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A linearized theory of fluctuations for absorptive bistability based on the positive P representation

is developed without adiabatic elimination of the atoms or the field. An analytic expression for the

steady-state covariance matrix is derived from which the size of quantum-statistical effects can be

estimated without restriction to the good- or the bad-cavity limit. When the atom and field relaxa-

tion rates are similar the intensity correlation function of the transmitted light exhibits an oscillatory

relaxation associated with vacuum Rabi splitting.

I. INTRODUCTION

The extensive literature on fluctuations in absorptive bi-
stability is restricted almost exclusively to treatments in
the good-cavity and bad-cavity limits. These limits sim-

plify the analysis by allowing for the adiabatic elimination
of the atoms or the field, thus reducing the dimensions of
the mathematical description. Experiments may not find
these limits so convenient, however. For example, recent
experiments on absorptive bistability using optically
prepumped sodium atomic beams have an atomic decay
rate just two or three times faster than the cavity decay
rate. These experiments achieve good quantitative agree-
ment with the theory for homogeneously broadened two-
level atoms, and it now seems feasible to move to mea-
surements of quantum-statistical effects. ' Such mea-
surements will require adherence to very restrictive experi-
mental design. Consider photon antibunching as an exam-
ple. Atomic lifetimes are short in the optical regime
and the most manageable time scales are then found in the
good-cavity limit. However, the predicted effect is very
small in a large system. This calls for a small-cavity
design where a decay rate only slightly slower than the
atomic decay rate is all that can reasonably be achieved.
Since design for the smallness of the effect is so critical,
factors of two or three in estimating its size are impor-
tant. It is not sufficient to merely observe that the effect
varies inversely as the saturation photon number n, or the
number of interacting atoms N. These are related by
n, =E/4Cls, where C is the bistability parameter and p is
the ratio of cavity and atomic linewidths. They can differ
by orders of magnitude and it is necessary to have all of
the factors of C and )M in place for an accurate estimate.
Existing theories cannot provide this precision for p —1.
These considerations have motivated the present work in
which I develop a linearized quantum-statistical theory of
absorptive bistability without adiabatically eliminating the
atoms or the field.

Aside from providing quantitative precision between
the good-cavity and bad-cavity limits, my general treat-
ment reveals one notable new feature which is missed in
both of these limits. When the atomic and cavity decay
rates are similar the relaxation of fluctuations can be os-
cillatory for arbitrarily small intensities, and exact reso-

nance of the driving field, cavity, and atoms. These oscil-
lations are displayed in the intensity correlation function
of the transmitted light and will give rise to a doublet in
the incoherent component of the transmitted spectrum.
They arise from the so-called vacuum Rabi splitting, '
where the degenerate first excited state of the composite
system of atoms and cavity mode is split by the atom-field
interaction. There are no Rabi oscillations in the popula-
tion inversion, but the normal modes of the coupled field
and atomic polarization are moved from resonance with
the driving field; hence the oscillations in field charac-
teristics. I give a novel treatment of this effect in terms of
a coupled harmonic oscillator model derived using the
Schwinger representation. This treatment demonstrates
the role played by atomic and cavity decay in vacuum
Rabi splitting for the first time. "

In the following section I briefly review the model for
absorptive bistability and the methods of the positive P
representation which are used to obtain a quantum-
statistical formulation in terms of a linearized Fokker-
Planck equation. In Secs. III and IV I solve for the
steady-state covariance matrix and find expressions for
the ratio of incoherent and coherent intensities, the
second-order correlation function, and the variance of
fluctuations in the field quadratures for the transmitted
light. Section V discusses the oscillation associated with
vacuum Rabi splitting and the coupled oscillator model
for this effect. Section VI provides a summary and con-
clusions.

II. MODEL AND LINEARIZED THEORY
OF FLUCTUATIONS

I consider a collection of N homogeneously broadened
two-level atoms interacting on resonance with a single
quantized ring-cavity mode

E(z, t)=ie(ficoo/2eoV&)'~ [a(t)e a(t)e ], —

(2.1)

where a~ and a are creation and annihilation operators
for cavity photons, coo is the resonant frequency,
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ku =cpu/c, e is a polarization vector, V{2 is the quantiza-
tion volume, and eo is the vacuum permittivity (SI units
are used); the atoms are described by pseudospin operators
cr'+, a„j= 1, . . . , N, for each atom, and collective atomic
operators

+kzJ+= g e Oja'+,
j=1

(2.2a)

(2.2b)

with commutation relations [o+,o ]=2o,5jk and
[u'+, cr, ]=+a+Sik. The cavity mode is resonantly excited
by the incident field

E(z t)=ew';e ' ' +c c (2.3)

N

+-, y X(2+ p++ —+++ p —p+++-)

+z(2apa —a ap —pa a), (2.4)

where p is the density operator in a frame rotating at the
frequency coo, y is the atomic decay rate, Ir is the decay
rate for the cavity field,

g =(couu /2irieuVg)' (2.5)

is the atom-field coupling constant, with p=e p the
atomic dipole moment, and

g'= —i(2eoV~/Acou)'~ e (~TW/n)8'; (2.6)

is a real driving field amplitude, where W is the cavity
finesse, T is the input mirror transmission coefficient, and

PT is the phase change on transmission at the input mir-
ror.

I use the positive P representation, ' in which Eq. (2.4)
is converted to a Fokker-Planck equation, and then to
equivalent Ito stochastic differential equations:6'

da = —,p( —a+ 2Cu + Y)dr,
da, = —,

'
p( —a, +2CU, + Y)dr,

du = —,'( —u+am)dr+N 'i (au)' dpi,
du~ =

2 ( —U~ +a~m)dr+N (a~u~ ) dWi

dm =( —m —1 ——,av, —2a„u)dr1 l

+(N/2) ' (m+1 ——,'au, ——,a, v)'i dIVi,

(2.7a)

(2.7b)

(2.7c)

(2.7d)

(2.7e)

where dS'1, d8'2, and d8'3 are independent Wiener pro-
cesses;

where N'; is a complex amplitude. Each atom is radia-
tively damped by spontaneous emission to modes other
than the privileged cavity mode and the cavity field is
damped by losses at partially reflecting mirrors. Then the
system of atoms plus cavity mode is described by the mas-
ter equation

=g'[at —a,p]+g[a J —aJ+,p]

r=yt, @=2'/y, C =Ngi/icy,

I'=n, (8'/a), with n, =y /8g

(2.8a)

(2.8b)

v=am, u, =a,m, m = —1/(1+a,a),
where a =a, and a,a satisfies the cubic equation

a,a[1+2C/(1+a, a)] = I'

(2.10)

(2.1 1)

Here the overbar denotes the steady state. As tT, a can be
complex in this formalism there are actually three
steady-state solutions in the ten-dimensional space for all
values of C and Y; However, physical realizations of Eqs.
(2.7) have (a, ),„=(a),'„, (u, ),„=(u),'„, and (m),„=(m),'„.
Then for physical steady states,

a=a~ =X, V=V~ =Xm, m = —1/(1+X ), (2.12)

X[1+2C/(1+X')]= I', (2.13)

where X is a real field amplitude. For small noise
(N »1) I linearize Eqs. (2.7) around the physical steady
states, writing

(2.14)

iI =(a,a„u,u„m) T (2.15a)

g =(XX, —X/(1+X'), —X/(1+X'), —1/(1+X') )T,

$=(ba, ha„bv, hv„bm )

(2.15b)

(2.15c)

Here T denotes the transposition. Then g obeys the linear
equations

dg=A fdr+BdW', (2.16)

where

and complex variables (a,a„u,u„,m) lie in one-to-one
correspondence with system operators, such that normally
ordered averages in the rotating frame are given by

( tn mJP JiJij )

=n,'"+ ' (N/~2)P+~(N/2)"(a", a u~m "u~),„, (2.9)

where ( ),„denotes an ensemble average over the ten-
dimensional stochastic process defined by Eqs. (2.7). The
more familiar methods which derive such a quantum-
stochastic formulation on the basis of the Glauber-
Sudarshan-Haken representation' obtain Eqs. (2.7) with

a, =o.', U, =U', and m real. However, this symmetry is
not preserved. First, since dW, and

diaz

are independent
the noise terms in Eqs. (2.7c) and (2.7d) are not complex
conjugate. Also, m+1 ——,au* ——,a'u can be negative,

and therefore the noise term in Eq. (2.7e) can become
complex. The difficulty arises from non-positive-definite
diffusion in the associated Fokker-Planck equation. As
written, the ten-dimensional system defined by Eqs. (2.7)
has positive-definite diffusion. It is rigorously derived by
generalizing the usual nonanalytic characteristic function
to one analytic in five independent complex vari-
ables 6, 12, 13

In the absence of noise (N~ oo ) steady-state solutions
to Eqs. (2.7) have
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—p
0

A = —,
' —1/(1+X )

0
X/(1+X')

0 Zpc
—p 0

0 —1

—1/(1+X') 0

X/(1+X ) —X

d W = (0,0,d Wi, d Wz, d W~ ) (2.17)

0 0

ac 0

0 X
—1 X

These are the usual formulas which would be obtained
from the Glauber-Sudarshan-Haken representation. The
fact that D =BB represents a non-positive-definite dif-
fusion can simply be overlooked.

III. STEADY-STATE CORRELATIONS

(2.18}

8=IiI '~X(1+X )
'~ diag(0, 0,i,i, 2) . (2.19)

G(r) = [g(r)[g(0)] ),„
can be calculated in a five-dimensional space:

(2.20)

Equations (2.16) are defined in a ten-dimensional real

space. However, we are only interested in the moments
appearing in Eq. (2.9), hence in moments of the complex
variables gi, gq, . . . , g5. We are not interested, for exam-

ple, in (gfPi),„—although this average contributes to
(gi),„=[(gj+ig~i}],„. It is then readily shown that in the
stationary state the physical correlation matrix

A 6„+G„A~=—BB~,
A Gy+Gy 3~=0,

where

G=G„+iGy .

(3.1a)

(3.1b)

(3.2)

Equation (2.22) defines a set of 15 linear equations for
the elements of the covariance matrix G. Since the fluc-
tuations g are Gaussian distributed, moments of all orders
can be calculated once these equations have been solved.
This problem is tractable analytically, at least in this ab-
sorptive case. Since A and D=BB~ are real, the 15
equations decouple into a set of nine equations for the real
part of G and a set of six equations for its imaginary part:

G(r) =AG(r), (2.21)

Ag+GA ~= —BB~ . (2.22)

where the steady-state covariance matrix G—:G(0) satis-
fies'

The homogeneous equation (3.1b) inust have the trivial
solution Gz ——0, which leaves only the nine equations of
Eq. (3.1a) to be solved. The calculations are tedious so I
go directly to the results: (1) Field-field correlations

The spectrum of fluctuations is given by

G(co) =(2~) ' J dre ' G(r)

=(2m. ) '(A i~I) 'B B—r(A r+ia)I) ' . (2.23)

n, '(6 aha)=X A, ,

n, '(ba ba ) =X (A, —P),
(3.3a)

(3.3b)

P ~ 2C P
1

X
p+1 F (3.4)

X dI'
dX

(@+3) 1+X +p 1+——2 1 F
2 X

—p(1+X )

(@+3)(2—X )+p(1+X ) X
(3.5)

(2) Atom-field correlations (3) Atom-atom correlations

(X/i/2) (hJ+ b J ) =(2C) X (k+p 'Q}, (3.8a}

,-n'"(I)/V~2)-'(aa m+) =(2C)-'X'X,

n,
' (E/~2) '(ba b J ) =(2C) 'X (A. —P),

n,
' (E/2) '(ha M, ) =(2C) 'X —k —Q

(3.6b)

(3.6c)

(N/~2)-'(M b,J )

=(2C) X AP+p '
Q —

,
—P-Y
X

(3.8b)

where

Q =(p+3) 2(1+X ) A, +X ——2 P
dX X

(3.7)

(X/v 2)-'(X/2)-'(aJ, SJ &=(2C)-'X —&+p-'Q,Y

(3.8c)
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(E/2) (hJ, b.J, &

T

=(2C) X ———2 A, — ——1 Q
Y Y

X X X

+2 P—p —Q 2 —P-Y ) Y

X X (3.8d)

where a and P are each either +, —,or z. Like-atom
correlations can be calculated directly from the steady-
state averages

(0' &
= —(I/2v 2)X(1+X')

In these expressions I'/X and d F/dX are calculated from
Eq. (2.13).

This analytic solution is algebraically complicated and
there is little to be gained from a detailed dissection of
these results. A number of general observations can use-
fully be made, however. First, note that A, is proportional
to (dI'/dX) '. It appears in each of the moments,
guaranteeing that all diverge at instability points
dI'/dX =0. Then the good- and bad-cavity limits can be
taken formally in these expressions. By considering these
limits we gain soine idea of the structure of the general
solution and the way in which quantum noise scales with
system size. First the good-cavity limit. The results ob-
tained with adiabatic elimination of the atoms ' ' are
recovered from Eqs. (3.3) for p, «1, Cp «3. The re-
quirement Cp «3 is imposed by the terms p Y/X and
pdI'/dX in Eq. (3.5). It reflects the increased decay rate
(I+2C)i~ which governs field dynamics at weak intensi-
ties where the unsaturated absorber spoils the cavity. In
the good-cavity limit A, , P, and Q are all inversely propor-
tional to n, =X/ 4', which then governs the scaling
with system size. Since n, »X if the requirement
Cp «3 is to be met, the fluctuations are smaller than in-
dicated by a scaling with X '. Note, however, that the
scaling with n, ' applies only to Eqs. (3.3) and (3.6). The
dominant terms in Eqs. (3.8) are those in p, 'Q and p, 'P.
Atom-atom correlations then scale as N '. This can be
appreciated by considering the adiabatic elimination of
the atoms from Eqs. (2.7). Observe that the noise sources
drive the atomic variables both directly and indirectly via
coupling to the field. Then the two terms in each of Eqs.
(3.8)—proportional to p and otherwise —have distinct
origins. The dominant terms, in p 'P and p 'Q, which
scale as E ', come directly from the atomic noise
sources. The terms in A, , P, and Q, which scale as n, ',
come from the fluctuating field to which the atoms are
slaved, i.e., from fluctuations passed from the atomic
noise sources through the field and back to the atoms.
The significance of these two terms is illuminated further
by dividing each correlation function into contributions
from like-atom and unlike-atom correlations:

(m m&&=X(~H aH&&+X(X —1)(a+ a~&+J&,

(3.9)

whereby it can be shown that the dominant terms in Eqs.
(3.8), scaling as E ', come from like-atom correlations,
and the terms scaling as n,

' come from unlike-atom
correlations. This is not surprising since communication
between different atoms must be mediated by the field.
From this observation it follows that atom-atom correla-
tions are negligible in the good-cavity limit ( n, »N). '

Finally, the bad-cavity limit. Results obtained with
adiabatic elimination of the field ' ' are recovered from
Eqs. (3.8) for p»3, p»2C (to guarantee p 'I'/X«1
for weak fields), and lu »X (to guarantee p, 'Q «A, for
strong fields). The requirements p»2C and p»X,
respectively, reflect the need for the field to adiabatically
follow the collective atomic decay rate (1+2C)y/2 for
weak fields and the Rabi frequency yX/v 2 for strong
fields. Adiabatic elimination of the field sets
n, '~28 a =2C(N/V2) 'hJ . Thus correlations involv-
ing field and polarization operators should be related by
multiples of 2C. This relationship is correctly reflected
by Eqs. (3.3a), (3.3b), (3.6a), (3.6b), (3.8a), and (3.8b). In
the bad-cavity limit A, , P, and Q are all proportional to
2C/N and the fluctuations scale as E

IV. INCOHERENT INTENSITY, PHOTON
ANTIBUNCHING, AND SQUEEZING

Moments of the cavity field fluctuations are calculated
from Eqs. (3.3)—(3.5). A number of analytic expressions
can be obtained which generalize earlier results for the in-
coherent intensity, ' ' photon antibunching, and
squeezing. I summarize these here.

The incoherent spectrum for the transmitted light is
given by G(co)zi, which can be computed from Eq. (2.23).
Spectra for arbitrary values of p can readily be obtained
numerically. The integrated spectrum is just the in-
coherent intensity, given by Eq. (3.3a). The ratio of in-
coherent to coherent intensity is a useful measure for as-
sessing the possibility of measuring interesting spectral
features against the background of strong coherent
transmission. From Eqs. (3.3a), (3.4), and (3.5),

I,„,/I, .„=n, '&b,a'&a &/X'-
p X

)
X

p+& 1+X'

(p, +3)(2—X )+p(1+X )

—p(1+X )
dY(p+3) 1+X +p 1+——2 1 Y

2 X
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Of course, with the divergence at d F/dX =0 an arbitrari-

ly large incoherent intensity is indicated for a close

enough approach to instability points. However, this is

not to be trusted as the divergence evidences failure of the
linearized theory. A fully nonlinear theory based on the
numerical simulation of Eqs. (2.7) will be discussed else-

where. '7

Photon antibunching and squeezing in absorptive bista-

bility are intimately related. ' Squeezing occurs in the
field quadrature in phase with the driving field. The self-

homodyning of squeezed amplitude fluctuations produces
photon antibunching after the fashion used in the detec-
tion of squeezed light. ' The normalized second-order
correlation function for the transmitted light is given by

g(2i(0) &(at)2a2&/& 'ta &2

=1+(n,X +&6 a 5 a&) rn, X 4&:(bAi):&+2n,'~X[&(hat) ba&+c.c.]+&(ba ) ba &
—&ba" ba& I,

(4.2)

where:: denotes normal ordering and A i
———,

' (a +a). In

this linearized theory the third-order moments are zero
since fluctuations are Gaussian; furthermore, all higher-
order terms must be dropped for a consistent treatment of
fluctuations to lowest order. Then

4&:(bA i):& =n, X [g' '(0) —1]
r

=X (p, +1) 4Iinc /Icoh

g' '(0)=1+4n '& (b,A )~ &/Xi (4.3)

X
1 ——

Y
(4.6)

where, from Eqs. (3.3) and (3.4),

4n, '&:(hA, )'.&IX'=4I;„,/I„„

~—14C P
@+1 Y

(4.4)

1 —X/F =2C/(1+X +2C)

is maximized for X =0, the maximum antibunching ef-

fect is given by

lim g' '(0)=1—N '4C
X2 0 p+ 1 1+2C

(4.5)

Squeezing is indicated by a negative value for
&:(hA i ):& and hence its obvious correlation with photon
antibunching in this system. Unlike photon antibunching,
however, it is not maximized for X ~0. Squeezing de-

pends on absolute photon number. It is impossible to
have large squeezing and small mean photon number be-

cause reduced quantum fluctuations in one field quadra-
ture are required by Heisenberg uncertainty to be accom-
panied by increased fluctuations in the other quadrature,
thus,

with

&(&A )'&((—,
'

— - &(b,A, )'&)) —,
' &Aatb, a&))1.

From Eqs. (4.3) and (4.4)

As I;„/cI«hmust be positive, and vanishes for X —+0,
while

which clearly vanishes for X =0. Equation (4.6) serves
to illustrate a further point arising from this dependence
of squeezing on photon number. The term in square
brackets is independent of overall scalings with p and N,
the only important scale factor being the (p+ 1) ' outside
the bracket, This suggests that squeezing is necessarily a
much smaller effect in a bad cavity (iu+ l~iu))1) than
in a good cavity (p+ 1~1). However, this observation is
misleading. The scaling with p

' in a bad cavity simply
reflects the reduced photon number inside a cavity which
permits ready photon escape. Squeezing will be detected
at a photodetector outside the cavity where it is the prod-
uct of photon flux at the detector and photon counting
time that is important. The quantity Q which character-
izes the subpoissonian statistics in a homodyne detection
scheme outside the cavity' is given by

Q = ri(2Kp) T4&:(b A i ):&

=riy TKp(Kp+K; ) '4P &:(bA i ):&, (4.7)

where ri is a collection efficiency, T is the counting time,
and 2xo and 2x; are introduced as photon escape rates
from the cavity through the output and input mirrors,
respectively, with ~=so+a;. This result is valid for short

counting times and can be generalized to arbitrary T in an

expression which involves integration over time-dependent
field correlation functions. Notice that from Eqs.
(4.6) and (4.7), if we take K; ((Kp K, the only change in

the overall scaling of effects going from a good to a bad
cavity is the change 2~T~y T. In the bad cavity we must

count for a time set by the atomic time scale, not the
much faster cavity time scale, to obtain a comparable
number of photon counts; correlated photons are available
over this longer time. The meaningful comparison be-

tween the the good- and bad-cavity limits is that between
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Qlr12aT and Qlqyr*. From Eqs. (4.6) and (4.7), in the
good-cavity limit,

Qlrt2xT = —2CX (1—2X )[(1+X ) +2C(l —X )]

where Eqs. (3.3b) and (3.6b) give, respectively,

G'(0)= —X-'2C "
@+1 1+2C ' (5.4a)

while in the bad-cavity limit,

Q/gyT = —2CX (1—X )[(I+X ) +2C(l —X2)]

(4.8)

(4.9)

G3)(0)=(2C) 'Gii .

The solution for g' '(r) is then

lim g' '(r)=I N—'4C 2C

g2~0 p+ 1 1+2C

(5.4b)

Both of these expressions give their maximum squeezing
for large C. From Eq. (4.8) the maximum effect occurs
for X =2—~3 with

Xe ~+, cosh', v + sinhOx
+1

4Q

Q/r12xT= —
z (2—v 3)=—0.134, with

(5.6)

which agrees with the minimum ((b,A
&

) )=0.22 reported
by Lugiato and Strini. From Eq. (4.9) a maximum effect
Q/rIy T= —1 occurs just below the turning point on the
lower branch, X &1. This is a much larger effect. In
fact, it is the result for a cavity with photon escape rate y
containing a field which is perfectly squeezed. It should be
compared with the maximum squeezing Q/re T= ——,

'
in

resonance fluorescence. Of course, Q calculated from
Eqs. (4.8) and (4.9} is necessarily small since the short
counting time result, Eq. (4.7), requires 2xT« 1 and

y T « 1. However, this result for the bad cavity suggests
that large squeezing will be attainable for longer photon
counting times. A detailed investigation of this possibility
requires the solutions for time-dependent correlation func-
tions [Eq. (2.21}]. In the next section I obtain such solu-
tions for weak fields, but not in the general case. Further
study of squeezing is postponed to a later publication.

V. PHOTON ANTIBUNCHING
AND VACUUM RASI SPLITTING

Photon antibunching is maximum in the weak-field
limit where it is straightforward to calculate the full
time-dependent correlation function

The decay of this correlation function is oscillatory for
p, C&(p, —1) /8 as illustrated by Fig. 1. In the good-
cavity limit (p, «2, pC«2) Q=(l —p)/4 —pC, and in
the bad-cavity limit (p»4, p »8C) Q=(p —1)/4 —C.
Here we recover the results previously derived with adia-
batic elimination:

lim g' '(t)=1 n' — e ""+2C"2C
x20 ' 1+2C

(5.7a)

llm g' '(t)=l —X '4C e " ' "+ ", (5.7b}
y& 0 1+2C

respectively. Thus, this oscillatory behavior is a new
feature made possible by the interplay of near equal cavity
and atomic decay rates. The existence of such behavior in
a coupled system with competing decay processes needs
no explanation as a general phenomenon; certainly an
equation such as Eq. (5.3) might be expected to yield com-
plex eigenvalues. However, can a more satisfying physical
explanation be given for this specific system7 These are
not Rabi oscillations in the familiar sense since we have
taken X ~0. Neither is this the familiar oscillatory

g' '(~)=1+n, 'I(ba (~)ha{0))+(ba (0)ba(r))

+2Re[(b a(r)ha(0) ) ] J /X

=1+ j G2~ (r)+ 6~2(r)+2Re[G~ ~(r)] I /X

In this section I calculate g' '(r) for the limit X ~0 and
demonstrate that an oscillation which arises for p- I has
its origin in the so-called vacuum Rabi splitting. '

The correlation functions G2&(~), G&z(~), and G~, (r)
are calculated from Eq. (2.21). Writing

-1.5
I

-3.5Q)

Z.

G,~ ——lim 6,)/L
X2-+0

wefmd Gz&{r)=G&2(r)=0, while G» satisfies

(5.2)

0G 11 I
—p 2pC

de 631 2

0611
GO

31
(S.3) FIG. 1. Second-order correlation function of the transmitted

light for C =4.0 and p= I.O.
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response in the presence of detuning, ' as both atoms
and cavity are driven on resonance. On the other hand, as
it turns out, this oscillation is indeed closely related to
both of these effects. Its origin lies in the so-called vacu-
um Rabi splitting, ' as seen from the following simple
model.

The correlation functions in Eq. (5.3}are

G»(r) =n, '(Aa(r)ba(0) ) /X~

G, (r)=n, '~ (Nlv 2) '(bJ (r)ba(0))/X'.

In dimensioned variables we have

Then Eq. (2.4) becomes the master equation for coupled
damped harmonic oscillators:

dt
= g'[a —a,p]+gv N [a b ab—t,p]

+ 2 y(2bpb b—tbp pb—tb )

+a(2apa —a ap —pa a) . (5.11)

Clearly the equations for (a ) and (J ) =~N (b) lead
via the quantum regression theorem to Eq. (5.8). Now in
the absence of damping these oscillators are decoupled by
the introduction of normal modes

(ba(t)da(0) )
d, (aJ (t)aa(0))

g (ba (t)ba (0})
(LLJ (t)ha(0) ) (S.g)

A =(a +ib)Iv 2, 8 =(a ib)/v—2, (5.12)

whence

g~N [a tb ab, p]—= igV N—[A A,p]+igv N [8tB,p] .

(5.13}
which arises from an underlying dynamic which couples
quantized field and polarization oscillators b,a and M
For a simple picture of these oscillator dynamics I return
to the original master equation [Eq. (2.4)] and introduce
the Schwinger representation:

J+ ——b c, J =bc (5.9a)

J,=(b b ——,'N}, N =b b+ctc,

Equation (5.11) is defined in a rotating frame. The fre-
quencies of oscillators A and 8 in the original frame are
cllQ+g~N and tao gv N, r—espectively. Therefore, the
normal modes are not resonant with the driving field.
They are moved from resonance by the energy level split-
ting, +Kgb N, which lifts the degeneracy that exists when
oscillators a and b are uncoupled. For weak fields the
first-excited state splitting in this coupled oscillator sys-
tem corresponds to the first-excited state splitting in the
coupled atom-field system. This vacuum Rabi
splitting —wf course, it is not the vacuum state that is
split —is the fundamental origin of oscillation in g' '(r).
The frequencies +i@(—,

' pC)'~ given by Eq. (5.6) for p=l
are just the frequency shifts +ig~N Howev. er, weak-
field level splitting does not give rise to Rabi oscillations
in a radiatively damped two-level atoms. It requires a
strong field X&1/(2v2) before level splitting is evi-
denced by complex dynamical eigenvalues, Clearly the
dissipation is responsible. What is the role of dissipation
here? In terms of normal modes Eq. (5.11) reads

(5.9b)

(5.10b)

with boson commutation relations [b,b]=1, [c,c]=1.
Here b and b create and annihilate atoms in their excited
state, and ct and c create and annihilate atoms in their
ground state. For weak fields only the first-excited state
for the atomic population need be considered and we can
make the replacements

J~ =~Nb, J =v Nb, (5.10a}
N

g (2cr' pa+ a+tr' p pa+t—r' ) =2bpb— btbp pbtb —. —
j=1

dp =(8'/~2)[(A —A)+(8 —8),p] —igv N [A A —8 B,p]

+ ~ (x'+ —,y)(2ApA AAp pA A +—28pB —BBp pBtB)— —

+ —,(a' —, y)(2ApB ABp—pA8+2—8pA —BAp pB—A) . — (5.14)

%'hen @=1 the normal mode oscillators are decoupled
and independently damped with the common damping
constant x = —,

' y. The eigenvalues ——,+i&CI2 Enter-.
ing Eq. (5.5} follow directly. More generally, however,
these oscillators remain coupled through their nonin-
dependent decay (normal modes couple to correlated

reservoirs}. It is this residual interaction which brings the
term (p, —1)/16 to Eq. (5.6) and generally masks the evi-
dence of vacuum Rabi splitting. Actually dissipation
plays a similar role in the familiar problem of a collision-
ally broadened transition driven by a classical field. There
the dynamical eigenvalues
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appear, where yI~ and y~ are longitudinal and transverse
decay rates, respectively. Rabi splitting is evidenced for
arbitrarily weak fields when r~~

——ri. Of course, here X is
a classical amplitude which presupposes the presence of
many photons. Eigenvalues showing single-photon state
splitting are given by more complicated expressions which
must be derived using a quantized Geld.

I have only considered g' )(r) here; however, the same
effects will be evident in the transmitted spectrum. Side-
bands will appear in the incoherent spectrum, symmetri-
cally displaced from the driving field frequency by the
splitting calculated from Eq. (5.6).

VI. SUMMARY AND CONCLUSIONS

I have given a linearized treatment of quantum fluctua-
tions in absorptive bistability without adiabatically elim-
inating the atoms or the field. The steady-state covari-
ance matrix has been derived in closed form. From this,
earlier results for the ratio of incoherent and coherent in-
tensities, photon antibunching, and squeezing have been
generalized to conditions outside the good- and bad-cavity

limits. I emphasize that squeezing is not necessarily very
small in a bad cavity; rather, large squeezing seems possi-
ble in the vicinity of the lower turning point for large
values of the bistability paraineter C. In the limit of low
incident intensities the second-order correlation function
for the transmitted light shows an oscillatory decay for
moderate values of C and near equal field and polariza-
tion decay rates. Corresponding sidebands will appear in
the transmitted spectrum. This phenomenon is related to
vacuum Rabi splitting, with an oscillation frequency cor-
responding to the splitting of the degenerate one-photon
state by coupling between quantized field and polarization
oscillators.

Hopefully the future will see experiments on quantum-
statistical effects in absorptive bistability to match the
wide theoretical attention they have received.

ACKNOW LEDGMENTS

The author thanks Royal Signals and Radar Establish-
ment (RSRE), Great Malvern and the University of Texas
at Austin for visiting appointments during which this
work was partially completed. This paper is based upon
work supported by the National Science Foundation
under Grant No. PHY-8418070.

'For reviews of this work see the articles by L. A. Lugiato, and
J. C. England, R. R. Snapp, and %. C. Schieve, in Progress in
Optics, edited by E. Wolf (North-Holland, Amsterdam, 1984),
Vol. XXI, pp. 69—216, 355—428.

D. E. Grant and H. J. Kimble, Opt. Lett. 7, 353 (1982); H. J.
Kimble, D. E. Grant, A. T. Rosenberger, and P, D. Drum-
mond, in Laser Physics, Vol. 182 of Lecture bootes in Physics,
edited by J. D. Harvey and D. F. Walls {Springer, Berlin,
1983), pp. 14—40; A. T. Rosenberger, L. A. Orozco, and H. J.
Kimble, Phys. Rev. A 28, 2569 (1983); A. T. Rosenberger, L.
A. Orozco, and H. J. Kimble, in F/uctuations and Sensitivity
in Nonequilibrium Systems, edited by W. Horsthemke and D.
K. Kondepudi (Springer, Berlin, 1984), pp. 62—69.

3R. Bonifacio and L. A. Lugiato, Phys. Rev. Lett. 40, 1023
{1978);L. A. Lugiato, Nuovo Cimento B50, 89 (1979).

4L. M. Narducci, R. Gilmore, D. H. Feng, and G. S, Agarwal,
Opt. Lett. 2, 88 (1978); G. S. Agarwal, L. M. Narducci, R.
Gilmore, and D. H. Feng, Phys. Rev. A 18, 620 (1978}.

5F. Casagrande and L. A. Lugiato, Nuovo Cimento 855, 173
(1980).

6P. D. Drummond and D. F. Walls, Phys. Rev. A 23, 2563
(1981).

7H. J. Carmichael, D. F. Walls, P. D. Drummond, and S. S.
Hassan, Phys. Rev. A 27, 3112 (1983).

L. A. Lugiato and G. Strini, Opt. Commun. 41, 67 (1982).
9J. J. Sanchez-Mondragon, N. B. Narozhny, and J. H. Eberly,

Phys. Rev. Lett. 51, 550 (1983).

' G. S. Agarwal, Phys. Rev. Lett. 53, 1732 (1984).
~~After submission of this manuscript, the author has become

aware of a recent related work, J. Seke, J. Opt. Soc. Am. B2,
1687 (1985).

' P. D. Drummond and C. W. Gardiner, J. Phys. A 13, 2353
(1980).

~3The details of this calculation are given in H. J. Carmichael,
Quantum Statistica-l Methods in Quantum Optics (Springer,
Berlin, in press).

'~H. Haken, Encyciopedia of Physics (Springer, Berlin, 1970),
Vol. XXV/2C, pp. 60—71„153—156.

' M. Lax, Rev. Mod. Phys. 32, 25 (1960); C. %. Gardiner,
Handbook of Stochastic Methods (Springer, Berlin, 1982), pp.
109—112.

' The author thanks L. A. Lugiato [Phys. Rev. A (to be pub-

lished)] for sending, prior to publication, results of his own

work establishing this result.
'7H. J. Carmichael, J. S. Satchell, and S. Sarkar (unpublished).
' H. J. Carmichael, Phys. Rev. Lett. 55, 2790 (1985).
9L. Mandel, Phys. Rev. Lett. 49, 136 (1982).

2oR. Loudon, Opt. Commun. 49, 24 (1984).
P. A. Lakshrni and G. S. Agarwal, Phys. Rev. A 29, 2260
(1984).

22H. J. Carmichael {unpublished).
~3D. F. Walls and P. Zoller, Phys. Rev. Lett. 47, 709 (1981).
~4H. J. Kimble and L. Mandel, Phys. Rev. A 13, 2123 (1976).


