is simply a convenient analyti-
cal representation of the lowest-order mode-coupling
theory at low frequency, i.e., for wry< 1. If the cutoff is
extended to very large g, the functional form of n¥f'"(w)
becomes cutoff independent over the entire range of fre-
quency and is well represented by Eq. (3.7) everywhere.

J

Y+ico le

"ISL(O))~775-—f dx f
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B. “Self-consistent” mode-coupling theory

The idea now is to iterate the solution by inserting the
result obtained in subsection A for the frequency depen-
dence of 7€ in Eq. (3.1) and then on the right-hand side
of Eq. (2.8a). When doing this it is assumed that the
wave-vector and frequency dependence of the generalized
viscosities are decoupled and the behavior in frequency

obtained for 7Yw)=7%¥%g=0,z=—iw) 1s also
representative of the frequency dependence of % ¥<(g,,2).
In other words, one approximates
~ MC,
MmL (quz =0) ~ MC
L(q0:2)~ L (q0,2)~~2'{c(q=0,2=0) L (q =0,2) .
(3.8)

The result of subsection A, i.e., 7 Y¢!(g =0, z), is then
substituted into the right-hand side of Eq. (3.5). For con-
venience, the analytic form of Eq. (3.7) is used in place of
the result of the numerical integration of Eq. (3.5). The
behavior in frequency of the resulting second approxima-
tion for n¥§ (@), denoted by M@ (w), no longer depends
on the upper cutoff of the wave-vector integration. Elas-

tic response is predicted at high frequency, i.e.,
M) ~G? /(—iw) as w—> 0. The value of the

predicted high-frequency shear moduli, G2, is still, how-
ever, cutoff dependent. To obtain a cutoff-independent
result, one more iteration is needed. This is performed by
inserting the following form on the right-hand side of Eq.
(3.1),

7 1'“(g0, 2=0)
1+bL ——bL(1+ZTDCL )]/2+Z7'D‘}’ ’

where y is a parameter expected to be of the order 75/7p,
with 75 the Maxwell relaxation time, 75=75/G,.
Combining Egs. (3.9), (3.1), and (2.8a), as well as (3.2b),
the corresponding mode-coupling contribution to the
viscosities, denoted by 7Y (w), is given by

7 ¥g0,2) ~ (3.9)

x*Vs (x/0)

—iw 21

I +x2/SX)[14+by —b (14Z1¢.) 2 1+2,7

1

X

e—inD+x2/S(x)[l+bL —bL[1+(E

where Z, =z7p and the limit e—07 is intended. Equation
(3.10) is agam evaluated numerically. The numerical
value of 7¥{(0) and the low-frequency behavior of

f(w) are the same as those predicted by the lowest-
order theory described in subsection A. At high frequen-

cy Eq. (3.100 leads to elastic behavior, i.e,
MCw)~G, /(—iw) and NYw)~M,/(—iw), with
M =K+ ;'Gw, the high-frequency longitudinal

modulus Both the numerical values and the functional
form of n¥{ as a function of frequency are now only
weakly dependent on the upper cutoff. In general, the
zero-frequency viscosities are more sensitive to the cutoff
than the high-frequency moduli. The theory tends to

' o _ — ., (3.10
—iwtp—21)cL '} +e—iwTp+Z))y

[

overestimate the former and to underestimate the latter.
The numerical values are in general, however, correct up
to at most a factor of 2—3.

The predictions of the “self-consistent” theory are com-
pared with experiments in Figs. 2—5. To combine data
obtained at different frequencies and temperatures, experi-
mental results and theory are plotted as functions of the
reduced frequency wns/G,. It is intended here that ex-
perimental and theoretical values of the zero-frequency
viscosities and of the high-frequency moduli are used to
reduce experimental data and theoretical results, respec-
tively.

Figures 2 and 3 display the results of the mode-
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FIG. 2. R.(») (A) and X, (w) (O) for glycerol (data from
Ref. 5) as functions of logjo(w*), with 0* =wns/G .. The solid
curves are the results of the “self-consistent” mode-coupling
theory for a =3 and 0 =4.8 A.

coupling theory for shear and ultrasound relaxation in
glycerol, with @ =3 and an effective hard-sphere diameter
0=4.6 A. The result of the lowest-order mode-coupling
theory is fitted by Eq. (3.7) with b; =0.25 and ¢; =0.03.
The data are from Refs. 3 and 5. The functions plotted

& 26.6 MHz
+ 10 MHz
O 6 MHz

0.60 O 2 MHz -

M (W)

0.20

M"(w)

FIG. 3. (a) M(w) and (b) M"(w) for glycerol. The solid
curves are the result of the mode-coupling theory with the same
parameters as used in Fig. 2. The data are from Ref. 3, where a
similar comparison is also shown.
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w *

FIG. 4. R, () (A) for hexanetriol as a function of logo(w*)

from Ref. 6. The solid curves [/Y’ng) is also shown] are the
present theory for a =3 and 0=5.5 A.

are the real and imaginary parts of the normalized shear
mechanical impedance Z; (w), with

Z (0)=[G(w0)/G  ]'?
=R, (0)—iX; (@), (3.11)

and the real and imaginary parts of the normalized longi-
tudinal modulus .#(w), given by

MMo)=[M(w)—Ky]/(M_—K,)
=M'(0)—iM"(w) . (3.12)
Finally, in Figs. 4 and 5 the results of the present

theory for hexanetriol (a =3 and 0=5.5 A) are displayed.
The data are from Ref. 6.

M (w), M" ()

0

1073 1002 107t o' 102 10> 10t
*
w

FIG. 5. M'(w) (A) and M"(w) (O) for hexanetriol (Ref. 6)
as functions of log,o(w*). The solid curves are as in Fig. 4.
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The predictions of the present theory have also been
compared with shear and ultrasound experiments in other
supercooled molecular liquids (e.g., butanediol, methyl-
pentanediol). The agreement between theory and experi-
ments is comparable to that obtained for glycerol and hex-
anetriol.

In contrast with the Debye theory, and in agreement
with experiments, the relaxation curves obtained here are
in general asymmetric. At low frequency they can be
represented as power series in ©?. At high frequency the
absorption curves have a slower tail. The corrections to
the high-frequency limit are nonanalytic, e.g.,
G(w)—G,=~(—iw)*, witha=0.5as o— .

IV. DISCUSSION

It has been shown that a generalized mode-coupling
theory can be used to describe the propagation of shear
and sound waves in viscous supercooled molecular liquids.
The theory presented here does not provide a simple
analytical form to describe the relaxation of mechanical
disturbances in these liquids. It does, however, fit experi-
ments in a variety of supercooled molecular fluids. In this
sense it predicts a decay that is equivalent to the empirical
KWW form.

The theory is based on ideas recently proposed to dis-
cuss dynamical properties of dense simple liquids®*® and
to predict a glasslike transition in such systems,'°~!3 but
differs from those in two respects. First, the theory
presented here is not a truly self-consistent theory, but
uses the experimental values of the static viscosities as an
input. Secondly, in some of these dynamical theories of
the glass transition the wave-vector dependence of the
mode-coupling integrands was neglected. It has been
shown that this is a good approximation to obtain the
value of the exponent describing the divergence of 775 near
the transition.”> The full wave-vector dependence of the
integrals is retained here. This introduces a continuum of
relaxation times and is essential in giving the nonexponen-
tial relaxation observed in viscous supercooled liquids.

The basic physical assumption behind the present work
is that the slowest structural rearrangements in dense
liquids occur on molecular length scales via self-diffusion.
Their nonlinear coupling determines then the slowing
down of the decay of macroscopic correlations. That this
is correct even in a supercooled molecular liquid with
viscosity as high as 10® P may seem questionable. Physi-
cally, one might expect that in such liquids structural
rearrangements on length scales larger than molecular
ones should also be important. A point in favor of the
theory presented here, on the other hand, can be drawn by
comparing the calculations of n¥%(w) and 7¥(w). The
vertex Vg(q) is very strongly peaked near g, and cuts off
almost entirely the contribution from any larger length
scales. The vertex ¥, (g) on the contrary is nonvanishing
at ¢ =0. In spite of the different behavior of the two ver-
tices, there is experimental evidence' that the same physi-
cal mechanism is involved in determining both the shear
and the longitudinal viscosity. This supports the idea that
the contribution from the small-wave-vector region of the
integration is not important. Finally, an experiment that

would directly test this assumption will be proposed else-
where 2

The theory presented here contains two adjustable pa-
rameters: the effective hard-sphere diameter ¢ and the
numerical constant a in the Stokes-Einstein relation [see
Eq. (3.4)]. In addition, the mode-coupling vertices have
been evaluated by using the hard-sphere form for the stat-
ic structure factor, S(k). This is a rather crude approxi-
mation for the structure factor of a molecular liquid. It
appears, however, that the frequency dependence of the
viscosities is only weakly sensitive to reasonable variations
of the numerical values of the parameters a and o and to
the details of the static structure factor. The numerical
values of the mode-coupling contributions to the transport
coefficients are more sensitive to the values of the param-
eters a and o and—to some extent—to the approximation
used for S(k) and to the cutoff of the wave-vector in-
tegration, as discussed in Sec. III. It should though be
stressed that the possible ranges of values that ¢ and o
can assume are highly constrained. The coefficient a in
the Stokes-Einstein relation is approximately known from
theoretical estimates in simple fluids [the lowest-order re-
sult depends linearly on a—see Eq. (3.4)]. The effective
hard-sphere diameter o is expected to be of the order of a
molecular size. It is determined by the requirement that
the reduced density no> be in the range no’®~0.8—0.9,
with n the actual density of the fluid, so that S(k) is a
sensible representation of the structure factor of a dense
and highly viscous fluid. Within the range of o set by the
above requirement, the numerical values of the viscosities
vary by at most a factor of 2.

Phenomenological theories attempting to relate the idea
of a continuum of relaxation times to a model of liquid
dynamics have been presented before in the literature.!*!
The central idea in these theories is that the main contri-
bution to structural relaxation arises from the diffusion of
a microscopic ordering parameter describing the deviation
of the local liquid structure from its equilibrium value at
a given time. To justify this idea the viscous fluid is
sometimes'* described as a microinhomogeneous medium,
with liquidlike and solidlike regions. These theories, con-
taining a few free parameters, provide a good fit to experi-
ments. The relevant length scales include length larger
than molecular ones. These phenomenological theories
rest therefore on the assumption of the existence of rather
large solidlike clusters in the fluid.

The idea of diffusion of the local structure is also the
central physical mechanism of the present calculation.
Here, however, the idea originates from concrete theoreti-
cal predictions for hard-sphere fluids?>?' and from experi-
mental evidence for supercooled liquids of moderate
viscosity.”? The relevant length scale is identified as the
molecular length 27/q, and arises naturally from the
packed local structure of the fluid. Finally, these physical
statements are put here in a more precise and general
mathematical framework that makes contact with the
dynamical properties of dense fluids in general.

Kirkpatrick and Neiuwoudt?’ have recently reanalyzed
the generalized mode-coupling theory of the stress-tensor
autocorrelation function of a hard-sphere fluid including
dissipative as well as thermodynamic nonlinearities. The
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effect of dissipative nonlinearities is not included in the
Kadanoff-Swift approach used in the earlier theory,® nor
in the present work, and is usually negligible when calcu-
lating long-wavelength effects. They found, however, that
dissipative nonlinearities can be as important as thermo-
dynamic ones when considering finite-wave-number ef-
fects. By including dissipative nonlinearities, they were
able to account for the discrepancy of a factor of 2 be-
tween the earlier theory and the computer experiments.
Dissipative nonlinearities could also be important for
the effects discussed here. Kirkpatrick and Neiuwoudt
give explicit results only for hard-sphere fluids. It is not
clear how to apply their theory to more general fluids,

since the form of the nonlinear dissipative vertex function
is not known in general.
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