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A new scheme for generating an amplitude-squeezed state is proposed. The photon-flux fluctua-
tion of a semiconductor-laser output wave is measured with a quantum nondemolition (QND) detec-
tor, and is negatively fed back to the laser pumping current. The operator Langevin equations are
derived by combining the quantum-mechanical analyses on the laser internal-external field fluctua-
tions, the quantum nondemolition detector based on an optical Kerr effect, and a negative-feedback
circuit. The output wave features a reduced photon number noise below the standard quantum lim-
it, ((b&) ) g(n), and an enhanced phase noise above that, ((bg)i) y —,(n) ', while the

minimum uncertainty product is still preserved. The observed photoelectron statistics in a negative-
feedback GaAs laser diode using a conventional p-i-n photodiode (uot a QND detector) are shown
to exhibit sub-Poissoman statistics with the variance ((bn) ) ~0.26(n ). The measured photo-
current fluctuation spectral density is also indicated to be below the standard quantum limit by a
factor of 0.2 {= —7 dB). The experimental results also confirm that such amplitude squeezing is
only observed inside the feedback loop and cannot be extracted from the loop unless a quantum non-
demolition detector is used.

I. INTRODUCTION

Recently, considerable interest has surfaced in the non-
classical properties of particular photon states. There are
three typical quantum effects which represent the charac-
teristics of these nonclassical photons. The first is squeez-
ing in which the uncertainties b,ai and b,az in the two
quadrature components of the field amplitude are dif-
ferent while the product satisfies the minimum uncertain-

ty relationship ((b,ai ) ) ((ha&) ) = —,', . The second is the
sub-Poissonian photon statistics in which the photon
statistics I'(n) is narrower than the Poisson distribution.
The third is photon antibunching wherein the second-
order intensity correlation function (I(t)I(t —r)) has a
minimal value of r=D.

Figure 1 shows the uncertainty in the ai-a2 space for
several photon states. Here, ai is the cosine quadrature
and a2 is the sine quadrature of the optical wave. Figure
1(a) represents the Glauber coherent state, which is re-
ferred to as a "classical state, " while Figs. 1(b)—1(g) are
nonclassical states.

The quantum-mechanical representation and properties
of a squeezed state (or a two-photon coherent state) have
been extensively studied. ' Tw'o special cases of
squeezed states are shown in Figs. 1(b) and l(c). An "in-
phase squeezed state" involves the reduced quantum noise
along the direction of coherent excitation, which exhibits
sub-Poissonian photon statistics and photon antibunching
as well as squeezing. A "quadrature squeezed state"
features reduced quantum noise in quadrature to the
coherent excitation, which exhibits squeezing only. The
limiting cases of zero and infinite quantum noise in two
quadratures have been referred to as a "quadrature phase
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FIG. 1. The uncertainty in a l(cosine)-a2(sine) space for typi-
cal photon states: (a) coherent state, (b) in phase-squeezed state,
(c) quadrature-squeezed state, (d) amplitude-squeezed state,
(e),(f) quadrature phase eigenstates, and (g) number state.

eigenstate" ~ and are shown in Figs. 1(e) and 1(f). Also
discussed has been improvement of the signal-to-noise ra-
tio in optical communications and of optical-
interferometer gravitational-wave detectors ' using a
squeezed state.

The current interest in a squeezed state is now focused
on generating it and observing its characteristic quantum
effects. Several schemes have been suggested to generate a
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squeezed state such as a degenerate parametric amplifier, '

a degenerate four-wave mixer, "' a cavity degenerate
four-wave mixer, ' nondegenerate four-wave mixing in a
single-mode fiber, ' and other various nonlinear optical
processes. An extensive review on the squeezed state is
given in Ref. 15.

Although an in-phase squeezed state exhibits sub-

Poissonian photon statistics, the deviation from a Poisson
distribution is not large. This is because the enhanced
noise in the a& quadrature component gives rise to the in-

creased photon number noise. The minimum photon
number variance of the in-phase squeezed state is calculat-
ed' tobe ((b,n) )=(n) ~ . A photon number eigenstate,
on the other hand, has zero uncertainty for the photon
number as shown in Fig. 1(g). As the quadrature phase

eigenstates represent the extreme cases of an in-phase

squeezed state and a quadrature squeezed state, a photon
number eigenstate is indicative of the extreme case of an
"amplitude squeezed state" shown in Fig. 1(d). Such an

amplitude-squeezed state features a reduced photon num-

ber noise ((bn) ) & (n } and an enhanced phase noise

((dP) ) & —,'(n) ', in which the minimum uncertainty

relationship ((hn) }((b((}))=—, is still preserved. This

is essentially the nonclassical photon state we will discuss

in this paper. The mathematical description of the
minimum uncertainty states for hn and hP is extensively
discussed in Ref. 16.

Photon antibunching and sub-Poissonian photon statis-
tics were observed in a resonant fluorescence. ' Sub-

Poissonian photon statistics were also observed in a
Frank-Hertz light. 's However, these lights are essentially
incoherent both spatially and temporally. The available

optical power and deviation from a Poisson distribution

are also weak.
In this paper we propose a new scheme which generates

an (intense and coherent) amplitude squeezed state. The
scheme is composed of a diode laser, the quantum non-
demolition (QND) detector for photon-flux measurement
and a negative-feedback circuit. ' The photon-fiux fluc-
tuation measured by a QND detector is negatively fed
back to a laser pumping current. The temporal fluctua-
tion of the output photon flux is analyzed using
quantum-mechanical Langevin equations. The obtained
noise power spectrum is shown to be reduced below the
standard quantum noise level of a coherent state, that is,
the shot noise level. A preliminary experiment of a feed-
back GaAs laser using a conventional photodetector in-
stead of a QND measurement scheme is also presented.
The experimental results indicate that not only excess
noise but also quantum noise can be suppressed inside the
feedback loop as is predicted by the theory. Furthermore,
the noise of the output wave extracted from the feedback
loop by a half-inirror is shown to increase unless the
QND measurement scheme is used.

The proposed scheme is based on two important as-
sumptions. One is that "negative feedback" does not in-
troduce a new quantum noise source. This assumption is
theoretically supported by the fact that the commutation
relationship for a photon operator in a negative-feedback
laser is properly preserved without introducing an addi-
tional noise operator. The experimental results

described in this paper also support this assumption. The
other assumption is that our QND detector can measure
photon-flux fluctuation with arbitrarily high accuracy
without introducing any disturbance into the photon flux.
It has been proved that this is possible using an optical
Kerr effect. i'

The basic conception of the proposed scheine is
described in Sec. II. In Sec. III we offer a theoretical
analysis using the classical equation of motion for an open
cavity, which relates an incident wave, internal field, and
reflected wave. This equation is extended to an operator
equation by introducing a zero-point fluctuation (quan-
tum noise of a vacuum state) to an incident wave. The
equation is further extended to quantum-mechanical
Langevin equations for a semiconductor laser by introduc-
ing the interaction with the two reservoirs: the inverted
electronic systems of continuous bands and the distributed
loss oscillators which account for internal loss. The re-
sulting equations are equivalent to the conventional
Langevin equationsi2 insofar as only internal field
fluctuation is considered. They are different, however,
from the conventional ones as external output-wave fluc-
tuations can also be obtained by them.

The amplitude and phase fiuctuation spectra for an
internal field and an output wave of a free-running semi-
conductor laser are obtained in Sec. IV. The measurement
accuracy of a photon flux and the additional phase noise
imposed on the laser output wave in the quantum non-
demolition detector based on an optical Kerr medium are
discussed in Sec. V. The final formulas of operator
Langevin equations are derived in Sec. VI by combining
these analyses for the purpose of describing the entire sys-
tem. Here, the reduced photon-fiux fluctuation spectrum
and enhanced phase fiuctuation spectrum are obtained. It
is shown that an output wave of the entire system is in an
amplitude-squeezed state which satisfies the number-
phase minimum uncertainty product.

The experimental results are delineated in Secs. VII and
VIII. The experiinental calibration of the standard quan-
tum noise level and Poissonian photon statistics was ac-
complished using a light-emitting diode. The photo-
current fluctuation spectrum and photoelectron statistics
in the feedback semiconductor laser were compared with
the standard qu;mtum limit. The photocurrent fluctua-
tion spectrum was reduced below the standard quantum
limit by a factor of 0.2 ( —7 dB) and sub-Poissonian pho-
toelectron statistics having ((b,n) ) =0.26(n } were ob-
served.

In the final section (Sec. IX) we will discuss the impli-
cation of the proposed scheme froin the viewpoint of
reduction of wave function by QND measurement and
quantum state preparation.

II. BASIC SCHEME CONCEPTUALIZATION
AND SUMMARY OF ANALYSIS

The basic conception of the proposed scheme involves
the semiconductor-laser photon-flux stabilization by a
negative-feedback loop, in which the photon-flux fluctua-
tion of a semiconductor-laser output wave is measured
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without disturbing it using a quantum nondemolition
measurement. The configuration of the scheme is detailed
in Fig. 2. A semiconductor laser is used as a laser oscilla-
tor, because its output-wave photon flux is easily con-
trolled through an electrical pumping current. The band-
width of a feedback loop can be considerably broader due
to the high-frequency modulation capability and the small
size of a semiconductor laser.

The semiconductor-laser internal field a is extracted
through a partially reflecting mirror, R' ~ 1, as an output
wave r&. %'ave r& passes through a transparent optical
Kerr medium and modulates the medium refractive index

according to its photon flux N(t). The refractive-index
modulation can be measured by a probe wave rz. The
phase retardation of the probe wave encountered in the
Kerr medium is a function of the medium refractive-
index modulation and thus optical phase detection such as
optical homodyning can read out the laser output-wave

photon flux N(t} without disturbing it.
The electrical current of the optical phase detector, i (t),

is proportional to photon fiux N(t) and is compared with
a dc bias current io Th.e difference between the two
currents is then negatively fed back to the
semiconductor-laser injection current to eliminate it. The
output-wave photon flux N(t) does not change in an opti-
cal Kerr medium, and, therefore, the output wave r2 has

the same photon flux, that is, N„,(t) =N„(t).
When the feedback loop has a very large gain, the error

signal hi(t), which represents the difference between the
dc bias current and the QND output current, can be re-
duced to an arbitrarily small value. This means the
output-wave photon-flux fluctuation can be suppressed ar-
bitrarily if the measurement uncertainty of the QND
detector is negligible.

There are four main conclusions we will show in this
paper. First, the negative feedback can reduce not only
classical noise (excess noise} but also quantum noise.
Second, the theoretical limit on the photon-flux noise
reduction is imposed by the phase noise b,Pz of a probe
wave used in QND measurement because it determines
the measurement uncertainty of the QND detector.
Third, the phase noise b,P& can be reduced by increasing
the probe wave photon number according to

Laser Resonator
A

Probe Wave

Pumping
Current

Optlcat
Kerr Medium

Optical
Phase

Detector

Feedback Circuit

FIG. 2. Configuration for the proposed scheme, which con-
tains a laser oscillator, a QND detector for the optical intensity,
and a negative-feedback circuit for the injection current.

((bP~) ) = ,' —(n~) '. This results in the increased probe
wave photon number noise ((En') )= (nz ), which
modulates the laser output-wave phase l( more randomly
via the optical Kerr effmt and enhances the phase noise.
Fourth, this back action of the QND detection on the
laser output-wave phase ensures that the minimum uncer-
tainty product ((hn) )((b,P) ) = —, is preserved. That is,
the photon number noise is reduced below the standard
quantum limit, ((b,n) ) ~ (n), and the phase noise is
enhanced above it, ((b,g) ) & ,' (—n) '. The amplitude-

squeezed state shown in Fig. 1(d) is thus generated by the
present scheme.

III. QUANTUM-MECHANICAL
LANGEVIN EQUATIONS

FOR A SEMICONDUCTOR-LASER
INTERNAL FIELD AND OUTPUT %AUE

There are several ways to express the quantum-
mechanical states of a photon field. The representation
by the number state expansion' and by Yuen's Q func-
tion are complete descriptions for any photon state. The
Glauber-Sudarshan P(a) representation, ' on the other
hand, does not exist as an analytic function for some
quantum states such as squeezed states or number states.
The simplest parameter for describing the nonclassical
behavior of an amplitude-squeezed state may be the pho-
ton number variance, or, in other words, the second
moment of the photon distributions, ((b,n } )
—:((n (n )—) },and the phase variance, ((hP)2). Here,
one can use ((b,n ) ) to tell whether or not the generated
state has a smaller photon number uncertainty than a
coherent state.

In the present analysis, we adopt Langevin's method,
which treats the temporal noise of the field or photon
number rather than its ensemble variance to express the
nonclassical behavior. One reason we use I angevin's
method is that the information we need in the end is the
noise power spectrum and the variance of the output
wave, which can be easily analyzed by this method.
Another reason is that it is difficult to assign a density
operator for a mode supported by the entire system shown
in Fig. 2 including a semiconductor laser, an optical Kerr
medium, and electrical feedback circuit. In the conven-
tional quantum theory of a laser, an outer space is treated
as a reservoir and can be eliminated from the equation of
motion for the system of interest (internal field). In our
case, the output wave constitutes part of the entire system.
Langevin's method is suitable for such a case, because it
can handle the continuous Fourier spectral analysis quite
naturally. The quantum I.angevin theory in which the
external fields are not eliminated from the dynamics has
been recently discussed in Ref. 27.

This section reviews the quasilinearized Langevin equa-
tions for the amplitude and phase operator of the cavity
internal field and the carrier number operator. These
Langevin equations are driven by three noise operators:
that due to the internal optical loss and gain, that due to
the external field coupled through the cavity output mir-
ror, and that due to the dissipation of the dipole moment.
The correlation functions for these Langevin noise opera-
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tors are also delineated.
The classical equation of motion for the internal field a

in an empty cavity driven by the incident wave f is2

1 QP—a = —— a++co/Q, f .
dt 2Q,

(3.1)

Output wave ri is related to internal field a and incident
wave f as

ri —— f+—+to/g, a . (3.2)

Here, (co/Q, )
' is a photon lifetime due to output cou-

pling through mirror R'. The relations (3.1) and (3.2) are
obtained either by the time-reversal theorem, by a direct
analysis of multirefiection for waves bouncing back and
forth, or by Kirchhoff's current law for an electrical cir-
cuit equivalent to a laser. The laser internal field a is
normalized such that

I
a

I
expresses a photon number

(energy) in a laser cavity mode, while
I f I

and
I r, I

ex-
press the photon fiux (power) of the traveling wave.
Quantization of the basic equations, (3.1) and (3.2), re-
quires that the bosonic mode commutation relations be
preserved. The internal field operator, denoted by a, sat-
isfies

&b —cbk v) «rkk &bkcbk v)t

Equation (3.7) can be rewritten as

a(t)—= —— + +2i(top to)—d ~ 1 to to

dt 2 Q, Qp

(3.8)

, (X;—iX„) a(t)
p

operator in (k, C) (=b kcbkc); nk v the electron number
operator in (k', V) (=bk vbk v); kkk the frequency be-
tween ( k, C) and (k', V); ykk the phase decay constant for
a dipole moment; Fkck v(t) the Langevin noise operator
for a quantum-mechanical dipole moment operator,
b kcbk v, dissipation process; and F(t) is the Langevin
noise operator for the internal field due to the quantum-
mechanical internal loss process.

%e use a caret and a tilde to denote, respectively, opera-
tors for the photon field and electrons. The dipole mo-
ment operator b kcbk „was adiabatically eliminated using
the relation

[a(t),a (t)]=1. (3.3) +G(t)+ +to/Q, f(t), (3.9)

This imposes the correlation functions (Refs. 23, Chap.
XIX) where substitutions

and

&f t(t)f(u)) =5(t —u)n, i, (3.4)

and

gkk'F kck'v(t)—l
,, k i(ekk ~)+~kk

+F(t)~G(t) (3.10)

&f(t)f (u))=5(t —u)(1+n, i, ),
where

(3.5)
Igkk I'(nkc —~r v) —+

q (X;—iX, )
i (ekk' ~)+ Ykk' P

(3.11)

n,h ——[exp(irtto/ks T) —1] (3.6)

Note that operators a and f are slowly varying operators,
which correspond, respectively, to A and F in Ref. 23.

Next we introduce the interaction of the internal field a
and the electron systems, which have inverted populations
caused by a pumping. The procedure for obtaining a con-
ventional operator Langevin equation ' results in

~'

d ~ 1 to co—a(t)= —— + +2i(top to) a(t)—
dt 2 Q, gp

I gkk' I
'(nkc ~k'v)+ . a(t)

i «kk to)+rkk—

gkkFkck v(t)
i — +F(t)

i (kkk' to)+1 kk'

+v'~/g, f(t),

where co is the laser oscillation frequency; ~0 the cavity
mode frequency; Qp the Q value for photon decay due to
cavity internal loss; gkk the optical matrix element be-
tween electronic states (k, C) and (k', V) (k or k' means
the wave number and C and V mean conduction and
valence bands, respectively); nkc the electron number

are used. Here, p is the nonresonant refractive index and
X; is the photon gain operator. Using the stimulated
emission rate Ecv and the absorption rate Evc, X; is ex-
pressed as

Q)
& =Ecv —Evc

p
where

I gkk I
')'kk tike(1 ttk v)—

Ecv=
k, k' (ekk' to) + Ykk'

and

I gkk'
I 3 kk'(1 tike)tTk'v

Evc= g
k, k' (ekk' to) +}kk'

(3.12)

(3.13)

(3.14)

—N, (t)=p-
dt +SP

, & n(t) Ecv+Fc(t»—
p

(3.15)

The electron system is described by one equation for a
total conduction electron number X, = gk nkc because
the intraband electron relaxation rate is very fast and the
conduction electron can be assumed to be always in a
quasi-Fermi-Dirac distribution. The equation of motion
for N, is
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a(t) = [Ao+b A (t)]exp[ —i hP(t)],

N, (t) =N„+AN, (t),

(3.16)

(3.17)

where p is the pumping rate, r,~ the spontaneous carrier
lifetime, n(t) the photon number operator [=a (t)a(t)],
and F,(t) is the Langevin noise operator for quantum-
mechanical pumping, spontaneous emission, and dipole
moment dissipation processes.

Our goal in this section is to obtain quasilinearized
operator Langevin equations (3.24)—(3.26) from (3.9) and
(3.15). In the approximation of a large photon number,
we can introduce a quasilineasization to express a(t} and

N, (t) as

H, (t) = —[G(t)+QtolQ, f(t)]e'a&
2

——e ' ~[6 (t)++co!Q,f t(t)] . (3.28)

(H„(t)H, (u)) =(H;(t)H;(u))
r h

=5(t —u) — + (ng, + —, )
1 N N

Q, Qo

The detailed derivation of these equations is described in

Appendix A. The correlation functions of H, (t) and

H; (t) are obtained from the fluctuation-dissipation
theorem as

d(x;)
x, =&x, &+, '

~N. ,
co

d(x„)
x,=&x, &+ „deco

(3.18)

(3.19)

+ —,'((& )+(E )) . (3.29)

The correlation function for the noise operator F,(t) is
similarly given by

n = [Ao+ b A (t)) =Ao+ 2Ao b A (t), (3.20)
(F,(t)F,(u)) =5(t —u) p+ +(Ecv)(Ao+1)

Tsp

where Ao and N, o are, respectively, the expectation values

(positive real) for a and N„and only the first-order fiuc-
tuation contributions are left in (3.18)—(3.20). Further-
more, we introduce the following notations:

to d&X;&
A

p, dNo

d&x„& d&x;&
0!=

dNco de o

(3.21)

(3.22)

1 co Q7

&ih Q. Qo
(3.23)

b,A = hN, +—H„(t),
dt 2AOVS,

(3.24)

and

—bP = Ader', + H;(t),2~O2~„' ~o

2AO
hA+F, ,

(3.25)

(3.26)
+SP +St +ph

where H, (t) and H;(t) are Hermitian noise operators de-
fined as

Here, r„ is the stimulated emission carrier lifetime, a is
the so-called detuning parameter or linewidth-
enhancement factor, ' and r~h is the photon lifetime.

Using (3.16)—(3.23) and (3.12), Langevin equations (3.9)
and (3.15) are rewritten as

+ &Evc &Ao (3.30)

The mutual correlation functions are

(F,(t)H, (u)) = —5(t —u) 2 Ao((~cv)+ &Evc &) (3.31)

(F,(t)H;(t) ) =0 . (3.32)

IV. STANDARD QUANTUM LIMIT
FOR AMPLITUDE AND PHASE NOISE

OF A LASER OSCILLATOR

This section first reviews the noise power spectra of the
internal field amplitude and phase based on the Langevin
equations obtained in the previous section. Then we ob-
tain the noise power spectra of the output-wave amplitude
and phase using the relation between the internal field and
the output wave [Eq. (3.2)).

Fourier analysis of Eqs. (3.24}—(3.32) provides the noise
power spectrum of the internal amplitude. For the limit
of a high pumping level, we obtain (Appendix 8)

'2

P -(0)=— 0 +CO

hA Q
(4.1)

where

Equations (3.24)—(3.26) are the Langevin equations for
the internal field amplitude and phase fiuctuations and
the carrier number fiuctuations driven by the Langevin
noise sources whose correlation functions are given by
(3.29)—(3.32).

H, (t)= ,' [G(t)++tolQ, f(t)—]e' ~

+ —,
' e-' ~[G '(t)+v'~/Q, f '(t)], (3.27)

Q) CO CO

Q Q. Qo +ph
(4.2)

and
and P is defined as the single-sided power spectral density
per unit cps. For the derivation of (4.1), described in Ap-
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pendix 8, we assumed (4.8)

(4.3}~sps&ph &&&st ~

A p/wph ))N, p/r, p,2 where n, ~ = (Ecv ) /((Ecy ) —(Eic ) ) is the so-called
population inversion parameter. %%en n,p=1 and a=O,
(4.8) reduces to

(4.4)

Q(( [Ai )
. (4.5}

P "(Q)= N

A', Q' g
(4.9)

The first inequality of (4.3) means that an emitted photon
stays inside the cavity considerably longer than the time
within which the stimulated emission process takes place
and that the stimulated emission predominates over the
spontaneous emission. The second inequality means that
almost all photons emitted from the laser cavity are due
to the stimulated emission process rather than the spon-
taneous process. Inequality (4.5) means that we need to
consider only the frequency region below 1/r„. These
conditions are all satisfied if a pumping level is much
higher than the threshold. The thermal photon number

n,h, extremely small compared with unity for the optical
frequency region at room temperature, is neglected in
(4.1).

The amplitude variance ((hA} ) is obtained by in-

tegrating (4.1) as

Figures 3 and 4 show these standard quantum limits for
P -(Q)(ro/Q) and 2P&&(Q)A pc@/Q. The amplitude noise

spectrum is Lorentzian, while the phase noise exhibits
Q dependence, which reflects the nonstationary
random-walk-type phase diffusion.

The oscillating field a inside the laser cavity couples
out via the output mirror of the cavity. As shown in (3.2},
the output wave r& consists of the transmitted internal

field a and the reflected zero-point fluctuation f. Since a
and f are quantum-mechanically correlated, as shown in
(3.9), the quantum-mechanical interference between the
two must be taken into account to calculate the r, spec-
trum. .

The output-wave fluctuation is expressed in terms of
internal field fluctuation and the incident zero-point fluc-
tuation as((hA) )= I P -(Q)dQ= 4 (4.6)

The amplitude variance is related to the photon number
variance as hri V'pi/Q——,EA —', (fe' ~+e—'abaft) (4.10)

((hn)2)=([(Ap+bA) —Ap] )

(fel a$ e
—l lhff t)

2i~o
(4.11)

=([2Apb, A+(b, A) ] )

=—((2AphA) )=4(n)((AA)z) . where r, is expressed by an equation similar to (3.16):(4.7)

r, =(rp+hr, )e (4.12)

The noise power spectrum for the output-wave ampli-
tude is obtained (Appendix C) as

10 10

Qcg

L
fVinternal Field

Output Wav

Q4
L

CV

Field

Ql
Qi

0.&
0.0&

I I I I I IIII
0,1

I I I I IIII
~02&0 10

A~(—)Q.

FIG. 4. Phase noise spectrum of the internal field A and the

output wave rl for a free-running laser.
FIG. 3. Amplitude noise spectra of internal field A and out-

put wave r~ for a free-running laser.

Equation (4.6) is then rewritten in terms of the total pho-
ton number, n, inside the cavity as ((hn )i) = (n ).

In the same approximation as (4.3)—(4.5), the noise
power spectrum of the internal field phase is given by
(Appendix 8)
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Pa; (Q)= AiP~ (Q)+ (3 i+0 )P- (Q)+ 3]—ApA3 —0 +0 N P- (Q)

—2A, A& (F,(Q)G, (Q)) [(A,A, +Q')'+O'A f] . (4.13)

For a high pumping level, (4.13) is simplified as

Pa„- (Q}=-,' (4.14)

Equation (4.14) can then be rewritten in terms of the
single-sided power spectrum of the photon flux (number

per second) Xi as

P - (Q)=4roP&,- (Q)=2(N, ), (4.15)

where (X) is the average photon number per second.
The amplitude noise power spectrum Pa- (Q) for the out-

h,r)

put wave r, is compared with (co/Q)P -(Q) is Fig. 3.

The power spectrum for the photon flux N, is white and
its spectral density P - (Q) is equal to the familiar "shot

5,Ã1

noise" formula.
The noise power spectrum for the output-wave phase is

similarly obtained as (Appendix C}

P -(Q)= ~ +
A Q 2A co/Q

(4.16)

The first term comes from the nonstationary random-
walk phase diffusion of the internal field, while the
second term originates in the white noise due to the re-
flected zero-point fluctuation. The phase noise spectrum
2r OP&& (Q ) for the output wave is compared with

1

2roP&&(Q) in Fig. 4. Above the frequency region,
Q & co/Q, the phase noise spectrum of the output wave is
1/2(N, ).

For an arbitrary choice of a measurement time interval
T which is much shorter than (co/g) ', the phase noise is
given by integrating the second term of (4.16) over the
Nyquist bandwidth 8 = 1/2T as

l l l

2A oem/Q, 2T 4( ri i )
(4.17)

On the other hand, the photon number noise is calculated
as

((bni) )=T ((~ ))i=T 2(N, )/2T=(ni) .

(4.18)

Equations (4.17}and (4.18) suggest that an ideal laser out-
put can be regarded as a coherent state shown in Fig. 1(a).
Under a free-running condition, an amplitude-squeezed
state is not generated even though a bias level is much
higher than the threshold and the laser is highly saturated.

The photon number noise (4.18) is actually the result of
the subtle balance between the cooperative force (ordering
force) and the entropy force (fluctuation). The coopera-
tive force which stabilizes the amplitude stems from gain

saturation, which can be enhanced by increasing a bias
level. The entropy force which causes the amplitude fluc-
tuation mainly stems from the pump fluctuation [the first
term of the right hand side of (3.30}],and the field zero-
point fluctuation [the first term of the right-hand side of
(3.29)], when a bias level is well above the threshold. Un-
fortunately, these entropy forces are also enhancmi with a
bias level, resulting in the Poisson statistics for the photon
number as (4.18). In the following sections, we will con-
sider the possibility of introducing an artificial stabiliza-
tion mechanism to break this balance favorably.

V. QND MEASUREMENT
OF A PHOTON-FLUX FLUCTUATION

In the proposed scheme, the photon-flux fluctuation
A%i of the laser output wave is measured with a QND
detector. The output current of the QND detector is neg-
atively fed back to the semiconductor-laser pumping
current. If the measurement error of the QND detector is
zero, it can be shown that the output photon-flux noise is
reduced arbitrarily by increasing the feedback gain. How-
ever, if there is a finite measurement uncertainty in the
QND detector, the output noise cannot be decreased
below a certain value. Furthermore, we are interested
here in whether or not the generated photon state satisfies
a minimum uncertainty product. In order to investigate
these problems, it is essential to calculate the noise power
spectra for the output-wave amplitude and phase, taking
the QND measurement accuracy and its back action into
account.

In this section, we will briefly describe the QND mea-
surement of the photon-flux fluctuation via the optical
Kerr effect. ' A QND measurement via a four-wave mix-
ing, which has the same interaction Hamiltonian as the
optical Kerr effect, has been also proposed in Ref. 36.
The present scheme uses the optical Kerr effect to mea-
sure the photon-flux fluctuation by the optical phase of a
probe light.

The QND measurement scheme is shown in Fig. 5.
The photon-flux operator of the laser output wave r i is

EI =P IP') (5.1)

The output wave whose photon-flux fluctuation is to be
measured without being disturbed passes through the opti-
cal Kerr medium and the wavelength-selective mirrors
Mi and Mi, both of which are transparent at the wave-
length of the laser output. The probe wave is coupled into
the Kerr medium by M~ and extracted by M2. The re-
fiectivities of the two mirrors are unity at the probe wave-
length. The optical phase of the probe wave is shifted by
the refractive-index change of the Kerr medium due to
the laser output photon-flux fluctuation. The optical
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FIG. 5. Configuration of the QND detector for the photon
number via the optical Kerr effect.

constant for the vacuum space, e the dielectric constant
for the Kerr medium, c the light velocity in the vacuum
space, and A is the cross-sectional area of the optical
beam.

In (3.15), the quantum-mechanical pumping process is
split into the rate term p and the fluctuation term F,(t) by
using the quantum-mechanical fluctuation-dissipation
theorem. That is to say, pumping rate p is treated as a
c-number. Since the deviation of the photon flux from

the standard value, ~& ' N——
~

'—(N & ), is fed back,
the pumping current is now treated as an operator p,
which is expressed by the feedback gain h as

P(t) p —h ~
~

' ——p —h [EN& —hgz(0) j(F')'~ ]

(F')1/2 f PNX'"I-

2E'oEc A
(5.3)

Here, co is the angular frequency for the laser output
wave, co~ the angular frequency for the probe wave, g' '

the third-order nonlinear susceptibility for the optical
Kerr effect, L the Kerr medium length, eo the dielectric

Tl Mp
„5m

hug& h~
0 Q)p + (Qp

(b)

FIG. 6. Four-photon process for the optical Kerr effect: (a)
mutual-phase-modulation effect (resonant with an actual level),
(b) self-modulation effect for the signal wave (off resonant), (c)
self-modulation effect for the probe wave {offresonant).

Kerr medium is assumed to have a transition level near
co+co& as shown in Fig. 6. The third-order nonlinear pro-
cess between the laser output wave and the probe wave is
resonantly enhanced with the level, as is illustrated in Fig.
6(a), while four-photon processes within laser output wave
and within probe wave are off resonant, which are, respec-
tively, shown in Figs. 6(b) and 6(c). Therefore, the self-
phase modulation effect for the laser output and probe
wave is neglected. We also assume that co+co~ is slightly
detuned from the transition level so that the real absorp-
tion is negligible. In other words, an optical Kerr medi-
um works in a dispersive-limit (reactive) region rather
than in an absorptive-limit (resistive) region. The output
current of the balanced-mixer homodyne detector "mea-
sures" the following operator (Appendix D):

aN'~=m, aj, (0)r(F )'—", (5.2)

where hN& =h(r, r, ) is the photon flux of the laser out-
put wave, r&, b,p~(0) is the quantum noise of the probe
wave without the Kerr medium, and F', the constant
which indicates the magnitude of the optical Kerr effect,
is expressed as

=p —2hro hr, +h hg~(0)l(F')' (5.4)

where f& js the phase of the output wave r &, and Nz is the
photon fl~ of the prob wave. The second te~ of (55)
represents the extra phase shift of the output wave due to
the presence of the probe wave in the Kerr medium,
which is also resonantly enhanced as is shown in Fig. 6.
The photon flux noise EN' of the probe wave then adds
extra phase noise 5/2 on the output wave r2 as

(5.6)

This is the back action of the QND measurement.
When an optical Kerr medium does not have a transi-

tion level near co+co&, the self-phase-modulation effects
should be taken into account as well as the above two
mutual-phase-modulation effects (5.2) and (5.6) which are
used for the QND measurement and responsible for the
back action, respectively. Even in such a case, (5.2) holds
if the probe-wave photon-flux fluctuation is much smaller
than that of the signal wave. However, the back action
(5.6) becomes large due to the self-phase-modulation of
the signal wave. In the next section, we will see the
minimum back action of (5.6) is necessary for satisfying a
minimum uncertainty product for an amplitude-squeezed
output wave rq. The assumption of a resonant enhanced
Kerr effect is not essential, provided that only amplitude
squeezing is concerned.

This equation will be used for calculating the noise
power spectra of the feedback laser. The last term,
It b,p (0)/(F')'~~, means that the phase noise of the probe
wave is added to the feedback signal and becomes the new

Langevin noise source introduced by feedback. But its ef-
fect can be reduced by increasing the magnitude of the op-
tical Kerr effect, (F')'~ . In the next section, we calculate
the noise power spectra of the laser output wave r, . Since
the QND measurement does not affect the output-wave
photon-flux fluctuation, this noise power spectrum also
expresses that for the output wave r2, taken out of a feed-
back loop.

The optical phase $2 of the output wave r2 is similarly
expressed as (Appendix D)

(5.5)
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VI. AMPLITUDE AND PHASE NOISE SPECTRA
OF THE FEEDBACK LASER

This section deals chiefly with the purpose of the
theoretical part of this paper. The amplitude and phase
noise power spectra of the internal field and the output
wave of the feedback laser are obtained. It will be shown
here that the generated wave r2 is an amplitude-squeezed
state in the sense that the amplitude noise power spectrum
is reduced below the quantum noise level. It will also be
demonstrated that the generated wave is in a minimum
uncertainty state, that is, that the uncertainty product of
the photon number and phase satisfies the equality sign of
the Heisenberg's uncertainty relationship.

The working equations used here are as follows: the
Langevin equations for the internal field amplitude,
phase, and carrier, (3.24), (3.25), and (3.26); the relation-

l

ship between the internal field and the output wave, (4.10)
and (4.11); the pumping operator fed back after the QND
measurement, (S.4); and the phase fluctuation imposed on
the output wave r2 through the QND measurement, (5.6).

Using (3.26) and (5.4), the Langevin equation for the
carrier number fluctuation N, is obtained as

—bÃ, = h[—2rp hr i+hgp(0)/(F')'~~]

+sp ~st

230
hA +F, . (6.1)

2

This equation is similar to (3.26) except for the feedback
term (the flrst term in the right-hand side).

Fourier analysis of (3.24), (6.1), and (4.10) leads to the
amplitude power spectrum for the output wave ri (Ap-
pendix E) as

2Frp g

(1+h)'+ Q' (6.2)

where Pa& (Q) is the phase noise spectrum of the probe
P

wave. Here, a laser bias level is assumed well above the
threshold. In the two limiting cases of It ~0 and h ~Dc,

(6.2) becomes

and

lim Pa„- (Q)= —,',
h-+0

(6.3)

lim Pa,- (Q)=P~ (Q)/4F'rp .
h-+ ce "& p

(6.4)

Equation (6.3) coincides with the free running case, (4.14).
Equation (6.4) means that the ultimate amplitude noise
spectrum is determined by the phase noise spectrum of
the probe wave divided by 4F'ro. The residual amplitude
noise can thus be reduced by increasing the magnitude of
the optical Kerr effect, F'. The amplitude noise spectra
Pa- (Q)=Pa- (Q) of an output wave for various valuesar, ar,
of feedback gain, h, are shown in Fig. 7.

The phase noise spectrum for the output wave,

Pa& (Q), is similarly obtained using (3.24), (3.25), (6.1),
2

and (4.11) as (Appendix E)

Pa~ (Q)= + +F'P - (Q) .(to/Q, )'

POQ 210 p

(6.5)

The first term stems from the nonstationary random-walk
phase diffusion of the internal field, and the second term
is originated in the white noise due to the reflected zero-
point fluctuation. The third term is caused by the photon
flux noise of the probe wave, which is imposed on the out-
put wave via the optical Kerr effect. The feedback gain h

does not affect the phase noise because a=O is assumed
here. The phase noise spectruin 2r pPa& (Q) of the output

wave r2 with the QND measurement and feedback is
shown in Fig. 8.

Next, let us consider the uncertainty relationship be-
tween the photon number and phase of the output wave

r2 The first .and second terms in (6.5) are negligible com-
pared with the third term if we consider a large F' value
and higher Q frequency region. The phase diffusion noise
is dominant only in the low-frequency region and is usual-

ly suppressed by a phase-locked loop in a homodyne
detector. Equation (6.S) then becomes

Pa~ (Q)=F'P - (Q) . (6.6)

C p4

0.025

0.0&
0)

I I 1 I 1 lit
]02

A~ (~)
FIG. 7. Amplitude noise spectrum of the output wave r2

with QND measurement and feedback. Pa& (0)/4E'ro in (6.4)

is assumed to be 0.025, which is smaller than the noise level for
a free-running laser by a factor of 20.

Equation (6.4) is subsequently rewritten in terms of the
noise spectrum of the photon ftux as

P - (Q)=4r P p(aQ)=Pa~ (Q)/F'.
h.r2

(6.7)

For an arbitrary choice of a measurement time interval

T, the photon number uncertainty and phase uncertainty
are given by integrating (6.6) and (6.7) over the Nyquist
bandwidth 8 = 1/2T as

(6.8)
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0.&

0.& 10
1 I I l I I II

)0P

&(a1(,)'& =F'&(m, )'& . (6.9)

The product of (6.8} and (6.9} reduces to the uncertainty
product of a probe wave as

&(«)'&&(&it )&=7'&(~ )'&&(~((t )'&

= &(«",)'& &(~y, )'& . (6.10}

As is discussed in the Appendix of Ref. 21, the origins
of the photon number noise &(En')i& and phase noise
&(h(()~) & are, respectively, the quadrature noise com-
ponents &(fbi) & and &(Aber) & of the zero-point fluctua-
tion b incident upon beam splitter 1 from an untised port
when the transmissivity of the beam splitter is close to un-
ity. Then we have

A I (~™)

FIG. 8. Phase noise spectrum of the output wave r~ with

QND measurement and feedback. I"P - (0} in (6.5) is as-

sumed to be 10/ro, which is the minimum uncertainty noise

under the assumption for Fig. 7. The phase noise is increased

by a factor of 20 (in the region 0 & ro/Q}.

that a conventional photon-flux measurement having a
beam splitter followed by a photodetector cannot extract
an amplitude-squeezed state outside of the feedback loop
and that a QND measurement is an essential process for
the proposed scheme.

The experimental setup is shown in Fig. 9(a}. A single-
frequency GaAs/A1GaAs semiconductor laser having a
0.82-pm oscillation wavelength was used at a bias level of
I/I, h ——2—3. The laser output photon-flux fluctuation
was detected by a Si photodiode having a quantum effi-
ciency larger than 0.8. The phase-reversed and amplified
photocurrent fluctuation is superposed on a dc bias
current to counteract the laser output photon-flux fluctua-
tion.

The photocurrent fluctuation was connected to the
noise spectrum measurement circuit and to the photoelect-
ran statistics measurement circuit shown in Fig. 9(c). The
photocurrent fluctuation spectrum was measured with a
spectrum analyzer (HP 8568A). The photoelectron statis-
tics were measured using the analog photon-counting tech-
nique with the integrator (LPF; Anritsu MN51A), the
sampling oscilloscope (Tektronix 7904-s2), and the digital
wave memory (Kikusui 87025) having 50—64 channels.
The data number for each photoelectron counting mea-
surement is 3)& 105.

Another experimental setup is shown in Fig. 9(b). The
laser output was equally divided by a 50%-50% beam
splitter to illuminate two identical Si photodiodes having
a quantum efficiency larger than 0.8. The five differential
amplifiers were carefully chosen so as to keep the overall
gains from the photodiodes to the three output terminals
A, B, and C exactly equal and flat over the measurement
bandwidth up to 15 MHz. The photocurrent fluctuation
at terminal A was negatively fed back to the injection

PD

,

LD
'

&(«, )'& =-4&.;& &(~b, )'& = &.;&, (6.11)

&(bP) &=—&(hbz) &/&np&=1/4&nq& . (6.12)

Thus (6.10) equals —,', which means that the output wave
is in a number-phase minimum uncertainty state. Equa-
tions (6.8) and (6.9) indicate that the uncertainty of the
photon number and phase can be controlled to an arbi-
trary value under the constraint of (6.10) by the factor I".
The output photon number noise can be reduced by in-
creasing the length I. or X' ' of the optical Kerr medium
at the cost of increased phase noise. This is referred to as
an amplitude-squeezed state.

(a) dc
bias Feedback

Loop
Measurement

Circuit

c g
S D13 8

cArj ss

UII. EXPERIMENTAL SETUP AND CALIBRATION
OF QUANTUM NOISE LEVEL

(C) O- AC A

Spectrum
analyzer

In this as well as the subsequent section, we will
describe the experimental result which verifies the first as-
sumption in the theoretical analysis. This is that negative
feedback does not introduce an additional noise source ex-
cept the probe-wave phase noise in a QND detector, and,
therefore, can suppress not only the excess noise but also
the quantum noise. The experimental result also indicates

Wave
memor

FIG. 9. Configuration of the experimental setup: {a) the
negative-feedback semiconductor laser having a photodetector
and {b) that having a balanced-mixer photodetector. {c) The
photocurrent fluctuation spectrum and photoelectron statistics
measurement circuits.
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current of the laser diode in a way similar to that in Fig.
9(a).

In the next section we will describe the fact that the
photocurrent fiuctuation spectral density is lower than the
quantum noise level, i.e., the shot noise level, and that the
photoelectron statistics are narrower than the Poisson dis-
tribution. These experimental results cannot be explained
without assuming that the laser output wave has the re-
duced photon-fiux noise spectrum below the standard
quantum limit and the sub-Poissonian photon statistics.
%e will also demonstrate that such a sub-Poissonian light
cannot be extracted outside of a feedback loop by the con-
figuration shown in Fig. 9(b). That is, the incident wave
on photodiode A has a photon-fiux noise spectrum re-

duced below the quantum noise level and the sub-

Poissonian photon statistics. On the other hand, the out-

put wave to photodiode 8 exhibits an enhanced photon-
fiux noise spectrum above the quantum noise level and
super™Poissonian phonon statistics.

In order to confirm these experimental results, the
quantum noise spectral density and the Poissonian photon
statitics should be calibrated as the absolute level. Identi-

fying the absolute quantum noise levels in experiments is
difficult, because the Si photodiode quantum efficiency is
not constant. Rather it indicates a dependence on the
fluctuation frequency. It is additionally difficult because
the absolute power level displayed on the spectrum
analyzer is not reliable. Furthermore, identifying the
Poissonian photon statistics is complex because a conven-

tional digital photon counter having a threshold decision
is incapable of handling a large number of photoelectrons
on the order of 10, as in the present case.

In order to overcome such difficulties, the measurement
circuits shown in Fig. 9(c) were calibrated by an in-

coherent GaAs light-emitting-diode (LED) output. The
measurement time interval T=10 —10 sec in our ex-

periment is much longer than a coherence time ~„which
is on the order of 10 ' sec for a GaAs LED. The LED
light therefore produces the quantum noise spectrum and
the Poissonian photon statistics.

The measured intensity noise spectrum is compared
with the quantum noise level 2eI& in Fig. 10, where Iz is a
photocurrent. The photocurrent noise power spectrum
P;„(II) measured with the spectrum analyzer is
transformed into the primary current noise spectrum by
P;„(0)/GB, where G is the measured electronic amplifier
circuit power gain and B is the separately calibrated reso-
lution bandwidth of the spectrum analyzer. It is further
transformed into the excess noise factor X~, defined as the
photocurrent spectral density divided by the quantum
noise level as

Xi P;„(0)/2eIpGB——.

The thermal noise added by the electronic amplifier was
removed by a light chopper and the phase-sensitive detec-
tion using a lock-in amplifier. The experimental result
deviates from the theoretical value only by less than 0.05
dB in the frequency region from dc to 15 MHz. This can
be considered as the accuracy of the present photon fiux
noise spectrum measurement.

The measured and calculated photon statistics are com-
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FIG. 10. Normalized photocurrent fluctuation spectrum,
P;„(0)/2eI~GS, for a GaAs I,ED output. Curves a —d corre-
spond to the use of low-pass filters with bandwidths of 6.713,
9.463, 13.10 MHz, and without a filter, respectively.
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FIG. 11. The photoelectron statistics P,(n) for a GaAs LED
output. The counting time intervals are (a) 38, (1) 53, and (c) 74
ns. Solid lines are the theoretical Poisson distributions.

pared in Fig. 11. The integrated photocurrentf+T,A= i (t)dt over the measurement time interval T is
transformed into the primary photoelectron number n by
the relation n =A/ev G. The theoretical Poissonian dis-
tribution is calculated by P(n)=e " (n)"/n!, where
(n ) is the average number of primary photoelectrons and
is given by (n ) =I&T/e. The agreement between the ex-
perimental and thceretical Poissonian statistics is fairly
good. The slight deviation is due to thermal noise contri-
bution, which cannot be excluded in the analog pho-
toelectron counting. However, it is possible to eliminate
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the effect of the thermal noise from the evaluation of the
excess noise factor Xz. If the normalized second moment
X of a photoelectron number is defined as

X—=[((hn) ) —(n)]/(n),
X is related to the excess intensity noise factor X2 as

X2—1=X .

(7.2)

(7.3)

VIII. EXPERIMENTAL RESULTS

The photocurrent fluctuation spectra for the free-
gunning and feedback-stabilized GaAs laser output [Fig.
9(a)] are shown in Fig. 12 with the calibrated quantum
noise level praduced by an LED light. While the photo-
current fluctuation spectrum for the free-running condi-
tion is higher than the quantum noise level by 4—5 dB,
that for the feedback stabilization is reduced below this
noise level by 6—7 dB, depending on the frequency. The
photoelectron statistics for the free-running and
feedback-stabilized GaAs laser output [Fig. 9(a)] are com-
pared in Fig. 13 with the theoretical Poisson distribution.

%e measured a zero mean thermal noise electron distribu-
tion by blocking the incident LED light and obtained the
second moment of the thermal noise electron, ((b,n) ),h.
The primary photoelectron second moment ((hn) ) is
obtained by the relation

((bn) )= gn P(n) — gnP(n) —((hn) ),i, . (7.4)

When the photoelectron statistics P(n) is Poissonian, the
value of X is zero, which corresponds to Xi—1. Table I
summarizes the various values of Xi obtained directly
from the photocurrent spectral measurement and X2 from
the photoelectron counting measurement, using (7.1) and
(7.3), respectively. As can be seen, the experimental re-
sults are very close to the theoretical value of X= 1.0.

Floe-F~ggpg LQ

LEO
0 ——

g
C4

C —10-

-5-
Feedback Lo

-20-
0 5 10 15

Frequency )MH2. )
FIG. 12. Normalized photocurrent fluctuation spectral densi-

ties for free-running and negative-feedback semiconductor lasers
having a single photodetector.

While the photoelectron statistics for the free-running
condition are super-Poissonian, the sub-Poissonian statis-
tics are obtained during the feedback stabilization.

The excess noise factors Xi obtained from the photo-
current fluctuation spectrum and Xz obtained from the
photoelectron statistics are shown in Table I for the free-
running and feedback-stabilization conditions. It is obvi-
ous that the observed sub-Poissonian photoelectron statis-
tics and subquantum limit photocurrent fluctuation spec-
trum are much more dominant phenomena as apposed to
the measurement uncertainty calibrated by using a LED
light. Since the photoelectron emission process is a one-
to-one correspondence with the photon arrival rate when
the detector quantum efficiency is high, the above experi-
mental results cannot be explained without assuming that
the GaAs laser output features the sub-Poissonian photon
statistics.

The photocurrent fluctuation spectra measured at ter-
minals A and 8 for the free-running GaAs/A1GaAs semi-
conductor laser [Fig. 9(b)] are shown by the circles and
plusses in Fig. 14 and compared with the theoretical
quantum noise level shown by a solid line. The incident

TABLE I. The excess intensity noise factors gl, obtained from the photocurrent fluctuation spec-
trum measurement (7.1), and g2, obtained from the photoelectron counting measurement (7.3), for the
three quantum noise level calibration cases using an LED light, a free-running semiconductor laser, and
a feedback-stabilized semiconductor laser.

Calibration
eath a LED

Detector
bandwidth

(measurement
time interval)

6.713 MHz
(74.48 nsec)

9.463 MHz
(52.84 nsec)
13.10 MHz

(38.17 nsec)

Ip
(mA}

1.10

1.10

1.10

Xl
(Photocurrent

fluctuation
spectrum)

1.005
(0.02 dB)
0.9954

( —0.02 dB)
0.9908

( —0.04 dB)

5.114' 10'

3.628 ~ 10'

2.621 ~ 10'

X2
(Photo-
electron

counting)

1.0002
(0.001 dB)
1.003

(0.013 dB)
1.002

(0.008 dB)

Free-runmng
GaAs laser

13.10 MHz
(38.17 nsec)

2.747
(4.388 dB)

2.621 X 10' 2.821
(4.504 dB)

Feedback-
stabilized
GaAs laser

13.10 MHz
(38.17 nsec)

1.10 0.207
( —6.848 dB)

2.621 X 10' 0.258
( —5.887 dB}
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FIG. 13. Photoelectron statistics for free-running and
negative-feedback semiconductor lasers with a single photo-
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waves on the two Si photodiodes exhibit smaller excess
noise than the result of the single detector shown in Fig.
12. This is because the semiconductor laser is biased
higher and also because there optical loss is present be-
tween the laser and the photodiode, which contributes to
the elimination of the excess noise of the incident wave.

When the feedback circuit was closed, the photocurrent
noise spectra measured at terminals A and 8 become dif-
ferent as shown in Fig. 14. The noise spectrum at termi-
nal A was reduced by 5—10 dB below the quantum noise
level. The difference is again much larger than the uncer-
tainty of less than 0.05 d8 in identifying the quantum
noise level. This means that the incident wave on photo-
diode A has its reiuced photon-flux noise below the stan-
dard quantum limit. On the other hand, the noise spec-
trum at terminal 8 was increased by about 3 d8 above the
quantum noise level. This means that the incident wave
on photodiode 8 has its photon-flux noise increased to
twice that of the quantum noise level.

The photoelectron counting measurement exhibits the
same behavior. The photoelectron statistics measured at
terminal A for free-running and feedback-stabilized cases
are shown by the crosses and open circles in Fig. 15. The
theoretical Poissonian distribution is shown by a solid
line. It is clear in Fig. 15 that the super-Poissonian pho-
toelectron statistics of a free-running laser output become
sub-Poissonian through feedback stabilization. The exper-
imental photoelectron statistics give the normalized

-5
8x10

-5Bx10-

Terminal 8

4%10

-52x10-

p ra~Q
-2hn -hn

Xx=0.31
XQ =0.87

IC

/ o
n~y

'i ~o
Q 0

'~ Q
s ~Q 9~

0
n-&n&

hn 2hn

second moment X=—0.81 in a feedback-stabilization
case, which corresponds to the excess noise factor 7=0.19
( —7 d8). This value is in fairly good agreement with the
reduced photocurrent noise spectrum shown in Fig. 14.
The photon statistics measured at terminal 8, on the other
hand, exhibit a super-Poissonian distribution for feedback
stabilization which is broader than that for the free-
running case. Again the measured value of X =+0.87
(or X= 1.87) is in fairly good agreement with the
enhanced photocurrent noise spectrum shown in Fig. 14.

These experimental results can be understood as follow:
If the output wave from the semiconductor laser and the
zero-point fluctuation incident on a beam splitter from an
open port are designated by r

~
and c, the incidental waves

on photodiodes A and 8 are given by

and

r„=(r, +c)/v 2, (8.1)

FIG. 15. Photoelectron statistics measured at terminals A

and B for free-running and negative-feedback semiconductor
lasers having a balanced-mixer photodetector. Solid lines are
theoretical Poisson distributions; ( n ) = 1.5 X 10' and

hn =2)&104.

With feedback (A)

+
+

+

r~=(ri —c)/~2 . (8.2)

pk ~-- +
+ + e

I

10
I I

0 5 15
Frequency (MHz)

FIG. 14. Normalized photocurrent fluctuation spectral densi-

ty for free-running and negative-feedback semiconductor lasers
having a balanced-mixer photodetector. Solid line (0 dB) is the
quantum noise level.

Here, r~ (ro+b, r, )e ' " and the z——ero-point fluctuation
c (:—ci+ici) satisfies

(8.3)

If the photodiode quantum efficiency is unity, a dc photo-
current i&0 is given by
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~ &~A
lAp=e&rArA ) =erpl2 . (8.4)

The photocurrent fiuctuation biA of photodiode A mea-
sures the photon-flux fiuctuation operator as

h&A =2—e&rA i)drA i erp——(Eri+ci) . (8.5)

The in-phase noise component c~ corresponds to the nor-
malized phase noise of the probe wave in the previous
QND measurement scheme. If (8.5) is used in the opera-
tor Langevin equation for a negative-feedback semicon-
ductor laser instead of (5.2) for the QND scheme, the
quantum-mechanical correlation is established by feed-
back stabilization as in

minal C for free-running and feedback-stabilization cases
are shown by the crosses and triangles in Fig. 14. As indi-

cated by (8.9), the spectral density is just 3 dB above the
quantuin noise level for terminals A and 8.

The photoelectron counting statistics measured at ter-
minal C are shown in Fig. 16 for free-running and
feedback-stabilization cases. Although the average pho-
toelectron number was zero at terminal C, it was translat-
ed into the total photoelectron number (iAp+i~p)T/e in

Fig. 16. These experimental results are in good agreement
with the theoretical Poissonian distribution shown by a
solid line.

hr(= —ci (for h~oo) . (8.6)
IX. DISCUSSION

Consequently, the photon-flux fluctuation spectrum of the
incident wave r„on photodiode A is reduced.

On the other hand, the intensity fluctuation spectrum
of the output wave rq in photodiode 8 is

I'a,- (Q)=2Pa,- (0) . (8.7)

Equation (8.7) explains the enhanced intensity noise spec-
tral density and super-Poissonian photon statistics.

In order to confirm the above discussion, the photo-
current fluctuation spectral density and photoelectron
statistics were measured at terminal C, that is, the sub-
tracted output. The dc photocurrent at terminal C is ex-
pressed as

i,p =e((r—A r„)—(r ~rq ) ) =e(rp —rp) =0 . (8.8)

The photocurrent fluctuation bi, measures the following
operator as

~t'= 2e(&rA1)—«Al &r81)~~81) 2erpcl ~ (8.9)

-5
2.4x10-

Terminal C

)4 =0.09
Xo=0.06

1.2x 10

O.Bx1(P-

I

0
n-&n&

FIG. 16. Photoelectron statistics measured at terminal C for
free-running (o ) and negative-feedback ( X ) semiconductor
lasers having a balanced-mixer photodetector. Solid line is the
theoretical Poissoniau distribution; ( n ) =3 X 10' and
bn =SX10.

Equation (8.9) suggests that the photocurrent fiuctua-
tion bi, ineasured at terminal C reflects the beat noise be-
tween the coherent excitation of the laser output wave rp
and the in-phase component of the zero-point fiuctuation,
ci. It further suggests that it is always standard quantum
limited irrespective of the feedback stabilization. The
photocurrent fluctuation spectral density measured at ter-

The negative feedback is capable of suppressing the
quantum noise of a laser output wave. Such nonclassical
light, however, cannot be extracted outside of a feedback
loop if a conventional (destructive) photon-flux measure-
ment scheme is employed. In this respect, quantum non-
demolition measurement plays an essential role in generat-
ing an amplitude-squeezed state. In fact, the enhanced
phase noise, which compensates for the reduced photon
number noise and defends Heisenberg's uncertainty prin-
ciple ((b,n) )((bP) ) & —,', is imposed in the QND pro-
cess as a back action of the measurement. The commuta-
tor bracket for the output wave rz is preserved properly
under feedback stabilization due to the balance between
the finite measurement uncertainty (5.2) and the finite
back action on the conjugate observable (5.6). This point
is extensively discussed in Ref. 20.

The scheme proposed in this paper is essentially dif-
ferent from the squeezed-state-generating schemes which
utilize a unitary evolution in a variety of nonlinear optical
processes. The most important feature of the proposed
scheme is its capability to prepare (synthesize) any
number-phase minimum uncertainty state in terms of the
average photon number and the variance distribution be-
tween the photon number and phase. The average photon
number can be assigned by a dc bias current, and the vari-
ance distribution can be determined by the magnitude of
the Kerr effect, F'. When the QND measurement error
goes to zero (i.e., I"~ oo ), the output wave approaches a
"photon number eigenstate. "

This is essentially different from the generation of a
photon number eigenstate via wave function reduction
only by a QND measurement. ' ' If the photon system is
conservative and the QND measurement of a photon
number is ideal, the photon field falls into a photon num-
ber eigenstate after the measurement. However, no one
can predict or control the eigenvalue for the resulting
photon number eigenstate before the measurement. In
this sense, the process is completely passive. Moreover, a
laser oscillator is not a conservative system but a dissipa-
tive system. The output photon flux is subject to fluctua-
tions and experiences time evolution due to the coupling
with the reservoirs. Therefore, different eigenvalues are
expected to result from one sample to next. The combina-
tion of QND measurement and negative feedback can
overcome these two problems and can synthesize a desired
quantum state.
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APPENDIX A

This appendix derives the quasilinearized Langevin
equations (3.24}—(3.26) from the Langevin equations (3.9)
and (3.15).

Substituting (3.16) into (3.9) and its Hermitian conju-
gate, we obtain

—b A = —— + —,Xi (Ao+ b A )+H.(t)
t 2 e 0 p

(Al }

i X„(Ap+hA )+ H;(t), (A2)
2~o JM2 0

where H„(t) and H;(t) are defined as in (3.27) and (3.2S).
Using (3.17)—(3.20) and neglecting the products of the
fluctuation operators, (Al },(A2), and (3.15) become

—,(i, ) (A, +aA)
dt 2 Q, Qp p,

i

notations (3.21)—(3.23) and (3.12), (A3)—(A5) are rewrit-
ten as (3.24)—(3.26).

APPENDIX 8

f P-(Q) =(q (t)q(t)) . (82)

Definition (Bl) is used to obtain the power spectrum from
correlation functions.

Another formula for P-(Q) is given by Wiener-

Khintchin's thtxirem as

P-(Q)= lim (Q (T,Q)Q(T, Q)),
q

(83)

In this appendix the amplitude and phase noise spectra
are obtained for the internal field with no feedback.
Equations (4.1) and (4.9) are derived from the Langevin
equations (3.24)—(3.26) and the correlation functions
(3.29)—(3.32).

First we delineate the definition and the calculation
procedure for a single-sided power spectral density per
unit cps. The power spectrum P-(Q) of an operator q(t)

q
which is a nonperiodically fluctuating function of t is
given by

P-(Q) =2 f (q t(t +a)q(t))e '"'dr .

Parseval's theorem gives the normalization of the single-
sided power spectrum as

and

d&X, )
Ap ~,+H, (t),

2p eo

, (X, )(A, +aA)
dt 2AolJ

d&X, &+, „b,N, + H;(t),
2p' dNo '

Ao
(A4)

where Q(T, Q} is the finite Fourier transform of q(t) de-
fined as

Q(T, Q)= V'2/T f —q(t)e '"'dt . (84)

Definition (83} is used to calculate the power spectrum
from the Langevin equations.

The finite Fourier transform of dq(t)/dt is obtained,
using integration by parts, as

Qi(T, Q) =&2/T [q(T/2)e

—~,=p
dt

&.o —;&X, &Ap'- «cv&-
+sp JM

, d&i;&

p codN

Tsp

, (X, )A, SA+F, (t) .
p

(A5)

and

1 = &&cv& —&~vc&
+ph

co=coo — i (X~ ),
P

(A6)

The expectation values of (A3)—(A5) give the following
relations:

—q( T!2)e'" ~2—]+iQQ(T, Q) .

Since the first term vanishes within the limit of T~ao,
the finite Fourier transform can be treated as a usual
Fourier transform in the sense that time derivative is ex-
pressed by multiplying iQ in the 0 space. This is used in
the calculation of the finite Fourier transform of the
Langevin equations. We omit T hereafter since it plays
no role in the calculation. Furthermore, the term
"Fourier transform" will be used instead of "finite
Fourier transform" for the sake of simplicity.

The Fourier transforms of (3.24)—(3.26) are then ex-
pressed as

i Q EA(Q) =A AN&, (Q)+H„(Q),

i Q hg(Q) = Ay &N, (Q)+H;(Q)/Ao,'
+Ao(&Ecv& —&Evc&}—&Ecv&,

+SP
(AS)

and

where (3.12} is used. Using the relations (A6}—(AS) and i Q ddt', (Q) =A i ~,(Q)+A2 bA(Q)+F, (Q), (BS)
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where A4 ——a/2A()r„. (812)

A ) ———(1/~,p) —(1/r„),
A2 —— 2—AO/mph,

A3 ——1/2AO~, (,

(810)

(811)

Eliminating ~, from (86) and (88), we obtain

b A(Q)=[ A—3F, +(A, —iQ)H, ]/(A2A3+Q +iQA) ) .

(813)

Using (83), the power spe:trum P -(Q) is obtained as

A Py (Q)+(Q +A, )P- (Q) —2A A (H, (Q)F, (Q) )
P -(Q)=

h, A (Q +A A3) +Q A)

(A32/A f)P~ (Q)+(1+Q /A) )P- (Q) —2(A3/A))(H, (Q)F, (Q))

(A QA 3 /A ) )'+ Q ( 1 +Q /A ) +2A 2A 3/A ) )
(814)

When a laser is biased at well above the lasing threshold,
1/~„can be much larger than all the other lifetime con-
stants such as 1/~ph and 1/~, p. For such a bias level, we
need to consider only the fluctuation frequency below
1/rs( and then can use the approximation

Pa~(Q) = [(A2A4/Q) P- (Q)

+A4Pr- (Q)]/[(AgA3+Q~)~+Q~A2) ]

+P-.(Q)/Q A() .

Q«iA) i,
—1 1 1

A3/A) —— +
2~ 0~St +SP ~St

A2A3/A) -=1/mph,

(816)

(817)

A4, /A) = —a/2AO,2

A2A4/A ) Q =a/A prphQ,

and (3.29)—(3.32), Eq. (822) is rewritten as

(823)

(824)

Using the same approximations mentioned above and re-
lations

AqA3/A) «1 .

Using these relations, (814) is rewritten as

(818)

P- (Q)I4A +P- (Q)+ (H, (Q)F,(Q))
P -(Q)=

d, A (Q +1/Hph)

(819)

The power spectra Pz (Q), P- (Q), and (H„(Q)F,(Q))
are obtained from the correlation functions (3.29)—(3.32)
using (81). The power spectrum P -(Q) is then rewritten

Pat", (Q) = [(1+a )n,p)/AovphQ (825)

where n,p:—(Ez) )l((Ec„)—(E„c)) is the population
inversion parameter. Equation (825) is identical to (4.8).

APPENDIX C

This appendix describes the calculation procedure of
the amplitude and phase noise spectra for the output wave
r, with no feedback. Equations (4.13) and (4.16) are de-
rived from (4.10) and (4.11).

The Fourier transforms (Appendix 8) of (4.10) and
(4.11) are expressed as

P$g(Q) =[(n(h+1)/rpg+&go/& pA()]/(Q +1/+ph),

(820)
and

6r) (Q) =Qco IQ, AA (Q) —f,(Q), (Cl)

+H;(Q)/QA() .

This leads to the phase noise spectrum

(821)

where relations (AS) and (A10) are used. For a high
pumping, the term N, o/~, pA0 in (820) is negligible com-
pared with the term (n,h+1}lymph Equation (820. ) is then
rewritten as (4.1), where n, h is neglected as a small quanti-
ty.

The phase noise spectrum is obtained in a similar way.
Ehminating t((A and b,i)T, from (86)—(88), we obtain

bp(Q) = [iA2A4H, (Q)/Q A4F, ]/(AzA3+—Q +EQA) )

bg(Q) =bg(Q)+ f;(Q)/r(),

where f,(Q) is the Fourier transform of

f (t) [f(t}~l $t(()+(e —I aQ(t)f t(t)]/2

and f;(Q) is that of

f (t):[f(t)e' ~(" e' ~("f—(t)]/2i—
The correlation functions of f,(t) and f;(t) are

(f„(t)f„(u))=(f;(t)f;(u)) =5(t —u) —,'(n(h+ —,
'

) .

Substituting (813) into (Cl), we obtain

(C2)

(C4)

(C5)
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I A—3F, + (A )
—i Q)[G,(Q)+ +co/Q, f, (Q)] Ihr)(Q)=

3233+0 +i QA]

—f,(Q), (C6) (n(h+ 1 )+ 1 ((Ecv) +(Eyc))
0

where G„(Q) is the Fourier transform of G, (t), which is
defined as

g (t) ) [g(t)ei~(t)+e ia—4)(i)g 'lit)]

The correlation functions are

(C7) ( G„(t)F,(ti) ) = —5(t —u) —,Ao((Ec1 ) + (pre) ) .

The power spectrum Pz- (Q} is then obtained ash,r l

(C9)

Pa„- (Q) = A p'- (Q)+ (A 1)+Q')P- (Q)+"1 c c e

CO 3 )
—A2A3 —0 +0 — +A )

z

Qe e
P- (Q)

T

2A)A3 (F,(Q)G, (Q)) [(A2A1+Q ) +Q A) ] (C10)

Pa,- (Q)=-,',
which is identical to (4.14).

Similarly, substitution of (821) and (C2) leads to

(Cl 1)

bg(Q} = G;(Q)+ f;(Q)
0 Aro

H„(Q)
+A4 iA2 —F, (Q) (A,A, +Q'

+i QA) ), (C12)

where G;(Q) is the Fourier transform of

Using correlation functions (3.37), (C8), (C5), and (C9),
and approximations (4.3} and (4.5), Pa,- (Q) is calculated

to be

P -(Q) =n, ( I+a )
co/Q 1

Q A 2A()to/Q,
(C16)

If approximations u(g 1 and n,p=1 are used, further-
more, (C17) reduces to (4.16).

APPENDIX D

In this appendix, the measured photon-flux fluctuation
operator in the QND measurement scheme is derived.
The goal is Eq. (5.2), which relates the output photon-flux
fluctuation bN( with the observed photon-flux fiuctua-
tion operator bN')

As is shown in Fig. 5, the output wave (signal wave) r(
and the probe wave r~ propagate in the optical Kerr medi-
um interacting with each other Here, . r~ is the amplitude
operator which is similarly normalized as r„that is, r ~rr
expresses the photon fiux of the probe wave as in

g (t) [g(t)side(t) e i t)y(t)g —t(t)]
2l

(C13) IP IPP' (Dl)

The correlation function of G; (t) is the same as (C8). The
power spectrum of b,fi(t} is then obtained as

Pa~(Q) =
2 1

P- (Q)+ 1 P-(Q)
Q +(a)/Q, )

0AO n, '

+A4 P- (Q)+PF- (Q) [(A2A1+Q )O' H. C

+Q A(],

(C14)

where

i r)(z)=i('.N—r)(z),
dz

eo ~X'"

2EgEc

The spatial evolution of r, or r~ in the Kerr medium is
described by Heisenberg's equation of motion using the
interaction Hamiltonian of the optical Kerr effect as '

i rz(z) =a—N) rz(z)
GfZ

arid

ro +in/Q, Ao,—— (C15)
Integration of (D2}and (D3) from z =0 to L gives

is used. Using the correlation functions and the same ap-
prox1111atlolls, (C 15) becoIIles

rr(L) =exp[i(F')'~ N) ]rr(0) (D5)
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r i (L ) =exp[i (F') '~
Nz ]r i (0), (D6) APPENDIX E

where (F')' is given as tcL. Since rzrz and r,r, are
constants of motion in the transparent Kerr medium, the
expansions for r~ and r i are written instead of (4.12) as

rq (z)= rr()e (D7)

In this appendix, the amplitude and phase noise spectra
of the output waue with feedback for the proposed scheme
are obtained. Equations (6.2) and (6.5) are derived from
(3.24), (3.25), (4.10), (4.11), (6.1), and (5.6).

The Fourier transforms of these txluations are

and i Q b A (Q) =A 3 B'AV, (Q)+6,(Q)+ +co/g, f,(Q), (El)
—i f&(s)r i (z) = roe (DS)

where rzo is (rz ). Substituting (D7) into (D5), and (DS)
into (D6), we obtain

i Q b p(Q) =A45N, (Q)+ 6;(Q)+ alto/Q, f (Q),
Ao '~o '

P~(L) =P~(0)—(F')' (D9) br~(Q)=+to/Q, bA(Q) —f„(Q), (E3)

li, (L}=y,(0)—(F')'"X, . (D10)

bN;~= [bp (L)—b—p„]l(F')' 3 .

Substituting (D9) into (Dl 1), we obtain

——bgi [bPp(0) bP—„t]l(F')'—

(Dl 1)

When the transmission of beam splitter 1 is close to unity,
the probe-wave photon flux passing through the Kerr
medium is much smaller than that of the reference wave
so that bp f can be negligible as compared with b pz(0),

=dA' —bP (0)/(F')' (D13)

The phase sign is defined in this paper so that the nega-
tive sign denotes the phase delay (note that the sign is in-
versely defined in Ref. 21}. Equation (D10) is rewritten as
(5.5) with the notation t'ai and P2 for the output phase
operators before and after passage through the Kerr medi-
um.

T'he balanced-mixer detector shown in Fig. 5 measures
the observable cos[p~(L) —p„t], where p„t is the phase of
the reference waveyassing through another arm. ' For
simplicity, pz and p«t are redefined as those in front of
beam splitter 2. Since pz(L) p„,t can b—e biased by an
optical delay introduced in a reference arm so
that (Pr(L) P„t)=n/2—, cos[Pr(L) P„t] is r—egarded as
be(L} b,p„t whe—n the fluctuation is small. We then
define the observed photon-fiux fiuctuation operator

using bg~(L) bP„t as—

bPi(Q) =bP(Q)+ — f;(Q),
~o

i Q ~,(Q) =—h [2ro br, (Q) —bg(Q)/(F')'~ ]

+A i RAN, (Q)+A3 bA(Q}+F,(Q),

and

(E4)

(E5)

~P,(Q)=by, (Q)-(F )'"~,(Q} . (E6)

Eliminating b A(Q) and ~,(Q) from (El), (E3), and (E5)
we obtain

b r i(Q) = [BiG,(Q)+B2F,(Q)+B3f,(Q)+B4]/Bs,

where

Bi ——+co/g, (1 i Q/A —i ),

B2———Q ot/ Q, A3/Ai,

A 3 A 3 /A i + [( to /Q, ) —iQ ]( 1 i Q /A i )—
B4 —— +to/Q, hA3 b—Pp l(F')'

(E10)

(El 1)

B&—A2A3/Ai+iQ(1 iQ/A, ) V'o3—/Q, 2rohA3/Ai —.

(E12)

The power spectrum of b.r i(Q) is obtained from (E7) as

P~ (Q)=

N 38 iBiP (Q)+B2B2P- (Q)+(BiB3+BiB3)(6„(Q)F (Q) ) +B3B3P (Q)+
C A2 F'

(E13)

' h'
P "(Q)

2I"r2

2
1

2
CO+Q+

Using (ES)—(E12) and the comelation functions. ~d the assumption of ~ extremely high pumping level already us~ in
Sec. IV, (E13) becomes

T

Pa- (Q) =
2

(1+h')+ Q'
(E14)
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Since the QND measurement does not disturb the
photon-flux fluctuation, P&„- (0} is also given by (E14),

which leads to (6.2).
The phase noise spectrum is to be calculated in the

same manner, which implies the elimination of EA(0),
EN, (0), b,g(0), and hr, (0) from (El)—(E5). The re-
sults are

Ap NA3 A4
+2h Ap

r

Ap e)A3
+2h Ap

A t

1
C3 ——

iQ

V'co/Q,

iQC4 ——

Cq ——(3/'co/Q, +i 0/+to/Q, ) /i QA p, (E18)

and

b gi(0) =Ci Gt(0)+ Cj;(0)+C36„(0)

+Cj;(0)+C,F,(0)+C6hgs(0) (E15)

A3 A4—i 02h Ap
&s

(E20)

(E21)

Pa] (0)= C)C)P-(0)+C)C)P-(0)+C3C3P- (0)
G; f; 6 and

where

+O'C P- (0)+C5 CsP~ (0)
F C

+(C3 Cq+ Cq C3)( G„(Q)F,(0))

+C6C6Pa~ (0),
P

(E16)

C6 ——
hA4

A )Bs (F'}'~~
(E22)

If a =0 (i.e., A4 ——0) and an extremely high pumping level

are assumed, the noise spectrum of

hfdf

is obtained as

P - (Q) = + +F'P - (0), (E23)
Q, 0 rp 2rp

C( —= lhQAp, (E17) which is the same as (6.5).
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