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We study the problem of velocity and shape selection in the growth of dendritic crystals. We
demonstrate that the presence of surface tension destroys the Ivantsov family of solutions at all but
a single velocity. This occurs at all undercoolings and for both two-dimensional and axisymmetric
three-dimensional dendrites. The lack of a continuous family of solutions is due to a mismatch of
terms exponentially small in velocity, in agreement with the mechanism of “microscopic solvability”

previously derived for geometrical growth models.

I. INTRODUCTION

Dendritic crystal growth has long served as a standard
example of pattern formation in nonequilibrium systems.
Dendritic growth occurs in a variety of physical contexts
ranging from solidification to electrochemical deposition
to growth from vapor.!? Strikingly, the shape and veloci-
ty of the dendrite arms are unique, experimentally repro-
ducible functions of the applied forces, independent of the
initial conditions.> Understanding the workings of such
systems is a necessary step for progress in the field of
dynamics far from equilibrium.

The simplest example of this phenomenon is crystal
growth in solidification from a pure supercooled melt.
Here, we may safely assume that the rate of growth is
controlled by the diffusion of the released heat of fusion
away from the solid-liquid interface. The first approach
to this problem, by Ivantsov® and Horvay and Cahn,’
modeled the heat flow by a macroscopic transport equa-
tion which coupled to the interface through the local
equilibrium assumption that at the interface temperature
equaled the bulk melting temperature. This assumption
produces an infinite continuous family of allowed para-
bolic shapes for the dendritic main branch, with arbitrary
tip velocity. Subsequently, several authors’> added addi-
tional postulates in an attempt to fix a unique shape in ac-
cord with experiment.

All of the work based upon the original Ivantsov
analysis must introduce a new length scale in order to
specify the pattern. It was recognized quite early that sur-
face tension y gives rise to a capillary length dg=y/L (L
is the latent heat per unit volume), which modifies the
previous analyses via the Gibbs-Thomson® boundary con-
dition: the temperature at the interface equals
Ty (1—dgk), where T, is the bulk melting temperature
and « the local curvature. There remained the question of
how d, actually does determine the shape. In the “max-
imum velocity” approach, for example, the shape is relat-
ed to a fastest-growing spherical approximation to the tip
shape, while in the “marginal stability” hypothesis the
velocity is such that the tip is neutrally stable. In both

33

cases the selection issue involves the dynamical choice of
one of the continuous family of zero-surface tension solu-
tions. Whereas the maximum velocity can be ruled out
experimentally, marginal stability has been fairly success-
ful as a rule of thumb for estimating growth velocity, and
in particular, gave rise to a useful scaling relation between
tip velocity and tip radius for small undercooling.

The purpose of this paper is to show that the supposi-
tion that both these approaches build upon, that there is a
continuous family of allowed steady-state shapes, is not
correct. We will show that at any finite value of d, there
is a unique steady-state solution. The continuous family
disappears when we impose a solvability condition
brought about by the inclusion of surface tension. Re-
markably, this solvability condition fails to be satisfied by
terms which are exponentially small in the velocity. This
accounts for the failure of the perturbative methods used
in the past.

These results have been presaged by developments in re-
lated systems over the past few years. First, the introduc-
tion of simplified models of interfacial dynamics”? led to
the idea that solvability conditions could determine
unique shapes.”'® Next, heuristic arguments were given
that the Ivantsov family would be critically sensitive to
the introduction of surface tension.!! Finally, there was a
realization that the selection of finger width for the analo-
gous Saffman-Taylor'? problem could be understood
along similar lines.!* These developments suggested the
paradigm of “microscopic solvability” for pattern forma-
tion in interfacial motion. It is this hypothesis that we
verify in this paper for dendritic crystal growth. Some of
our results, for the limit of small undercooling, have been
presented elsewhere.!*

The outline of this paper is as follows. In Sec. II, we
review the integral formulation of the steady-state den-
drite equation in two dimensions. We derive the leading
corrections to the Ivantsov parabola asymptotically far
from the tip region. In Sec. III we describe our numerical
procedure and present the results of our calculations. We
show that at all undercoolings, crystal anisotropy is neces-
sary to obtain finite velocities. We further show that
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surface-tension effects are exponentially small, so that the
actual selected solution is experimentally indistinguishable
from the Ivantsov solution at the correct velocity. In Sec.
IV, we extend the analysis to axisymmetric dendrites in
three dimensions, with similar results. Section V summa-
rizes our current state of knowledge and indicates some
future directions for research.

II. TWO-DIMENSIONAL STEADY-STATE EQUATION

We wish to study the evolution of a solid-liquid inter-
face controlled by thermal diffusion. As described by
Langer,? the governing equations for the temperature T
can be taken as

2p_ 0T
DV°T = 3’
T(x;(s))=Tp(1—dok(s){1—ecos[460(s)]}) , (1)

¢, D[(@-VT),—@-VT)]=Lv(s)4,

where d; is the capillary length, L is the latent heat per
volume, and c, and D are, respectively, the specific heat
and thermal diffusivity, assumed for simplicity to be
equal in the solid and liquid. We have assumed that the
surface tension has a fourfold anisotropy, being smallest
when the angle 6(s) between the normal and the crystal
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where K|, is a Bessel function.
Finally, we evaluate this expression at the interface and
rescale lengths by v/2D. We arrive at the final equation

A—vk{1—ecos[46(x)]}
=—1—fdx’Ko([(x x4y —y 2] P, @)
m

where

A
L/c,

l)do TM

2 L/, 4%

V=

Equation (4) and its later generalization to three dimen-
sions form the basis of the analysis which follows.

In the absence of capillarity, i.e., at y =0=0, one can
easily verify that y; = —x2/2p solves the above equation,
provided A=V'mp e? erfc(\/};p). Note that p is the Peclet
number, since it is the tip radius in length units v/2D,
and that as p— w0, A—1, which is the required under-
cooling for a planar interface. This Ivantsov* parabola
solution is valid at large x, since the resulting curvature
vanishes there, and we now wish to determine the rate at
which the true solution approaches it. On the left-hand
side of (4),

— 0k 1 —ecos(48)]~ —tp?/x3*(1—¢€)
at large x. We assume that

y(x)=—x%/2p +a/x (5)
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axis is a multiple of /2. The interface is given by x,(s),
has arc length s, curvature «(s), and normal velocity
fi-v(s). The last equation relates the discontinuity in the
temperature gradient going from liquid to solid to the rate
of heat release. Finally, the temperature approaches
Ty —A (T is the melting temperature and A the under-
cooling) at large distances from the interface.

Because the temperature enters linearly in the above
equations and its boundary values are fixed, it can be ex-
plicitly determined via an integral representation, viz.,

T(x)=Ty—A+ f ds'dt'G(x—x(s',t'),t —t')v,(s',t") ,
()
where v, is the normal velocity, G is the Green’s function

of the diffusion equation,

x2

G(x,t)= ~aDr

exp

1
47 Dt
Assuming a steady-state solution moving in the y direc-
tion,

x(s',t')=x(s")—vl,(t —1') . (3)

We can integrate over ¢’ to find

J ax'Ko((w/2D){(x —x" P2 +[y —p (x) ]2} 1/2)e 02Dy x) 5]

r

and verify that it can be chosen to give a similar term on
the right-hand side of the steady-state equation.
Let us substitute (5) into the integral in (4). First,

d=[(x —x'V+(y -y

a (x2—x'?)(x —x')
=dy+—
ot 2p xx'd

where
1
di=(x —x") + —(x2—=x"?)?*.
0 4p2
This gives a term

a fw x —x'
— dx'
T vY—

x’

Ky(dy)

Kl(do) xz-—x'z
———(x—x')

(x'2—x2)/2p
2p xx'dg

e

It can be shown that the leading contribution to the in-
tegral comes from the region x' <x. We can therefore use
the asymptotic forms for the Bessel functions at large ar-
guments. A short computation leads to the final expres-
sion for the coefficient of a

2p>  _p
1—2z 1—z

Vb (= geE
X3\/; fo dz ’ (6)
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where we employed the change of variables
z=(x —x")/(x +x’). Equating expression (6) to the left-
hand side of (4) determines @ as a function of the Peclet
number. Note that as p—0, (6) vanishes more slowly
than p?, requiring @ —0. This agrees with the p =0 re-
sult of Pelcé and Pomeau® that y=—x2/2p
+O0(1/x Inx) in the small undercooling limit. Finally, it
is amusing to note the above integral can also be written
as the analytic continuation

2 9 [V —mpePerfc(V —p)],
a(1/p)
a form which can be explicitly verified by doing an expan-
sion around the planar interface limit.

Our strategy will be to search numerically for steady-
state solutions which approach the Ivantsov parabola with
the above perturbative correction. We will then see if
these solutions satisfy Eq. (4) all the way up to the tip re-
gion. The next section describes our numerical procedure.

III. NUMERICAL RESULTS

We now look for numerical solutions of the steady-state
equations. Our approach is based on a method devised by
Vanden-Broeck'® for the Saffman-Taylor viscous finger-
ing problem.'>!3 The idea is to relax the integral equation
(4) at the tip, allowing for a possible cusp in the interface.
With this freedom, solutions exist for all values of 7 for
any A. We then solve an auxiliary equation requiring the
cusp magnitude (the discontinuity in dy /dx at the tip) to
vanish, to determine the actual selected 7.

To proceed, we discretize the x range using the parame-
trization x;=tan(wj/2N), j=0,1,...,N—1. The
steady-state integral equation then becomes a coupled set
of N —1 nonlinear equations for the N unknowns y(x;).
We require that y approach —x2?/2p +a/x at large x,
fixing y(N —1). We then use a standard Newton’s itera-
tion routine to converge to the shape. We typically use
values of N up to 100, and observe that the results con-
verge quadratically. The key result of the computation is
the cusp magnitude f(7,p).

In Fig. 1, we have plotted In[ —f(?)] for the case of
p =0.25, corresponding to an undercooling A=0.54. At
zero anisotropy, there are no solutions at all because f is
negative for all 7. The functional dependence of f is con-
sistent with the form f~exp[—C(p)/(¥)'/?], for all
values of p. This result explains why the solvability con-
dition is absent in an asymptotic expansion in powers of 7'
and why, therefore, one can calculate a steady-state shape
correction!” without encountering any inconsistency. We
will discuss this point further in the concluding section.

At any finite anisotropy, Fig. 1 shows that there does
exist a velocity 7 * at which a steady-state solution is pos-
sible. In Fig. 2, we plot 7*/p? versus Peclet number at
several values of the anisotropy. Simple scaling argu-
ments'® as well as a calculation performed at the zero Pec-
let number limit'* suggest that at small p, 7* ~g(e)p2.
Our data is consistent with this result and shows how the
velocity deviates from the scaling as Peclet number is in-
creased. Note that this is just the scaling law obtained
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FIG. 1. Cusp magnitude versus velocity at p =0.25.

from the marginal stability hypothesis,’ here arising with
no extraneous assumptions.

In Fig. 3, we have plotted the actual steady-state shape
y —y; for the “typical” case of p =0.1, e=0.05. The de-
viation of this exact steady-state solution from the
Ivantsov solution at the selected value 7 * =6 1077 is ex-
tremely small. This, of course, is a consequence of the
fact that the dimensionless parameter o* =v* /p? is quite
small. An equivalent way of saying this is to note that the
actual tip radius is much larger than the capillary length
which is therefore a small perturbation. This important
feature of our solvability mechanism is connected to the
fact that at e=0, only 7*=0 is allowed. Therefore, at
small but nonzero anisotropy, U * ~€®. Our data suggests
that 1 <a(p) < 1.5, at small p, and it decreases slowly as p
is increased.
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FIG. 2. Selected velocity versus p at several values of aniso-
tropy.



33 STEADY-STATE DENDRITIC CRYSTAL GROWTH 3355

x1074

0‘.78 1.94 1.30

V'Yl

-6.0F

-10.0

X

FIG. 3. Steady-state shape correction y —y;, for p =0.1 and
€=0.05.

Before proceeding to three dimensions, we would like to
emphasize again the fundamental simplicity of our ap-
proach. All one need do is to set up the integro-
differential equation for interfacial shape and find solu-
tions with an allowed cusp singularity. Convergence to
this solution is extremely rapid with quadratic conver-
gence in the number of discretization points. Complica-
tions to the above “simplest” model such as unequal dif-
fusivities in the two phases, additional diffusion due to
solute impurities, and the incorporation of interfacial ki-
netics through an interfacial undercooling are all easy to
treat. Even the introduction of finite walls (growth inside
a capillary tube) offers no problems in principle. This will
be discussed in detail in a subsequent publication.

IV. THREE-DIMENSIONAL
AXISYMMETRIC SOLUTIONS

We now extend our analysis to the case of axisymmetric
dendrites in three dimensions. Unfortunately, the as-
sumption of axisymmetry restricts our study to the case of
no crystal anisotropy. As we might expect (based on the
two-dimensional results), there are no solutions to the sol-

J

r—r'

vability condition at nonzero U. We will describe our
method for obtaining this result and explain the generali-
zation to nonaxisymmetric shapes which will be presented
elsewhere.

We start again from Eq. (1) where the interface is now
characterized by arc length at fixed azimuthal angle ¢,
and the angle ¢. In the case of steady-state propagation,
we can derive the integral representation

vL
2w Dc »

o ., r2m 1 _ i
Xfo r'dr fo d¢ge i+’ =yl

T(ry)=Ty—A+

where
d=[r’+r't—2rr'cosp+(y' —y)*]'?

and the thermal length / =v/2D. Rescaling all lengths by
! and evaluating the temperature at the interface gives rise
to the three-dimensional shape equation

~ 1 , , e—d (y'—y)
A—vx:-z;ffr dr d¢—d—ey e, (7)

One can check that with 7=0, the paraboloid of revolu-
tion y = —r?/2p satisfies (7) if the Peclet number p is re-
lated to the undercooling through the three-dimensional
Ivantsov relation A= —p?Ei(—p), where Ei is the ex-
ponential integral function.

To proceed, we need to understand the rate at which
y(r) approaches the Ivantsov result as we move away
from the tail. The three-dimensional curvature asymptot-
ically becomes

—Ex=i+0
r

1
3
This suggests that the rate of approach in three dimen-

sions will be much slower than that in two.
We assume that

y=—r?/2P +ar +blnr +0 (8)

1
r

and substitute this into the integral equation. Consider
first the leading term, proportional to a. Expanding both
the exponentials and the denominator, we find the expres-
sion

(r—r')

a e -rip _,
—- 'dr'd 0
. f fr r'd¢ 4o e

with

2
rZ__rIZ

2p

The leading contribution to the integral becomes r’ <r,

di=r24r'"2—2rr' cosp+

[(r2=r'2 /20 (r2=r'2/2p) (r2—p'2)2

2p%r 4 r'2—2rr' cosg) }

and from keeping only the leading two terms in d|,

ri—r'

2p

2 r24r'2—2rr' cosd

r2_r12

—do=—p

We can now perform the angular integrals in terms of
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Bessel functions. The final result, upon introducing the
change of variable g =(r —r')/(r +71'), is

A
r 2r q

X { I1(z)e = [p(1—g?)]

+1y(z)e"2g —p(1+¢>)]} , 9)

with z=p(1—q?)/2q. The leading correction is then
a=—0/A4,. We can check that as p—0, a —0, in agree-

J

©dg _,o—1 1—
4= ;%e WTq—p2(1—q)(1+q)21n 1—4}—2

and

IIl(z)e"p( 1—gq)+1g(z)e

ment with the analysis of Ref.
Yy —yr~0(r/lnr).

It is now a tedious but simple matter to extend the com-
putation of the integral so as to evaluate the 1/r2 pieces.
The most important point to notice is that all of the
corrections due to keeping more terms in the expansion of
d, as well as due to the range r > r’ fall faster than 1/r%
the only pieces which contribute are a linear term in b and
a quadratic term in a. The final result for the integral to
this order in 1/7 is

(bA,+a’4,)/r%,

15 that at p=0,

where

(1—q)?
(1+¢)?

2g  pll+q)
1+¢ 2

|

(10)

Ar= [ 21— g2 (I, (20e ~T3pg (1—g?)—(1—g*p?] +Io(2)e ~[p*(1+4*)—4pq (1+47)+4]} .

4q3

All of these integrals can be evaluated numerically for ar-
bitrary p and compared to a separately derived asymptotic
expansion value for p very large.!” Finally, matching this
to the left-hand side of the equation clearly requires
choosing b = — 4,a%/A4,.

We now parametrize the interface by the variable z, de-
fined via

y(r)=—r%/2p +ar+blnr +z .

We again discretize the r variable as in two dimensions
and solve the resulting nonlinear system of equations. In
Fig. 4, we plot the cusp magnitude against ¥ for Peclet
number 0.1. We find no solution other than &*=0 and
an essential singularity in f as 7—0. This remains true
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v

FIG. 4. Cusp magnitude versus for three-

dimensional axisymmetric solutions.

velocity

I

for all values of p. This is exactly the same as we found
earlier in two dimensions and agrees with the idea that an-
isotropy is necessary for obtaining steady-state solutions.
We briefly sketch the generalizations necessary to ac-
commodate finite anisotropy and hence nonaxisymmetric
shapes. The integral equation is modified by the multipli-
cation of the curvature by an angular dependence charac-
teristic of the crystal structure; e.g., for a cubic anisotropy

Ux—U,[1—€cos(40)cos(4¢)] .

Asymptotically, the left-hand side
(—0/r)[1—ecos(4¢)]. We therefore assume

approaches

2p

y= +rlag+a; cos(4¢)]+bgInr

+b cos(4¢)+ b, cos(8¢)

and evaluate all the resulting integrals. Finally, the inter-
face is parametrized as

m

z(r,9)= Em:u cosdmz,, (r)

m =0

and we would solve for the unknowns by evaluating the
equation at the collocation points

¢m=

mm
2y +1)

Aside from the large increase in computation time, the
implementation of this method is straightforward.

V. DISCUSSION

Over the past few years, we and others have developed
a theory of microscopic solvability to account for the
unique patterns seen in diffusion-controlled interfacial
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evolution. This approach posits a three-step approach to
the determination of the final shape.

(a) Look for steady-state shapes in the absence of any
microscopic dynamics. This will, in general, give rise to a
continuous family of possible shapes, typified here by the
Ivantsov solutions in both two and three dimensions.

(b) Solve the full steady-state equation, requiring that
the solution approach the previously found shapes far
from the tip region. This will introduce, via terms essen-
tially singular in the microscopic parameter, a solvability
condition which has at most a discrete set of solutions.

(c) Compute the stability of the resulting steady-state
shape with respect to both linear and nonlinear perturba-
tions.

This paper has shown how to carry out step (b) for the
case of dendritic crystal growth. We found that there was
indeed a solvability condition whenever we include finite-
surface tension and that it determines a unique solution.
Furthermore, we showed that €=0 is a critical point,
completely analogous to the A=+ limit of the Saffman-
Taylor finger problem. Because of this, the physical sys-
tems such as succinonitrile’ which have small anisotropy,
will have 0* small. This means that the actual pattern
will be experimentally indistinguishable from the Ivantsov
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solution at 7*. The only remnant of the microscopic

dynamics is to select one of the Ivantsov parabolas.

We have not yet tackled the stability analysis of this
steady-state solution. However, we expect that as the
selected velocity is decreased, there will eventually be a
transition to disordered growth, i.e., tips will split rather
than sidebranch. This has been seen experimentally!” in
growth from solution, in electrochemical deposition,'® and
in a hydrodynamic analogue of crystal growth.!® We still
need to understand the mechanism whereby sidebranching
is the mode of operation over a large range of system pa-
rameters, unlike what occurs in local growth models.” %%

Finally, we would like to point out that much work
needs to be done to find an analytic approach powerful
enough to see solvability. There has been much progress
on this issue for local models, either by WKB methods?!
or by more exact analysis.22 The small value of 7 *, relat-
ed to the distance to the critical point €é=0, means that
the idea of linearizing®"?? the solvability condition is pos-
sibly a good method to approach this problem. This gives
rise to a linear inhomogeneous integro-differential equa-
tion which is currently under investigation.

After completion of this manuscript, we became aware
of the independent work of D. Meiron (private communi-
cation) which comes to the same conclusions regarding
velocity selection of two-dimensional dendrites.
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