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Le Chatelier s principle is discussed within the constrained variational approach to thermodynam-

ics. The formulation is general enough to encompass systems not in thermal (or chemical) equilibri-

um. Particular attention is given to systems with multiple constraints which can be relaxed. The
moderation of the initial perturbation increases as additional constraints are removed. This result is

studied in particular when the (coupled) relaxation channels have widely different time scales. A
series of inequalities is derived which describes the successive moderation as each successive relaxa-

tion channel opens up. These inequalities are interpreted within the metric-geometry representation

of thermodynamics.

I. INTRODUCTION

Le Chatelier's principle' comes close to making state-
ments about the dynamics of thermodynamic processes
without actually doing so. Here we discuss the principle
as determining an orbit in the thermodynamic state space
but not the actual trajectory of the system. We consider a
system whose state is specified by a number of extensive
variables (the "constraints" of the variational formula-
tion ' }. The state is then perturbed and the system is al-
lowed to relax. This description includes the familiar case
when both the initial and final, relaxed, states of the sys-
tem are those of thermodynamic equilibrium. Both the
principle and our results apply, however, to a wider class
of situations. Explicitly, the discussion below is valid
whenever the state of the system is one of "constrained
equilibrium. " If the constraints are the usual additive
constants of the motion we have the familiar equilibrium
situation. 6 There may well, however, be additional con-
straints. It is easiest to think of those as effective con-
stants of motion on a shorter time scale. For example, a
gas of diatomic molecules will equilibrate the translational
degrees of freedom some 4—5 orders of magnitude faster
than the vibrational relaxation. Chemical relaxation will
be even slower. It is therefore sensible to think of separa-
tion of time scales where some constraints have already
fully relaxed while others have not yet departed from their
initial value. Sometimes the successive relaxations can
even be controlled from the outside, e.g., in making chem-
ical relaxation proceed at a measurable rate by the intro-
duction of a catalyst.

In the interpretation of the Le Chatelier principle it is
assumed that the initial perturbation is imposed over a
time scale which is far shorter than that for response of
the system. ' It is through this assumption that the prin-
ciple appears to make statements about the dynamics of
the response, without actually doing so: the principle
serves only to establish the direction in which time s ar-
row points. %%en the system response to perturbation
occurs on several separated time scales, a number of inter-
mediate Le Chatelier ratios can be constructed. As time
unfolds and new relaxation channels open, the response of

the system produces an increased moderation of the initial
perturbation. The ratio of the system's response before
and after each successive relaxation mechanism opens is
always larger (less) than one for an initial perturbation of
an extensive (intensive) variable.

One purpose of this paper is to demonstrate the
enhanced moderation for systems with multiple coupled
relaxation channels. This is particularly noteworthy for
systems not initially in thermal and/or chemical equilibri-
um. The additional relaxation processes in such systems
necessarily act so as to augment the moderation of an ini-
tial perturbation. Another purpose is more methodologi-
cal in nature. It is to derive and discuss the principle
within the framework of the constrained variational ap-
proach. The result is then the statement that the "poten-
tial" function whose unconstrained variation determines
the state of the system9' is everywhere convex. ' " To
make the presentation as elementary as possible we shall,
however, restrict the derivation to the linear-response re-
gime where it is sufficient to retain terms only up to
quadratic in the Taylor-series expansion of the potential.
It is important, however, to stress that the conclusions
remain valid also in the general case.

The Le Chatelier principle is a statement about the or-
bit, i.e., the direction along which the system will evolve.
If the initial and final states of the system are those of
complete equilibrium then we all agree on the constraints
that are to be imposed. In the more general case it is al-
ways possible that a relevant constraint has been inadver-
tently omitted. It is essential therefore to point out that
our derivation will show that the direction of the modera-
tion is correctly given even if not all relevant constraints
have been included. Explicitly, the ratio of the system
response before and after the relaxation is larger (or less)
than one even if some relaxation channels have been left
out of consideration. The direction of the response is in-
dependent of the specific choice of relaxation channels
(or, equivalently, of the constraints}. In Sec. III below we
shall, in fact, prove even a stronger version of this result,
namely that the computed response ratio is always a
bound on the observed one.

The paper presents a derivation of the orbit (Sec. II), a
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II. CONSTRAINED VARIATION
%'ITH MULTIPLE TIME SCALES

We assume that the state of the system is described by
n variables. The constrained variation (see below) will as-
sociate with each a conjugate variable (which one can
think of as a Lagrange multiplier}. Hence after the varia-
tion (i.e., in the state of constrained equilibrium) the sys-
tem is described by n pairs of conjugate variables which
we denote (i&,E'},(i2,E ), . . . , (i„,E"). For a macroscop-
ic system i (E ) denotes an intensive (extensive) variable.
Nowhere in the derivation do we assume, however, that
the number n is the minimal number as required at com-
plete thermal and chemical equilibrium. We shall, howev-
er, make one assumption, namely that different variables
are associated with quite different relaxation times. This
will enable us to readily derive Le Chatelier ratios at inter-
mediate times and to demonstrate their increasing magni-
tude. As will become clear, our primary conclusion,
namely, that additional relaxation pathways necessarily
imply an increased moderation, is independent of the
separation in time scales.

The constrained equilibrium state of the system is
determined by maximizing the constrained entropy or
minimizing the constrained energy: '

~=S(E', . . . , E")—g X~, (la)

k = U(E', . . . , E") g i~E~ . — (lb)

The conjugate variables A,~ ( i ) are determined at the sta-
tionary point of P' ( k}. Thus

A, =(BSlBE )

i.=(BUZBE ), .

(2a)

(2b)

At complete equilibrium, Eqs. (2) are familiar results.
Displacements in the state of the system (e.g., changes

in the E 's) lead to changes in P' or +. To lowest order
the change is given by

discussion of the sequence of inequalities for the extent of
moderation (Sec. III), and two very simple examples (Sec.
IV) followed by a summary of the main points (Sec. V).
An appendix provides a discussion of the principle within
the framework of metric geometry. ' ' A key point is
that the sequence of inequalities for the moderation can be
cast as a Bessel inequality.

5A, =QS p5E~,
P=1

(4a)

5i~= g U~p5E~.
P=l

(4b)

The solution is

+ U„„hE"b,E" =0. (5)

It is always possible that the set of n (extensive) variables
does not suffice to fully specify the state of the system.
Under such circumstances, we adopt the following inter-
pretation of (4). Say at time t=0 the state of the system
is perturbed by the (small) change E»E +5E,
a= 1, . . . , n Int.ernal relaxation processes will then bring
the system to a new state of constrained equilibrium. In
that new state the changes in the conjugate variables have
the magnitudes given by (4}. We take the time required
for the system to reach a state of constrained equilibrium
consistent with the given values of the E 's to be fast on
our scale or, in other words, to be instantaneous. At every
point in our time scale the system is therefore in a state of
equilibrium constrained by the given values of the E 's at
that time. '

The system's orbit can now be determined as follows.
We take as the perturbation the displacement of the exten-
sive variable E" to a new value E"»E"+hE" and E" is
then held fixed for all later times. As a result of this dis-
placement the system "climbs up the side" of the energy
paraboloid [given by (3b) and shown also in Fig. 1]. As
each successive relaxation channel opens, the system slides
lower down on the paraboloid until all channels have
opened. In the entropy representation the description
would simply be "inverted" since S p is negative definite.
Upon perturbation, the system slides down the entropy
paraboloid and each successive relaxation process brings it
further up.

We assume that the time scale for the relaxation of the
jth constraint is v~ and that ~& &&~& &&~3 && ' ' '

«r„» 00, the last limit resulting from the condition that
E" is held fixed.

To determine the state of the system at time
vr &rr &r;+i after the 1th relaxation channel has opened
up, the potential (3b) is minimized with respect to the
5E"s, i =1,2, . . . , 1 subject to the remaining n —I con-
straints being unchanged in value, 5E1=0,
j= I+1, . . . , n —1, and 5E"=&&":

l
5 g U„5E'5E'+2 g U 5E'aE"

i,k=1

5w--I y s.,5E 5E~, (3a) 1

EE'(I)= —g [U '(I)]'"Uk„&R" .

5 k» —,
' g U p5E 5E~. (3b)

a,P=1

s lr Bs/BE BE~ is—— negative definite while
U ri

——B U jBE BE~ is positive definite' so that the ex-
tremum in (1) is a true maximum (minimum).

The displacement of state will also lead to new values
for the conjugate variables. To lowest order, changes in
the E 's result in linear changes in their conjugates

where U(l) is the 1 X 1 square submatrix of U rr consisting
of the first I rows and columns and U '(1) is its inverse.
By construction, (6) holds for i &I while ~J=O for
I &j& n —1, and the same solution obtains for all possible
/ values, I =1, . . . , n —1. The only difference is the or-
der I of the inverse matrix U '(l) in (6) and hence the
range of summation. To emphasize the dependence on 1

the summation convention is not used.
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I

U„„- g U„,[U -'(I)]"U„„

& U„„—g U„;[U '(I'))' Uk„ for I &I' (9)

which holds for positive-definite matrices U ii. While the
result (9) is not new it is of interest to prove it within a
metric gtximetry framework for it then provides new in-
sights. %e do so in the Appendix.

The physical intuitive interpretation of the mathemati-
cal inequality (9) is that the relaxation of each successive
constraint (5E'=0~5E'&0) can only serve to lower the
energy (increase the entropy) of the system.

The linear-response relation (4) together with (6) can be
used to show that

Eo+h 5il, =O, k =1,2, . . . , 1 (10)

FIG. 1. Le Chatelier s principle is illustrated as a process of
sliding down the side of a potential from an initial perturbed
state b to a new constrained minimum c. The energy surface is
shown as a two-dimensional paraboloid [cf. Eq. (3b)] in three-
dimensional space with principal axes p', p not parallel to the
coordinate axes E',E . The initial equilibrium at state a is per-
turbed by changing Eo to Ep~+~2, and keeping hE~ fixed.
The new restricted energy surface is now a one-dimensional par-
abola in the two-dimensional plane E~=const= E02+hE . The
initial perturbed state at point b sits on the side of the para-
boloid; it will slide down the side of the paraboloid along the
parabola in the plane E =ED+hE until it reaches the
minimum of the parabola. The projection of the perturbation
( a ~b) and response ( b ~c) orbit onto the plane of the in-

dependent extensive variables is the path a'~b'~c'. In the
linear-response regime the segments a'b', b'c', and a'c' are
straight lines and a'b'c' a right triangle.

III. MODERATION

The response of the intensive variable i„which is conju-
gate to E" is given, at the time tI, ~I gtI ~vI+i, in the
linear regime by

I
bi„(!)= U„„—g U„g[U '(I)]' Uk„

where we used (6) in (4b).
%e now argue that moderation can only be enhanced

upon opening of new relaxation channels or

b, i„(0)& bi„(1)& bi„(2) » . bi„(n —1) .

In other words, all the Le Chatelier ratios satisfy
bi„(1)/b,i„(1+1)&1.Here bi„(0) is the initial response
to the perturbation before any relaxation channel is open.

That the response is diminished for later times, Eq. (8),
follows directly from the inequality

««imes it, rt & tt & ri+i. Indeed, this condition can be
used instead of the constraints imposed on (5) to derive (6)
using (4) and (10).

The linear-response analysis can equally well be carried
out for the complementary problem where the response of
the extensive variables is being considered. ' For ex-
ample, if the intensive variable i„ is at time zero displaced
to i„+bi„and then maintained constant for all later
times, we find

b, E"(0)& bE "(1)« bE"(n —1)

Note that the sense of the inequalities is opposite to that
of (8).

Several relaxation time scales may, in a specific prob-
lem, be comparable. In such a case these relaxation chan-
nels must be treated simultaneously rather than succes-
sively. Under such conditions the appropriate intermedi-
ate inequalities are missing in (8). The extreme case is the
familiar discussion of Le Chatelier's principle where all
intermediate steps are missing and one concludes that
bi "(0)/bi "(n —1)& 1. This observation also provides
proof that the Le Chatelier ratio is given correctly even if
some relevant intermediate constraint has been (inadver-
tently or intentionally) left out. One does not need to
know the specific relaxation channels which opened up
between t=0 and t = tI & ~~ to conclude that
bi "(0)/bi "(I)& 1. The direction of the change is irrespec-
tive of the mechanism.

It is, in fact, possible to formulate this result in stronger
terms. If all of the relevant relaxation channels have not
been included, the observed ratio of the initial response to
the final response, bi (0)/bi (I), may exceed, but can never
be less than, that computed on the basis of an inadequate
number of relaxation mechanisms. In the case of exten-
sive variables responding to perturbation of an intensive
parameter, the observed response ratio b,E(0)lbE(1) may
be less than or equal to but never exceed the ratio comput-
ed on the basis of an inadequate number of relaxation
channels. This discrepancy in response ratios can be used,
in the sense of surprisal analysis, ' to identify additional
relaxation channels.
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IV. EXAMPLES

In this section we discuss two examples to illustrate the
Le Chatelier inequalities (8) and (11).

Examp/e 1. %e consider a thermally insulated hot air
balloon in an isothermal atmosphere in thermodynamic
equilibrium. Its state may be described by three indepen-
dent thermodynamic variables from the three pairs of
thermodynamic variables (P, V), (F,Z), (T,S}, where Z is
the height of the balloon above ground level and E is the
buoyancy force acting on it. For this system the metric
matrix U ~ is

Uvv Uvz Uvs

U~p Uzv Uzz

Usv Uss

(12)

These matrix elements are related to standard linear-
response coefficients; for example, Uss ——T/C~. The
matrix element Uzs is negligible, since changing the en-

tropy at constant volume has no effect on the buoyancy
force.

Assume that heat AS is added to the air in the balloon.
The initial temperature change is

b, Z'(0) = UssaS . (13a)

Uvs
U'ss — ~S

Uvv
(13b)

The expansion is assumed to have occurred on a time
scale fast in comparison to the response to buoyancy
forces: ri«~2 rF. Since —the balloon has expanded,
buoyancy forces will drive it higher, and it will continue
to rise until the buoyancy forces have vanished. The
response b, T(2) is

After a time t-~(=rz) the pressure difference between
the air inside and outside the balloon causes the balloon to
expand adiabatically. The temperature response is

does so. The drop in pressure will cause an additional in-
crease in the volume of the balloon. In order to maintain
a constant temperature during this additional enlarge-
ment, yet more heat must be supplied. As a result, the to-
tal heat added to the balloon after the new equilibrium
height has been reached, M(2), is larger than the total
heat added after the expansion phase has been completed
at constant altitude. The final set of inequalities

&&(0)&M(1)&~(2)
is a particular case of the general result (11).

V. CONCLUDING REMARKS

(14)

This paper discussed the orbit of the system as consecu-
tive relaxation channels open up. In the linear regime, as
shown in Fig. l, the orbit between any two successive re-
laxations is a straight line. The entire orbit in the system
state space consists of n —1 connected straight line seg-
ments. The only modification in the nonlinear regime is
that the orbit is a series of connected arcs. It is still deter-
mined by the constrained variational conditions (1), sub-
ject to the same set of constraints as used in (5). The ine-
qualities (8) or (11) remain valid.

The orbit establishes the direction of the response of the
system. It can be constructed for the general case when
the system is in a state of constrained equilibrium. The
evolution of the system is through a succession of such
states where each consecutive state is not only of higher
entropy (lower energy) but also more moderated. This is
very evident in (7). The initial response bi„(0)= U„„b,E
is in the direction of the displacement and is of the same
sign. The relaxation channels act so as to oppose [second
term in (7) which, using (9), is positive] this initial
response. The more channels open up the more extensive
is the moderation. That the discussion is not limited to
systems in complete equilibrium is, in retrospect, not
surprising. The direction of the response is independent
of whichever relaxation channels are explicitly recognized.

Usv
2

Uss-
Uyy —U4/Uzz
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APPENDIX

In this appendix we prove the inequalities (9) for a
positive-definite quadratic form using the Bessel inequali-
ty. We also point out how the proof is equivalent to
minimizing the quadratic potential function subject to
constraints.
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Let vi, vz, . . . , v„be a system of nonorthogonal basis
vectors which span a linear vector space with positive-
definite inner product: (v;, vj ) = UJ. The Bessel inequali-

ty for an arbitrary vector to in this space may be written
2 2

&min to —gy'v, , k(l .
i=1 j=l

The minimum value of the square of the norm is
2k

min m — x'v;

=(to, to) —g (to, v;)[U '(k)]'J(vj, w) . (A4)

(Al) Now by choosing w =v„we obtain from (Al)

k

x)= —g [U '(k)]J'(v;, io) .

(A2)

(A3)

This inequality is valid because if the coefficient values xo
(i = 1,2, . . . , k) minimize the norm on the left, the choice
of coefficients y'=xo (i =1,2, . . . , k), yJ=O
(j =k+1, . . . , l) produces a norm with the same value
but does not necessarily minimize the norm on the right-
hand side of (Al). The square of the norm is easily mini-
mized,

k k

5 (to, to) —2 g x~(vi, to)+ g x'xj(v;, vi) =0,

k

U„„—g U„,[U(k)-']'JU, „

& U„„—g U„;[U(1) ']"U,„, k&l . (AS)

Minimizing the inner product ~~v„—g~, x'v;~~ is
equivalent to minimizing the quadratic form (3) subject to
the constraints 5E =0, a=j+1, . . . , n—1, as can be
seen by writing out both quadratic forms. Each addition-
al vector which is used to approximate m =v„ in norm
[cf. (A2)] reduces the length of the linear combination;
each additional degro: of freedom which is opened allows
the potential 4' to decrease in value [cf. (S)].
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