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The phase-space contraction for the systems under consideration corresponds to an asymptotic-

center manifold functional dependence of the fast-relaxing variables, Xf~ s, on the slowly-relaxing

ones, the X„s. The propagation of perturbations along the center manifold is obtained from the
Green-function sensitivity matrix. Scaling and self-similarity relations among the matrix elements

are found. This fact allows for a simplification in the computation of the XfJ-Xf~ and the X„-X„.
autocorrelations. The validity of the results is confirmed in two different contexts: (a) An analytical
derivation of power spectra at the onset of periodic instabilities is performed. %e demonstrate that
in the infinite relaxation time limit for slow variables, the power spectra for all the Xf~ s converge to
the same distribution. This result is in accord with previous computations. (b) The power spectrum

for a randomly driven anharmonic damped oscillator is computed at the asymptotic-center manifold

regime and tested vis-a-Uis previous plots exhibiting a very good agreement.

I. INTRODUCTION

%e shall consider dissipative dynamical systems with a
separation of the relaxation time scales which enables us
to apply a center manifold (CM) reduction. ' 5 The for-
mulation presented in Sec. II is general and extends previ-
ous results on the statistical enslaving of fast-relaxing
variables to an infinite-dimensional phase space. The
approach is inspired in the finite-dimensional reduction to
Poincare-Jordan normal form put forward by Hassard
and co-workers. ' The CM reductions have been used to
study the onset of symmetry-breaking instabilities in open
reactive systems operating far from the thermodynamic
equilibrium regime. The dissipative structures are
identified with the CM's. In this work we shall concen-
trate on the role of the fast-relaxing variables at the onset
of instabilities in different contexts as described below.

The functional dependence of the fast modes (XfJ's) on
the slow modes (the X„'s) is given by the CM analytical
expansions. This dependence constitutes an asymptotic
description of the phase-space contraction ivhich occurs in
dissipative systems before the onset of bifurcating instabili
ties if there exists a separation of relaxation time scales-

The CM expansions will be used explicitly to obtain the
fundamental sensitivity propagators" ' which determine
the response of the subordinated variables to instantane-
ous perturbations in the Xf~'s and in the X, along the
CM. As we shall show in Secs. III and IV, considerable
simplification in the calculation of the autocorrelation for
the fast variables takes place at critical regimes. This sim
plification is due to the scaling and self similarity -relations
among the Green function matr-ix sensitivity elements
This fact will be demonstrated in this work. Such relations
will be shown to hold in general in the framework of sta
tistical subordination at critical regimes. The general for-
mulas for sensitivity propagators are derived in Sec. II.
Sections III and IV are devoted to the specialization of the
results in order to obtain the power spectra for the
enslaved variables. The fluctuations of the Xfi's about

the CM need to be calculated consistently. This means
that the second moments are evaluated by averaging using
the time-independent factor Q(Xf ~

X, ) of the probability
density functional P(Xf,X„t). This factor is a Gaussian
peaked at the CM and it is parametrically dependent on
the X„s since it represents a conditional probability.
This allows for a continuous fiow of probability about the
CM.

The role of noise precursors on periodic instabili-
ties'4 '6 leading to bifurcations is analyzed with these
techniques. When there exists a separation in the magni-
tude of the Floquet exponents which determine the stabili-

ty of the cycle, a CM reduction becomes possible. In the
case of transcritical bifurcations we prove that when tak-
ing the limit of infinite relaxation time for the enslaving
modes, the power spectra for all the Xfi's converge to one
single distribution. These results confirm the scaling and
self-similarity relations as demonstrated in Sec. III.

The same reduction scheme is applied in Sec. IV to a
damped randomly driven anharmonic oscillator. A de-
tailed derivation is carried out by first reducing the sys-
tem to Poincare normal form in the spirit of the deriva-
tion of Sec. II. The results are in accord with those re-
ported in previous works (cf. Ref. 17).

A close examination of the enslaving modes for this os-
cillator is fully justified since the dynamics representing
many realistic physical systems' ' are reproduced even
for parameter values which depart considerably from the
criticality. Examples of systems equivalent to our study
case in a neighborhood of the codimension-2 bifurcation
are

(a) The oscillatory convection driven by the Soret-
Dufour effect. ' The slowly-relaxing enslaving modes
describe the evolution of the amplitudes of the dominant
velocity mode when the frequency of oscillations is small,
that is, in the regime corresponding to the onset of the
center manifold.

(b) The ordinary differential equation for a single-mode
laser with a saturable absorber. ' lt can be shown (cf. Ref.
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19) that the system is entirely equivalent to the Soret-
Dufour-driven convection problem by means of a linear
transformation of variables. Again one can state that the
dominant mode lies in the center manifold.

II. SENSITIUITY PROPAGATORS
AT THE CENTER M:ANIFOLD

Consider a dissipative system whose evolution is deter-
mined by a semiflow in a Hilbert space I such that the

countable set of eigenmodes QJ's forms a complete set.
Such an assumption has been confirmed in hydrodynamic
problems and in reaction-diffusion systems. ' We shall
assume that the eigenmodes have been labeled so that the
first E modes have as their corresponding coordinates the
slowly-relaxing degrees of freedom. The CM is tangent at
the stationary state to the space spanned by the first K
eigenmodes at criticality.

We shall introduce the following notation:

(P; Ii =1, . . . ,E=set of eigenmodes whose coordinates are the slowly-relaxing degrees of freedom,

I i}'jJ Ij=K + 1, . . .=set of eigenmodes whose coordinates are the fast-relaxing degrees of freedom,

J =set of eigenmodes for the adjoint problem . (3)

The following biorthogonality relations hold:

6)=Ca (4)

X, k
—(tI)k,p ) (slow coordinates, k =1, . . . ,E),

XfJ
——(pt,p) (fast coordinatesj =K+1, . . . ) .

N(n) = set of K-component vectors with

non-negative integer coordinates

(5)

The coordinates for the point p belonging to H are de-
fined by

XfJ
——Xft —— g u~JX

m&N(2)
(13)

dependence accounts for the CM enslauing of the fast
relaxing uariables. This method extends that devised by
Hassard and co-workers for finite-dimensional phase
spaces. '

Accordingly, we write

K 00

p= gX, ;Qt+ g XfJ(X)pq .
i =1 j=K+1

The CM expansion is an analytic expansion, therefore

and norm bigger than n .
The norm of v is defined by

fv/= v;.
i=1, . . . , K

(6)

(7)

In order to provide recurrent relations to evaluate the
u~j's, we expand the h functions in terms of the eigen-
functions:

(14)
We obtain

N(1) DN(2) DN(3) D DN(n —1)DN(n) D (8)

c;(v)=
1 if U;&0,
0 otherwise,

c;(e, ) =&;, ,
I

X=(X, i,X, i, . . . ,X,x),
v "& "2 "scX Xg 1tg 2 j ~ ~ ~ /X' K 0

(10)

A representation commonly encountered in hydro-
dynamics for a point p belonging to the locally attractive
portion of the phase space is given by a series of the form

K
p= gX„g;+ g X"p„.

i =1 v&N(2)

Such a representation is not an eigenfunction expansion.
The elements p„will be called the h functions; they are
orthogonal to the set defined by relation (1) and they obey
inhomogeneous equations worked out in detail in Ref. 20.
Our approach will be different: ioe shall directly obtain
the coordinates XfJ's as functions of the X„'s and
represent the point p ioith an eigenfunction expansion. The

h„j—u„j . (15)

In what follows we shall assume that there is more than
one enslaving variable (E bigger than 1). The case of a
single enslaving mode has been treated extensively (see,
for example, Ref. 5). We shall come back to this situation
in the next two sections. The kth eigenvalue A, k is the
damping constant for the degree of freedom associated to
the kth eigenmode. The equations of motion for orbits in
the CM have the form

X„= g a;,X' .
r&X(1)

Moreover,

gg I —ki5gJ ~

After a relaxation time of the order of

TcM= . sup
j=K+1, . . .

(16a)

(16b)

(17)

we obtain from Eqs. (12)—(16a), to first approximation:

j=K+1

Combining equations (12) with (13) and (11) with (14)
we get
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K

ah pX Qh+ g g g Q a;,X'q/'X ' 'uq jQq ——Q Xghkhph+ g g A~X uq jitlj . (18)
k =1 pEN(1) j=K+1 q'EN(2) i =1 rEN(1) k=1 j =K+1qF N(2)

Hence, we have ah, ——5h A,h which proves relation (16b).
From Eq. (18) we obtain

Ajuq= g (19)
1q (Z)r (1) '

The symbol gq&)v(z) g, ch((() indicates that the sums
are extended over all r, q"s such that

G(t, t')G(t', t")=G(t, t")

is verified when the system is confined to the CM, that is,
for a time scale given by the inequality t" & TzM. Indeed,
when the system is restricted to its locally attractive por-
tion of the phase space, the equations (25}—(27) hold and
therefore relation (28) is valid as well.

The propagators are related to each other according to
the following commutative diagram

q'+r —c;(q')e; =q for all i =1, . . . ,E . (20)

The recursive relations given in Eq. (19) have a starting
point given by the adiabatic elimination method To
lowest order in the X, s and within the situation
described in Eq. (17), the uq j's are determined from the

approximation Xfj-0 which leads to

(s,i), (s,i)
Mj;(t)

(fj), (s,i)

Qc. j jj (21)
(s, t), (f,n) = (fj), (f,n)

M&, (t)
The reader is referred to Secs. III and IV for specific cal-
culations.

In order to determine the propagation of a perturbation
along the center manifold, we need to evaluate the Green-
function sensitivity elements given by the derivatives

'(}Xh;(t)
6(h f)(uj)(t,t')=', h, u=sor f, ij= 1

(3Xu j(t')

(29)

The symbol (h, i), (m,j ) denotes G(h;) ( j)(t,t'). The ar-
rows can be reversed and such an operation corresponds
to multiplication by the inverse of the quantity indicated.
The word "commutative" in the previous paragraph
means that the following paths are equivalent:

subject to the following restriction,

&&& &TcM .

For convenience we define

(22)

(23)

(s, t'), (s i )~(fj ), (s,i)~(fj ),(f,n),

(s, i), (s, t')~(s, i),(f,n)~(fj ),(f,n)

III. CENTER MANIFOLD
FOR A PERIODIC INSTABILITY

(30)

Mjg(t)= (24)

Making use of Eq. (24), we obtain the following relations:

A, (t —t')
6(f j) („)(t,t'}=Mjt(t)H(t t')e '—

Here H is the Heaviside step function:
I

6(, ;) (f j)(t,t') =[Mj l(t'}] 'e ' H(t t') . —

And also

(25)

I

6(fj ) (f )(t, t') =Mj; (t)[M„;(t')] 'H (t t')e—

Equations (25)—(27) exhibit the scaling and self-
sirnilarity relations. The multiplicative laws among the
Green-function coefficients are satisfied. Indeed, one can
verify that

G(h i) („j)(t,t )G(ui)(mn)(t t , ), ,6(hi)(mu)(t t, , ,

where t & t' & t" and h, u, m =s or f and i j,n = 1, . . . .
The general group property for the multiplication of

the Green-function matrix, given by

X„=e ' F(t) i =1, . . . , K . (31)

We assume that, after a time rescaling, F(t) is periodic
with period 2m. To fix the ideas, we shall concentrate on
the case of a transcritical bifurcation. That means E =1
[we therefore drop the subindex i in Eq. (31)] and also the
following relation holds:

lim Imi, 1
——0 .

Re A, 1~0
(32}

The CM expansion given in Eq. (13) takes the simple

The Floquet exponents associated with a periodicity in
dissipative systems determine the stability of the orbit in
phase space. The mean relaxation time for the modes of
the transient response problem are thus given by the re-
ciprocal of the absolute value of the Floquet exponents.
We shall assume that all the Floquet exponents are in the
left-hand side of the complex plane and examine the sys-
tem right before the onset of the bifurcating instability.
The results hold when there exists a separation of time
scales. The coordinates associated with the slowly-
relaxing eigenrnodes are given by
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Xf J
——g u„JX,", XfJ -O(X,"j), nj )2 . (33)

The second moments for the fluctuations about the center
manifold are given by

fJ (Xf——J Xf~—) =(XfJ
—Xg J) (34}

The averages are taken over an ensemble of realizations of
5-correlated Gaussian white noise which is taken as the

precursor for the unfolding of the bifurcation (cf. Ref.
14).

The calculation of the quantity defined in Eq. (34) is
carried out by factorizing the probability density function-
al into time-independent factors for the fast-relaxing vari-
ables and a time-dependent factor for X,. The validity of
this procedure has been established. ' It holds under the
restriction imposed by Eq. (17}.

The time-independent factor corresponding to Xf 1 is
given by

0 I i I i

I 2 g 4
X2

f

FIG. 1. Plot of the average second moment f~ versus the
c.m. coordinate X~ . The choice of the parameters is as in Fig.
2. The fast variable fluctuates about the c.m.

g(xf, ~Xg)

=[LJ(X,)]'~ n '~ expI LJ(X, )[—XJ —Xq(X, )] ],
(35)

SJ(co)= (f~j)~2nj
~

A, i ~

y g g„I[nj ~A, i ~

+(co—n) ] )
'. (42)

fj f dXf J(X——f J Xf~ ) Q—(XfI ~
X, ) . (37)

This formula will be used to obtain Fig. l.
A plot of the second moment as a function of Xf &

is
given for the case presented in Sec. IV. Note the growth
of the fluctuations at criticality. This plot can be com-
pared vis a vis th-e -work given in Ref. 22 dealing with
fluctuations at criticality.

The autocorrelation function is given by
T

C~(r)= lim f MJ(t+r)M~(t) 'e "fjdt
T~ce . 0 J J (38)

Since we have only one slow variable, we have also
dropped the subindex i in Eqs. (24)—(30).

From relation (33},at the adiabatic approximation lim-
it, we get

LJ(Xg)=(Rekg)/NJ+O(X, ), (36)

where N& is the intensity of the jth component of the
noise. The distribution is a Gaussian peaked at the CM
with a width which is dependent on the position in the
CM.

Then we obtain

As a consequence of the scaling relation (27) we have for
a/I j's

+ ce

lim S (co)= g 5(co n) . —
A, -+0

1 n = —co

(43)

IU. AUTOCORRELATION IN THE CENTER
MANIFOLD FOR A RANDOMLY DRIVEN
ANHARMONIC DAMPED OSCILLATOR

The results obtained in Ref. 14 show that the power
spectrum for the autocorrelation of any fast variable is a
sum of the Lorentzians peaked at the same frequencies as
the ones given in relation (42). We have thus arrived at
the same power spectra applying the CM reduction and
demonstrated that the fact that they are given by sums of
Lorentzians peaked at the saine frequencies for any fast
variable is a consequence of the simplified nature of the
Green function as given by relation (27) which accounts
for the contraction in phase space. It follows that in the
infinite relaxation-time limit, all the spectra will converge
to one single line spectrum as given by relation (43). This
is so since the exponential decay in the autocorrelation [as
given by Eq. (39)] becomes unity.

CJ(~)=(fj ),qe ' ' G(r),
where G(r) is given by

'n- —1

G(r)= lim —f1 T I'(t+~)
dt .

T T O F(r)

Therefore, we get

G(~)= g g„e'"'.

(39)

(40)

(41)

In this example we only have one enslaving variable
given by

1
X,=X——X,

X=position coordinate,

P=damping constant,

and one enslaved (fast-relaxing) variable:

The power spectrum can now be obtained by Fourier
transforming the autocorrelation function. It is given by

1
Xf———X, (4S}
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X, =aX+PX+AX'+BX'X,

0 1
g'(t)=T

g ( )
=

p gf(t)
r

A,B,P«;

(46)

The transformation T defined by Eqs. (44) and (45) cor-
responds to the shift from the position-momentum repre-
sentation to the X, —Xf representation which is in the
Poincare normal form (for a general derivation of such
transformations see Ref. 10).

The deterministic equation is

v'~ a
~

=660 rps, B =0, N =7000 s

q=1.5, 5=0.33 .
The behavior of the fluctuations about the CM in the re-
gion near criticality can be correlated very well with fluc-
tuations in the order parameters in the sense of Haken
(the reader can compare Fig. 1 with a plot for the order
parameter given in Ref. 22.)

The autocorrelation function is given by
r

C(r) = lim f ——
2 [X,(t +T)]

T1 3A

T ~ 0 T p

With this particular choice of the noise g'(t) we make sure
that the time scale for the fluctuations is comparable to
that of Xf in the X, —Xf representation (cf. Ref. 5).

The theory developed in Sec. II applies to the system in
Poincare normal form:

x —,[X,(t)]'

(52)

X,

Xf

—a/p 0 Xs

0 P Xf

(()(X„Xf) 0
$(Xg Xf ) gf (t)

P(X„Xf) = —(A /P)X,' [B+—3A /P]X~Xf

—[2B+3A/P]X,Xf [B+A/—P]Xf .

(47)

From the adiabatic approximation, it follows that the
propagator defined by Eq. (27) is

Gff (t, t') = — [X,(t)]'+0[X,(t))

x —,[X,(t')]'+0[X,'(t')]

+exp (t t')— (48)

assuming t & t' Since .we intend to do an explicit calcula-
tion, the quantity I. as defined in Eqs. (35) and (36) needs
to be calculated We ge.t

The corresponding spectral density is obtained by the
standard Fourier transform of C(T). The location of the
peak and the shape of the plot as exhibited in Fig. 2 are
remarkably close to that obtained with the analog com-
puter simulation as described below.

The choice of the parameters given in the caption for
Fig. 2 was made so that the data for the ratio of the fun-
damental frequency over the effective linear frequency is
available from Ref. 17. In our case, the effective linear
frequency as obtained from a self-consistent statistical
linearization is approximately 690 Hz. We predict that
the peak in the spectral density occurs at 710 Hz in very
good agreement with the computer simulation experiment
and with the statistical linearization prediction. The value
of the spectral density estimated from our calculation is
—21 dB. The computer experiment yields —19 dB and
the statistical linearization, in contrast, predicts a sharper
peak at —16 dB. In the low-frequency regime our predic-
tions are approximately 1—2 dB above those given by the
statistical linearization. This is due to the fact that our
calculations do not involve an effective linearized poten-

~(X )
P —B —(3A/P) (Xi)
N N (1/2)

(49)

Since the results will be tested Uis-a-vis those obtained
from an analog computer simulation given in Ref. 17, we
shall introduce the following dimensionless parameters
(cf. Ref. 17}:

AN/2 P v'ia
i

Pa' ' 2&
i
a

(

' (1/2)N

The first one can be regarded as a nonlinearity parameter
and the second one, as a damping parameter. Equation
(13}for this particular case reads

-20—

lOOO

Xf=-( ,'N hP q ')X, +O(—Xg) . (51)

The plot displayed in Fig. 1 was obtained using the
working equation (37), together with Eqs. (49)—(51) and
using a distribution of the form given by Eq. (35). In ac-
cord with Ref. (17), we chose the resonant frequency

FIG. 2. Spectral density plot obtained by means of the fast-
Fourier-transform algorithm and the working equation (52).
The parameter values are resonant frequency =660 rps; 8 =0;
X =7000 s '; g=0.5; 5=1.
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tial, which is smaller at low frequencies than the rigorous
potential (the regime under consideration involves fre-
quencies below the effective value obtained by statistical
linearization. ) At frequencies higher than the effective
value the three methods show very good agreement since
the power spectrum differs in less than 1 d8 from one
method to another.
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