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Space-curvature-induced theoretical modifications in the interaction between atoms and external
electromagnetic fields have been investigated in the framework of a "curved-orbital" model: The
traditional Euclidean space is replaced by a geometrically simple curved space, i.e., the spherical
three-space of radius A. The required solutions of Maxwell's equations on the hypersphere have
been obtained in closed form. A novel procedure has been devised in order to obtain analytical ex-
pressions of the curved-space Dirac hydrogenic pseudoradial integrals in terms of the Dirac energy
parameter @=1+a'E„I,and of the Dirac quantum number k=( —1'+'+' '{j+1/2). The hydro-
genic Zeeman and Stark effects have been studied in detail and analytical expressions of the
curvature-induced contributions to the Lande g factor and to the Stark matrix elements have been
given in terms of e and k. This curved-space model, which will, we hope, provide the basis for an
easy extension to the many-electron cases, gives the usual flat-space results in the limit as the radius
R of the space increases to infinity.

I. INTRODUCTION

The results of investigating the modification of the
atomic spectra induced by the curvature of space has been
recently outlined in a series of papers. ' Specifically, in
the framework of a "curved-space Dirac-orbital" tnodel
we have calculated space-curvature-induced modifications
of the fine- and hyperfine-structure energy levels of one-
electron atoms. This curved-space model, although de-
fined in the geometrically simplest non-Euclidean space,
i.e., the spherical three-space, nevertheless is capable of in-
cluding, at least roughly, global effects due to the topolo-

gy of space. It leads to tractable computations and en-
ables one to predict, within the usual framework of
theoretical spectroscopy, some curvature modifications of
the spectrum. Particularly, it has been shown how the de-
generate one-electron fine-structure energy levels are split
by an additional space-curvature contribution which van-
ishes at the asymptotic fiat-space limit. In addition to
some technical advantages pointed out elsewhere, ' ' '

working in a space with constant positive curvature allows
us keeping a direct parallelism between the curved- and
flat-space results and permits an easy extension to the
many-electron case.

After the study of the space-curvature modifications of
the free-atom spectrum, ' another important step is the
study of the space-curvature effects in the interaction be-
tween atoms and external fields. One of the aims of this
paper is the investigation and computation of the Zeeman
and Stark splittings in a space of constant positive curva-
ture. Obviously, such an investigation needs a relativistic
treatment, i.e., the use of the Dirac equation for stationary
states with an external electromagnetic field. For that
reason, a brief review of the Dirac equation and of the
Dirac-Coulomb orbitals in a spherical three-space is given
in Sec. II. Since we consider only the case of weak exter-
nal fields, the perturbation approach is justified and the

investigation implies the computation of matrix elements
between the curved-space Dirac-Coulomb orbitals. To our
knowledge, closed-form expressions of such matrix ele-
ments have not yet been given. %e have been able to
compute the curved-space Dirac integrals by generalizing
a procedure recently devised' for calculating the fiat-
space Dirac-Coulomb r' radial integrals. Closed-form ex-
pressions of the curved-space Dirac radial integrals are
obtained in terms of the curved-space Dirac energy pa-
rameter e= 1+E„klmoc and of the Dirac quantum
number k =( —1) +'+' (j+—,

'
) (Sec. III). Following the

line of treatment sketched by Infeld and Schild" in their
study of Maxwell equations, the pseudoradial dependence
of the static electric and magnetic fields is investigated in
comparison with flat-space results in polar coordinates
(Sec. IV). The Zeeman and Stark effects of the relativisti-
cally bound electron in spherical three-space, where the
magnetic and electric field are weak compared to the
separation of neighboring fine-structure levels, are con-
sidered in Sec. V, and the expressions of the space-
curvature modifications (up to the 1/R contributions) of
these effects are given in terms of the quantum numbers.

Before writing down the expression of the Dirac equa-
tion in a spherical three-space and before deriving the
curved-space form of the interaction of one-electron
atoms with external fields, let us recall that the space-time
line elements are, in a space of constant positive curvature
and in an Euclidean space, respectively,

and

ds =c dt RdX —R sin X(d—8 +sin Hdg ), (1)

ds =c dt dr r(d8 +sin Odg )—, — (2)

~here 0 &g (m, 0 & r ~ ao and in both cases 0( L9 & m. and
0 &/ (2n. Setting R ~ oo, +~0 such that Rg =r
remains finite, the spatial part of the line element (1)
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reduces to that of Euclidean space in which r, 8, P, are
the usual polar coordinates. Hence, it can be inferred that
the differences between the expressions of the curved- and
the flat-space matrix elements will occur in their X-
pseudoradial part and r-radial part while the angular (8,$)
part will remain unchanged: therefore, all the usual cou-
pling schemes and angular selection rules of the tradition-
al atomic-structure calculations will be preserved.
Nevertheless, it can be expected ' that the curved-space
magnetic and electric pseudoradial matrix elements lead-
ing to the same asymptotic fiat-space limit will be dif-
ferent.

II. DIRAC-COULOMB ORBITALS
IN SPHERICAL THREE-SPACE

Starting from the generally covariant form of the Dirac
equation in a Riemannian curved space-time, a convenient
choice of the Dirac representation can be made which
leads to the usual polar dependence (8,$) of the Dirac
wave function. One gets the following expression for the
Dirac equation for stationary states ' with an external
electromagnetic field ( V, A z, A e, A ~),

pK mc
a& p&+' + p+W

R stag

(ET—ev) e(X,8,(rt)=o, (3)
1

where

I 0 0 o.„
() I, a„= O, u =X,8, (b,

Q

crz (cr'co—sP+o sing)sin8+o cos8,

ae (aco —s(()+o sing)cos8 asin8- ,

cr~ a's——in/+ o co—sP,

(1+a
Previously, it has been shown how, within the perturba-
tive scheme, a direct parallelism can be kept between the
fiat-space functions p„k (r, 8,$) and the zeroth-order
curved-space Dirac functions P' '(X,8,$). This is con-
veniently achieved by discarding from the Dirac Hamil-
tonian, a Hermitian perturbation which vanishes at the

asymptotic flat-space limit. Finally, one gets the follow-

ing expressions for the pseudoradial components of the
Dirac spinor 4(X,8,$) (for details, see Ref. 5):

(0) k (0)Pk Pk ———
2 2 QC„„Pk,

Z R v(+v)

c,QUk=QUk —,, g UuQuk
v'(+v)

where

(v+ fk I)~(u'+ fk I)'
(v —u')(v+u'+2

I
k

I
)

X c(PU kQ~k+Qu'kP„k )r dr .
0

The zeroth-order pseudoradial functions P„'k (X ) and
Q„'k'(X) are linear combinations of two curved-space
Kepler functions Rs (X)

T 1/2

Rs~(0) ~(0)k
Pk —+ (Y2+rl) +1

y
1/2

s

The following properties of the 9'IJ and O'TJ spinors

hold.

(1+a"1)'3'J, =[J'(j +1)—&(1+1)+—,]&I,.

I ~r

1jm

lA

asia aXs™ (0) e k(0)

Q.k =-& (r2 —ri) +1
y

1/2

Rs~

where

in the above, I and o',o,o are the 2X2 unit and Pauli

matrices; It =P(1+o"1);cr =(o',cr,o ); and 1 is the clas-
sical orbital momentum of the electron. Er mc +E is-—
the total energy. The magnetic interaction term is

e(0)k—(r2+ri)
1/2

R~s

e 1 a~ A'y8'= —agog+ . A 8+
sing sing sin8

(4)

Pllk (X ) IJltl

Z sinX &Q.k(» 3'TJ

where I =/+ 1 for j=I+ —,
'

and k = ( —1) +'+ '
(j+ —,).

When the external electromagnetic field in Eq. (3) reduces
to the Coulombic potential V(X)= —(Ze/R)cotX, a per-
turbative procedure can be used to obtain the curved-space
Dirac-Coulomb orbitals 4(X,8,$). Since, at the asymptot-
ic flat-space limit, the function @(X,8,$) must lead to the
familiar fiat-space Dirac function 4(r, 8,$), we express
N(X, 8,$) in the following form:

rg ——
I
k+Za

I

', y2=
I
k —Za

I

'J

y=(sgnk)y&yz ——(sgnk)(k —Z a )'J

s'=v+
I r I

—1,

e(0) =Z(0)/IC2T

Z cx1+
(u+ Ir I

)'

' —1/2

2

1+ u(u+2 fy I
)

R

1/2

~=(e' '/8
I y I

)' 1+ u(u+2
I y I

)



326 N. BESSIS,G. BESSIS, AND D. ROUX 33

where

Z Q1+
(U+ Iy I)'

' —1t2

Q 2

x 1+,[(U+ IyI)'+z'a']

ak
4R 2

1

R4

Let us remark that the classical Dirac-Coulomb flat-
space radial functions P„k(r) and Q„k(r) are also given by
the expression (8) when substituting the curved-space ex-
pressions of the Kepler function Rs (X), of e' ' and of M
with their fiat-space counterparts, i.e.,

R s (r) =Nskrr +'exP[ qr/(S+ 1—)]

XL„+'(2qrl(S +1)),

Z o.'M=(e/8
I y I

)'~, k= 1+
(U+

I y I

)'

q =ZE' .

I.„+' is a Laguerre polynomial. As will be seen in the
following sections, this direct parallelism between the
curved- and flat-space Dirac orbitals will be particularly
useful when calculating the curved-space pseudoradial
Dirac (RX)' integrals. When setting M=l, S=n —1

(n =1,2, . . .), and q =Z, the expression (11) identifies the
Schrodinger hydrogenic radial functions.

III. CLOSED-FORM EXPRESSIONS
OF THE PSEUDORADIAL INTEGRALS

In our investigation of the bound states of the electron
in external fields, one of the critical parts is the computa-
tion of the necessary Dirac pseudoradial integrals in
closed form. In Refs. 5 and 12, a procedure has been
given, which takes full advantage of the fact that the
Rs (X) are eigenfunctions of a Infeld-Hull' factorizable
equation and which leads to closed-form expressions of
the hyperfine structure parameters in terms of e and of
the quantum number k. Nevertheless, the final formula
thus obtained is not entirely satisfactory since it involves

and a is the fine-structure constant. The curved-space
Kepler functions are

Rs (X)=%ski(sinX) +'exP[ —qX/(S+1)]

XP„" '( —i cotX),

where a = —(5+1)+iq/(S+ I), q=ZRe, and, in spite
of the presence of the imaginary quantities, the Jacobi po-
lynomial in (9) is a real polynomial in cotX of degree
U =S—M.

The energy E„k——ET—mc, including the curvature
contributions (up to the 1/R terms) has been found and
can be written

E„k—— i (&—1),1
(10)

+ . Pk(X)
1 d k

slnX

1 d k
R dX

(1+»)c+ cotX Q„k(X),
ZG

(12)

Za
(1—e)c — cotX P„k(X),

where Q„k(X) can be identified with the traditional small
component. The associated boundary and normalization
conditions are

Puk(0) =Q.k(0}=P.k(~}=Quk(~) =0

p2 + 2
(13)

Then, combining Eq. (12) for P=P„» and Q=Q„» togeth-
er with their companions for P'=P„k and Q'= Q„k, one
can write

—
d

(P'P+Q'Q)+ . (P'P —Q'Q)
1 d, , k'+k
R dg R sing

2c(P'Q+ Q'P ) +—(e' e)c (P'Q —Q'P —),
k' k

R dg R sing
(P'P —Q'Q )+ . (P'P+ Q'Q )

(e'+e)c+ cotX (P'Q+ Q'P),2Zcx

R
(14)

(P'Q+Q'P)+ . (P'Q Q'P)—1 d, , k' —k
R dg R sing

= —2c(P'P+ Q'Q )

+ (e'+ e)c+ cotX (P'P Q'Q ), —2Zo.'

the rather intricate expressions of the off-diagonal S'&S,
M'&M (R s I

r'
I
R s ) fiat-space integrals. ' ' A novel

and more direct procedure has been devised recently' and
is applied in the present paper to calculate the Dirac pseu-
doradial matrix elements of (RX)' with s &0. This pro-
cedure is simply based on the fact that the P„k(X) and
Q„k(X) Dirac radial functions are solutions of first-order
coupled differential equations and also that some inter-
mediate integrals could be replaced exactly by their
asymptotic flat-space values. Since in the present paper,
we are concerned just with the computation of the 1/R
contributions to the pseudoradial integrals leading, at the
asymptotic flat-space limit, to radial r' integrals with
s &0, the knowledge of closed-form expressions of the
pseudoradial (RX)' integrals is sufficient. This will be
shown in the following sections.

Using Eqs. (3},(5), and (6},setting W =0 and introduc-
ing the curved-space form of the Coulombic potential, one
obtains (in a.u. ) the following coupled equations for the
Dirac pseudoradial hydrogenic functions P„k(X) and
Q„k(X) in the spherical three-space:
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W, (u', k';u, k)= f (RX )'(P'P —Q''Q)dX,

(u , k, u'k) ', c, f=(RX)'(P Q Q'P')dX —.

(15)

Multiplying both sides of Eq. (14) by (RX)' 'R sinX and
introducing the expansions

R sinX=(RX) — (RX) +1

6R

and

cosX = 1 — (RX ) +1 2

2R

one gets, after integrating by parts and taking into ac-
count the boundary condition (13}

(P'Q —Q'P)+ . (P'Q+ Q'P)1 d, , k'—
R dX R sinX

(e—' e)—c(P'P+ Q'Q)

Let us now consider the deterinination of the pseudora-
dial (RX)' integrals and let us set

W, (v', k', v, k) =f (RX)'(P'P+Q'Q)dX,

g, (v', k', v, k) =cf (RX)'(P'Q+Q'P)dX,

Xi(s) =(s+2)W, +i 2—g, +2+(e' e—) K, +2,

X2(s) =(e'+ e)g, +2+6za +,+,—(s +2)W, + i,
X3(s)=2JP;+2—(s+2)a g, + i

—(e'+ e)m, +,—6Za2m, +, ,

X4(s)=(e' —e)W, +2 —(s+2)a W, +~ .

As long as we are concerned solely by the 1/R contribu-
tions in the integrals (15), it is easily inferred that the in-

tegrals appearing in the X;(s) can be replaced by their ef-
fective values, i.e., their asymptotic flat-space limits

(R ~00,X~O,RX=r) which are

Jr, (v', k', v, k) =f r'(P'P+Q'Q)dr,

dr, (u', k';u, k)=c J r*(P'Q+Q'P)dr,
(17)

~, (v', k', v, k)= f r'(P'P Q'Q)dr—,

W, (v', k';v, k)=c f r'(P'Q Q'P)dr —.

where P=P„&(r},Q=Q„&(r}are the flat-space Dirac radi-
al functions. Moreover, noting that these fiat-space in-

tegrals verify the fiat-space asymptotic limit of Eq. (16),
one can replace in Eq. (16), the X~(s) by the following ex-
pressions:

sW, i
—2g, (k'+k)P—C, i+(e' —e)W,

1

2 Xi(s)+0 1

6R R

(k'+k)W, i+(e'+e)g, +2Za g, i —sW,

1

2 X2(s)+0 1

6R R

~,—sa g, i
—(e'+e)A, —2za2W,

+(k' k}a W, i ———
2
Xi(s)+01 1

6R R

(e' —e)W, +(k' —k)a2g, , —sa2&,

1

2
X4(s)+0 1

6R R

where

(16)

Xi(s)=(k'+k)A, +i,
X2(s)= —(k'+k)&x+i+4za g, +i,

X,(s)= (k' k)a2W— ,+—, 4Za2W„—, ,

X4(s) = —(k' —k)a g, +, .

In the present paper, we shall limit our investigation to
the determination of the particular diagonal (v'=v, k'=k)
and off-diagonal (v'=v, k'= —k) integrals which occur
when studying the Zeeman and Stark effects, respectively.
As it is shown in the Appendix A, for these particular
cases, the Eqs. (16}become simpler and closed-form ex-
pressions of the pseudoradial integrals (15) in terms of e,
k, and of the X;(s) are obtainable. Moreover, for these
cases, compact expressions of the flat-space integrals (17}
have been obtained' in terms of e and k, thus leading to
closed-form expressions of the X,(s) (see Appendix 8).
Finally, one gets closed-form expressions of the pseudora-
dial integrals in terms of e, F, and k. Particularly, one
finds

a 1 Zap 1K(i(v'=v, k'=k) =e+ —k — +0
1 — R

and

kJi(v'=v;k'=k) = —,(1—2@k)+ 9e'k+3ek —e—6k — . +0
12(l —e' )R 1 —(. 2 R

(19)

3ZQ,' CX )O
2

I i(v'=v k'= —k) =
2 e I 0+ 2 22(1—e) 2R (1—e )

where

2 2—

, e+ —,k (3+ek )(1+e ') — —(4e'+21)
9(1 e)—(20)
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~2I 2

Zcx y

+2/ 2
G.

and I0——l0 1 — +0
R (1—e )

When retaining the terms up to a in Eqs. (19) and (20), and introducing the radial quantum number n =u+
~

k ~, one
gets

Ko(u'=u;k'=k)=1 — + (k —2n )+0
2~2 4R2 R4

Z u2k
J, (u'=u;k'=k) = —,

' (1—2k)+
2'

k

12Z R
5n4+n' 3n—'l(l+1)

2 2

1 n —3k—+6k — [10n 3l—(1+1)+1]
2 fk/

+0 1

R
(21)

and

l,(u'=v;k'= —k) =—3 k
' 1/2

sgn(k) 1— Ziain(2n+
~
k

~
)

2Ik I«+ Ik I)

r

2 2 a
(7n + 15k +5) +0

18Z2R 2 R

(22)

us remark that using expression (19) for
Ku(u'=u;k'=k) together with the normalization condi-
tion Iu(u'=v;k'=k)=1, one finds

a k Zae 1
Q„kdX = —,

' (1—e)— +0
0 R4

(23)

At the asymptotic flat-space limit, this expression merely
reduces to the previous result of Crubellier and
Feneuille, ' obtained by simultaneously using the factori-
zation method and group-theoretical [O(2, 1)] considera-
tions, or alternatively found again recently' by direct cal-
culations, i.e.,

„k r= —, 1 —5

Of course, from Eqs. (16), one can derive recurrence re-
lations allowing the determination of closed-form expres-
sions of the (u'=v, k'=k or k'= —k) (Rg)' pseudoradial
integrals in terms of e, e, and k, for any positive value of
s. These relations, which are quite similar to the flat-
space ones, ' are not reproduced in the present paper.

IV. PSEUDORADIAL DEPENDENCE OF STATIC
FIELDS IN SPHERICAL THREE-SPACE

Before investigating the particular case of static fields
in a spherical three-space and deriving the expressions of
the interaction terms leading to the Zeeman and Stark ef-
fects, let us first briefly recall and comparatively examine
the main features of the general solutions of Maxwell's
equations in the flat and in the spherical three-space.

A. General solutions of Maxwell's equations

As it is well known (see, for instance, Ref. 18), when
working in a curved space-time instead of the usual flat

A~.Bx" Bx"
(25)

Infeld and Schild" have already examined the solutions
of the Maxwell's equations (24) in a space of constant pos-
itive curvature with line-element (1). Particularly, they
have given general expressions of the potential' vector
components A&

~ inct " pm~, sin(mP)
cos(mP) '

cos(mP) '

A = —%me'""3P' — P
sing cos( m P )

e
dpI

dg —sin(mp) '

space-time, Maxwell's equations have to be derived from
their generally covariant form

a„~~+ ~~~ +Bx" Bx Bx"
(24)

[( g)1l2givggfP ] 0
ax~

where )uv, A, ,/=0, 1,2, 3, g„„or gr" are the covariant or
contravariant components of the metric tensor in the line
element ds =g„„dx"dx", and the Einstein summation
convention is used; g =det

~ g„„~ .
The electromagnetic-field antisymmetric tensor com-

ponents F„„are related to the electromagnetic-potential
vector components Az by the following definition:
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The associated electromagnetic field components F„„are

R sing

dent'„dP( ( P(

R dg d8 sing

d l (I+ 1)

df

r dr

sin(mP)
cos(m(()) '

R dX

cos(mg)—sin(mP) '

F =W(i+1)e'-'e(sin8P X —sin(mP) '

1 d3P„' dP(
F~(( Ne '"" ——— sin8 +imn A '„P(

R dX

cos(mP)—sin(mP) '

deaf „1 ( dP(
F(((( —Ne'"" ——m — . P( +in%„

R X sin8

sin(mP)
cos(mg) '

(27)

This parallelism between the expressions of the elec-
tromagnetic fields when switching from the flat-space
description (in r, 8, P) to the spherical-space description
(in X,8,$) and conversely, will be particularly useful for
investigating the Zeeman and Stark effects in the spheri-
cal three-space.

8. Static fields

For n =0, the expression (26)—(30) yield the static
fields in spherical three-space and in flat space. From the
asymptotic flat-space limit of Eqs. (27) (R~oo,X~O,
RX=r), one finds again the already known expressions of
the static electromagnetic field components in polar coor-
dinates

F =W(i+I) 'X~—X ""'
rt cos(mP) '

sin(mP)
d8 cos(mP) '

In Eqs. (26) and (27) N =N„( is a free arbitrary complex
constant, P( =P( (cos8) are associated Legendre func-
tions,

~

m
~

(1 in order to ensure the uniqueness of the
field components in physical space. The 3F'„=lf'„(X)
functions are solutions of the differential equation

I
cos(m P)Fy(=Nm P( X '

( y)

F((p Nl(l+ l)AF psin8——P( y, '

d l(t+1) 1 ~(
dX sill X

(28)
cos( m (1()F~„Nsin8——

Since this differential equation (28) is a Infeld-Hull' (type
2 or I) factorizable equation, the A„ functions, satisfy-
ing the boundary conditions of the problem under con-
sideration, can be obtained from the knowledge of one of
them (9f„or 3P"„, for instance) by means of the up and
down ladder operators

dX'
F N

p pm, sin(mf)
dr sin8 ' cos(mp) '

where, according to the boundary conditions to be satis-
fied for the problem under consideration, the function

I3P p is one (or a combination) of the two following radial
functions:

I cotX+
dX f((r)=llr', g((r)=r +'. (32)

(29)

(I + 1)cotX-
Gg

In flat space, when using polar coordinates, the
electromagnetic-potential and -field tensor components
are also given by Eqs. (26) and (27) where the pseudoradi-
al functions 9F„(X) have to be replacml by the
X„=Ã„(r)radial functions which are solutions of the
equations

The first one corresponds to static field with singularities
at the origin and the other to static fields vanishing at the
origin. They can be generated by iterative use of Eqs. (30)
when starting from the particular (n =0,1=0) solutions
f,=l and gp=r

In spherical three-space, the two particular (n =0,1 =0)
solutions of Eq. (28) which, at the asymptotic flat-space
limit lead to the fp and gp functions are found to be
fp = 1 and gp =RX, fcsPcctlvcly. Tllcy gcliclatc thc two
families
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f0= 1, f, =—cotX, fz=(3cot X+1)/3R
R

of the electromagnetic field are related to the antisym-
metric field tensor by the following equations:

fi =(15cot X+9cotX)/15R

go ——RX, gi ——3R'(1 —XcotX),

gz ———", R [X(3cot X+ 1)—3 cotX],

g3 ~g R [X( 1 5 cot X+9 cotX) —1Scot X—4]

(33)

F =E„, F+=Ey, F =E, ,

A. Zeeman effect in spherical three-space

(37)

From the expression (26) of the electromagnetic potential
vector, it is seen that the pseudoradial parts of the magne-
tostatic potentials (O, Ax, Aa, A&) are just the functions
%0(X} while the the pseudoradial parts of the electro-
static potentials (A„O,O;0) are the derivatives
(I IR)(d3PO/dX). One gets the following (electrostatic)
families:

1 d 1 dFi(X)= fi and GI(X
R dX R dg

leading to the asymptotic flat-space limits (I/r)'+' and
r', respectively,

F, =(1+cot X)/R, Fz ——cotX(1+cot X)/R

Fz ———,(5cot X+6cot X+1)/R

G~ ———,R[X(cot X+1)—cotX],

Gz ————', R [3XcotX(cot X+1)—3 cot X—2],
G3 —,g [X(15cot X+ 18 cot X+3)

—15 cot X—13cotX],

(34)

Thus, it can be expected that the pseudoradial integrals
leading to the same flat-space limit will have, in spherical
three-space, different space-curvature dependence accord-
ing to their magnetostatic or electrostatic origin. This re-
sult is to be compared in some respects to the differentia-
tion occurring between the relativistic expressions of some
magnetic and electric parameters leading to the same non-
relativistic limit such as the dipolar magnetic and quadru-
polar electric hyperfine (r ) parameters.

Let us remark that the Fi(X) and Gi(X) functions have
been found by a quite different way, when establishing the
curved-space form of the multipolar expansion of the
bielectronic Coulomb potential

—cote@,j ———cotX&+g(C 'Ci ')Fi(X&)Gi(X&),
I

(35)

where co;J is ihe "angular separation*' on the hypersphere
between electrons i and j and C '=C'"(8;,P;) is a spheri-
cal tensor. As already pointed out, this expansion (35} is
the curved-space homolog of the Laplace multipole ex-
pansion

rg~ p)
g(C'"C'")( ' / '+')

I
(36)

V. EXTERNAL UNIFORM STATIC FIELDS

In order to write down the interaction terms leading to
the Zeeman and Stark effects in spherical three-space, let
us first recall that, in flat space, the Cartesian components

Let us assume that the uniform magnetic field P is
directed along the z axis. Then, in Cartesian coordinates,
the associated fiat-space antisymmetric field tensor com-
ponents are

F"~=—F~"=4, all other F&"I=O . (38)

and one gets

F~'=P Ir, F+= (4 Ir )—cot8,

all other F""=0. (39)

Using metric (2), one gets the covariant field tensor com-
ponents

F~, =A r sinz8, FA =-(P rz)sin8cos8,

all other F„„:0. (40)—
It can be noted that these expressions are a particular case
of expressions (31) with I =1, m =0, N = —',8, and

8 0= ,
' r = —,

'
g, (r) —and correspond to a magnetic potential

with components A~ ————,'4 r sin 8, A, =He ——0.
Keeping in mind that in spherical three-space, the pseu-

doradial parts of the magnetostatic fields are given by
Eqs. (33) and owing to the above remark, one deduces that
the uniform magnetic static potential and field com-
ponents are given by Eqs. (26) and (27) when setting
n =0, I =1, m =0, and

80 ———,'gi(X)=R (1—XcotX) .

One gets

A~ = —,
' 4 R (X cotX —1)sin 8, Ar ——Ae ——0,

Fa~ ——3A R (X cotX —1}sin8cos8,

F&r ——,'A R [X(1+cot X)—cotX]sin 8 .

(41)

Substituting in Eq. (4) the expression (41) for A~, one gets
the interaction term in the Dirac Hamiltonian associated
with a magnetic field in the z direction

T

0 crye 3 7 cotX —1
(42)

Ac ' si~
Since

(sin8)o~ ——i W2(C" 'cr' ")Ot",

it is easily inferred that the interaction term associated

Consequently, in polar coordinates (x",x"=t,r, 8,$), the
field tensor components are given by the expression

Bx~ Bx" Bx" Bx~
A

Bx By Bx By
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0
i ( C( 1 )~( I ) )( i )

g
(C(1)~(i))(i)

with an arbitrarily direct& field is

3eR (1—X cotX)
EKE 2 sl?lX

(43)

one gets

( 1)(+j—(/2 (2j+ 1)
j(j+1)
3R(XcotX —1)

d
0 ~uk uk

S1XLf.
(45)

'(4 k I
~

I kk & =Pg&4.k I
~ i I '((.k & (44)

where P, =eA/2nioc is the Bohr magneton. Using the ex-

pression (43) for M together with the expressions for the
spin-angular reduced matrix elements, ~ i.e.,

= ( —1)'+'+' [(j+—')2j(j+ 1)1

& l i jllilll i j & =[j(j+1)(»+1)&'"

In order to investigate the space-curvature-induced
modifications of the Zeeman splitting, it is convenient to
derive the curved-space form of the Lande g factor which
is defined by the relation

Noting that

3R(X cotX —1)/sinX= —(RX)— (RX) +
30R

one can express the pseudoradial integral in Eq. (45) in
terms of the already known integrals Ji and Ji [see Eqs.
(19) and (B2), respectivelyj, and one gets

k 7 — 1

j(j+1) ' 30R' ' +Ji+ J3 +0

or, in terms of e, F, and k, after noting that
j(j+1)=k ——,',

1

4

r

a Z' 'k
—,'(1—2@k)+ 3k'(10K 9)+F—k(24k 29)+—7+ [ (71 +4 k)+SFk(2 7e —)]

40R '(1—k i) ~2

(47)

At the asymptotic flat-space limit, expression (47) reduces
to the relativistic expressions of the flat-space Lande g
factor, i.e.,

g = —k(1 2' )/(2—k' ——,
' ),

j (j +1)—1(l+1)+ 4 Zi~iki
g =1+ 2j(j+1) 2n~j (j +1)

k(7 Sk)[5n —+n 3n l(1+—1)]
40Z R j(j+1)

(48)

including the Breit-Margenau correction.
When retaining in g the terms up to a and since

k=j (j +1)——l(l + 1)+—,',
the expression (47) reduces to

nd 5/2 —3

nP3/2

np )g2 1

nS l /2 —1

4
5

4
3

2
3

18Z a
35n

SZ a
15n

2Z A

3n

93n {5n —17)
350Z'R'

jn 2{5n~ —17)
25Z R

23n {n —1)
15Z R

n (n2 —1)
6Z R

n2{5n +1)
2Z2R

TABLE I. Space-curvature contributions to the Lande g fac-
tor.

State k Flat space Breit-Margenau Curvature effects

The two first terms in Eq. (48) correspond to the well-
known nonrelativistic expression of the Lande factor, the
second term to the Breit-Margenau correction and the
remaining terms correspond to additional curvature con-
tributions which vanish at the asymptotic flat-space limit.
Let us remark that while the Breit-Margenau correction is
the same for the two degenerate states l =j——,

'
and

l =j+—,
' of each fine-structure energy level n,j, this is

not the case for the space-curvature modifications which
depend on the sign of k. Moreover, as n increases the
Breit-Margenau correction decreases (as 1/n ) while the
space-curvature modifications increase (as n ) Of course, .
these curvature modifications should be detectable only in
regions where the local curvature could be really impor-
tant. For the case of highly excited states n =100, these
curvature effects should be comparable to the Breit-
Margenau effect in regions where the local curvature ra-
dius is of the order of magnitude of few centimeters. For
illustrative purpose, space-curvature contributions to the
Lande-g factor are reproduced in Table I.

8. Stark effect in spherical three-space

The main part of this section is in complete analogy
with the preceeding section. Let us assume that the uni-
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F~= F"—=8', all other F~"=0—. (49)

form electric field 8' is directed along the z axis. The, the
associated flat-space antisymmetric field tensor com-
ponents are, in Cartesian coordinates

Then, in spherical three-space, the uniform electric field
components and electric potential follow from Eqs. (27)
and (26) with n =0, I =1, m =0, and
%0——R (1 —XcotX). One gets

The field tensor contravariant components are given in

polar coordinates (x",x"=t,r, 8,$) by the expression

F
—„„Bx"Bx" Bx" Bx"

Bt Bz Bt Bz

A, = —', 8'A[X(cot X+1)—cotX]cos8,

Fz, 3S——'R cos8,1 —XcotX

sin g

F@ ——',——8'R [X(cot X+ 1)—cotX]sin8 .

(53)

One gets

F"=—I'cos8, F '=(1/r)S'sin8, all other Fi'"=0. —

(50)

A, = 8'r cos8, Az ——Ae —
A&

—0 . (52)

The covariant components are

F„=8'cos8, Fe, —8'r —sin8, all other F„„=0. (—51}

These expressions are particular cases of expressions (31)
with n =0, I =1, m =0, X= —,

' 8', and Ão ——,'r . The-
associated electric potential is

Keeping in mind that, in terms of the spherical tensor
components, cos8=Co", it is easily inferred that the elec-
tric potential associated with a uniform, arbitrarily direct-
ed electric field is

'k = —,
' 8 [X(cot 1+1)—cotX]C"'8' . (54)

In the Stark effect where the electric field is weak com-
pared with the separation of neighboring fine-structure
levels, the unperturbed states are assumed to be the solu-
tions of the Dirac-Coulomb equation (3) and the deter-
mination of the Stark splittings amounts to evaluation of
the matrix elements

&p, k ~

1
I pk &=8'&I'j'm'I Cq"

I
jIm & —,'R f (P„kPk+g, k gk)[X(cot X+1) cotX]dX-

Application of standard angular momentum techniques leads to

1

&+iJ'm'I &q I +ijm &=&+TJ' ICq I TJ~ &=( 1) m'
& ~ &I'J'IIC IIIj&

with the associated selection rule I'= I+ l.
After noting that

(55)

—,'A[X(cot X+1)—cotX]=(RX)+ (RX)'+
158

the pseudoradial integral in Eq. (55) can be expressed in terms of the pseudoradial integral Wi(v', k', U, k) and of the flat-
space integral Wi(U', O', U, k}. Finally, one gets

J' 1 J J 1

&=( —1) +'" [(2j+1)(2j'+l)j'" & ~i+ ~i +0
2

—
2

(56)

For illustrative purpose, let us investigate the low-field Stark splittings of a given fine-structure energy level n,j From.
the selection rule I'=I+1, matrix elements (55) vanish except for k'= —k. When the electric field is assumed to be
parallel to the quantization axis, one gets

, ~ )i+
2j j+1 158

(57}

Closed-form expressions of the pseudoradial integral I, and of the flat-space integral I 3 have been obtained in terms of
e, e, and k [see Eqs. (20) and (B3)] and one gets

1/2

4j(j+1) (1—e')

2 12Z~ 2e3
3e— 14@k k(3+ Fk)( 1 +—e ) +

4R (1 e)— 1 —e

or, when retaining the terms up to a

(58}
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3m@' k 2 Z a(2n+~k ~) n k

Z(4k' —1) ' 2 (k (( +(k () Z'R' (59)

In Eq. (58), the first term corresponds to the fiat-space
relativistic expression of the Stark matrix element —while
the last terms (in 1/R ) correspond to additional space-
curvature contributions which vanish at the asymptotic
fiat-space limit. From expression (59}, it is seen that
space-curvature corrections increase with n (as n ) while
relativistic effects decrease with n T.he study of the hy-
drogenic Stark effect can be pursued in a spherical three-
space in the same way as in fiat-space using expressions
(58) and (59) instead of their fiat-space counterpart.

VI. CONCLUSION

Continuing our study of space-curvature effects in
atomic-structure calculations, the space-curvature-induced
modifications in the interactions between atoms and exter-
nal electromagnetic fields have been investigatel in the
framework of the curved-space Dirac-orbital model.
Closed-form expressions of the solutions of the Maxwell
equations in a spherical three-space have been obtained.
A novel method for computing the required Dirac pseu-
doradial integrals in terms of the quantum numbers has
been devised. Particularly, space-curvature modifications
of the hydrogenic low-field Zeeman and Stark splittings
have been given in terms of the Dirac energy parameter e
and of the Dirac quantum number k. This simplistic and
heuristic model which includes global effects coming
from the topology of space leads to results which are not
especially difficult to obtain or to use in parallel with the
traditional fiat-space ones: as already pointed out, the
later are easily found again at the asymptotic limit
R~ao. All the basic computational material has been
prepared for further extension of the model; when consid-
ering a space of constant negative curvature (open space),
instead of a space of positive curvature (closed space), the
procedure of calculation is formally analogous. Abandon-
ing Euclidean geometry in favor of the simplest non-
Euclidean geometry may be also considered a preliminary
step for further investigations of the gravitational modifi-
cations of the spectrum involving more elaborate metrics.
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APPENDIX A: CALCULATIONS OF THE u'=u,
k'= +k PSEUDORADIAL INTEGRALS

1. Determination of the k'=k pseudoradia1 integrals

For k'=k, e'=e, the relations (16) reduce to

k 1$I 1 2Js 2kKs —1 2 +s+ ~ +O 4

f

2Is sa Js —1 2eEs 2Za Es —1

k — 1Jo+kK —i = — K&+0
6R R4

ZQ 2
1

eKO+Za K (
——Io+ K) +O

3R R

1 1Ji+kKu ———,Io — Kg+0
6R R4

(A2)

eJi+Za Jo ——,'Kv —— kIu —(kIi——2Za Ji)
6R

1

R4

Closed-form expressions of the flat-space integrals ap-
pearing in Eq. (A2) have been obtainedM in terms of

F=[1+Z a l(u+
~ y ~

)']

and of the quantum number k (see Appendix 8). Owing
to the normalization condition (13}, Iu 1 hence the-—
above system can be solved. Particularly, one obtains
the expression (19) of Ji ——g i(u, k;v, k) and Ko
=Ma(u, k;v, k) together with the following expressions:

1 —e 1 Z a(l+Se' )
—1 Za 6ZR 1 —F

k k+W—

+O 1

R

(A3)

k(e —1) k
k k

Z a(1+6K )k k+3e—

+0 1

R

2Zcx 1

3R
E,+)+0

R

where the shortened notation I, =W, (u, k;v, k), . . . is
used. Setting s =0 in the first and third Eq. (Al) and
s =1 in the first and second Eq. (Al), one gets the follow-
ing system of linear equations allowing the determination
of the integrals Jo, Ji, Ko, and K i in terms of Io and of
the v'=u, k'=k flat-space integrals (17):

2kI, i+2eJ, +2Zo,'J, (
—sE,

( kI, +i+2Za J,+i)+—0
3R R

(Al)

When retaining in Eq. (19), the terms up to a~ and in-
troducing the usual radial quantum number n =u+

~ y ~,
one gets the expression (21) of Ji ——Wi(u, k;u, k) and of
Ko ——A"0(u, k;u, k) together with the following expres-
sions:
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ZK
Pl

r

Z'a2
3n —l(1+1}+Za 1 — +3n k

n (k (
6ZR' 2n'

(A4)

kZ Z a2k 1 1Jo~
n~ n' n ~k

~

3n —l(1+1}+Za 1 — +
4ZR 2n'

r

2 Determinetion of the k'= —k yseudoradial integrals

For k'= —k, it is easily checked that e' —e=a~k /2R ' and that the relations (16) reduce to

Q 2
1

s I, , —2J,= — k L, +02R' ' R4

2

2e J, +2Za~ J, , —s K, , = — (k J g
——,Z J,+t) +o

(A5)

Q2I, —sa'J, , —2eKg —2Za'K, t
—2ka'L, ) =,(k Kg+ 3k Lg+i —3Z Ks+i}+o

R

a2ka~ J, , +sa~ L, )= (k T, —-', k J g+))+0

where the shortened notation I, =Jr, (u, —k; U, k) is used
Setting s =0 into the flrst equation (A5), s =1 into the four Eqs. (A5), s =2 into the first equations, one gets the fol-

lowing system of equations, including the curvature contributions up to the 1/R ~ terms

2

J ak—
0 4R2 Q

ak—2

Io—2J
2R

2

2eJ &+2Za Jo—Ko= (3ZJz —T'kJ&) r
R

2

21' —a Jo—2e'K i
—2Za K o—2ka Lo= (k K + —k K —-Z K )

2R

2k Jo+L o—— ( —,
' I) ——,

' Jq),

(A6)

ak—2

t )
—J L2,48

2
e J p+Za J,—K, = ( —Z J 3

——'k J q} .
2R

Solving this system, one gets closed-form expressions of the pseudoradial integrals I „Jo, J,, J z, K o, K &, and L o in
terms of one of them, say I o, and of the (U'=u;k'= —k) flat-space radial integrals. In a last step, these flat-space in-
tegrals can all be expressed in terms of F, k, and I o (see Appendix 8). One gets the expression (20} of I

&
together with

the following expressions:

Jo——0,
ak2 2

J ]—I lo IQ
SR

(A7)
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r

a2 4Zat
K o=e{ o+ 2 k(1 —Fk) —,{o,

4R (1—»')

where

—,(1+2@ ) ) o+ —,'(3—+2e )+ek+ —,k (1 E—+2» ) — (3+30' —8F )
2(1—e) 2R (1—e ) 1 —e

a ZFk
4R {1—e2)

y
I Za

F2k2 —1

.
y'

] /2

One has to compute the pseudoradial integral ) o', using the expression (7) of the pseudoradial functions P„» and g„» in
terms of the zeroth-order functions P„'»' and g„'»' and introducing n = v +

I

k I, one can write

) o= ) o {v~ —k~v~k)+ 2 g [Cu', U(
—k) {o(v' —kiv~k) —CU', u(k) ) o{v ~k~v —k)] ~

v'(~v)
(A8)

where

n nC„.„(k)= J,(v', k;v, k) .
n2 n&2

Let us compute the off-diagonal v'gv flat-space in-
tegrals (when truncated at the a terms) and consider first
the determination of J

~ ( v', k; v, k). Setting

l

Rs"(g ) and Rsr (X ) [see Eq. (8)] and also that
e=e' '+0(a /R ), one gets

{
(') '(v, —k; v, k }=a&S yI S y —1 & . (A10)

An analytical expression of the overlap integral in (A10)
can be obtained when keeping in mind that the following
relation holds for curved-space Kepler matrix elements of
any derivable function f(X) (for details, see Appendix 8
of Ref. 4)

Zza2
W, =I,+0(a ), . . . , F' e=—

2 n n'
2

i/2

&sy lf Isy —1&
Q

Za 1 I+E'=2 — +
n n

Z6= Sy cot
R y

1 d
2R X

f Sy) . (All)

in Eq. (Bl), the principal parts I„J„.. . , of the fiat-
space integrals are found to be solutions of the following
system:

sW, , —2g g
—(k'+k)A, =0,

(k'+k)K, i+2/, —sM, i ——0,
{A9)~,—2%,=0,

I 1
W, +(k' k)+, i

—sW,—i ——0 .
n n

For k'=k, after setting s =0 in the fourth and third Eq.
(A9) and s = 1 in the first one, one gets, as expected from
the orthogonality property of the nonrelativistic part of
the radial functions, Io ——0 and also ICo Io, ——
Jo —2J~ —2kEo ——0. As a consequence,

J, =O, J, (v', k;v, k)=O(a )

and the pseudoradial integral (AS) reduces to

2
1 o

—) o (v, k;v, k)+0

Using Eq. (Bl1) of Ref. 4, one gets

&Sy
I
cotX

I
Sy&= ZER

(v+ Iyl)'
and one can write in terms of e [see Eq. (10)]

r

(
cot+ 1 —»' 1 (e'k —y ) 1

R Zas' R2 Z~(1 e ~) R

(A12)
Setting f=1, &Sy

I
Sy& =1 in Eq. (All) and using Eq.

(A12), one obtains

~2k 2

&sy Isy 1&=——
ZEMI y

' 1/2
2

y
2

1—
R (1—e2)

(A13)
and, therefore, the expression (20) of I o.

At the nonrelativistic limit, i.e., when retaining the
terms up to Z a and introducing the usual radial quan-
tum number n =v +

I
k I, the expression (A13) reduces to

' [/2
k

&Sy ISy —1&=—sgn(k} 1—

Keeping in mind that the Dirac Pg ' and Q„'»' radial func-
tions are linear combinations of the Kepler functions and one obtains the expression (22) of

(A14)
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APPENDIX 8: CLOSED-FORM EXPRESSIONS
OF THE u'=u, k'=k, AND k'= —k

FLAT-SPACE RADIAL INTEGRALS

As it has been shown previously, ' analytical expres-
sions of the flat-space integrals (17) in terms of c and k
can be obtained by solving the asymptotic fiat-space limit
of Eqs. (16), i.e.,

J3 ——
1

4Z

1
K) ——

2Z

Z a [3(1+4K ) —2k'(3+2K )]
(1—e')'

Z a~(6Fk3 3—k —11ek+3)
1 —E

Z a ( 1 +2K )

1 —F

(82)

sW, , —2g, —(k'+k)Pi, , +(F' e)W—, =0,
(k'+k)W, ~+(e'+F}g,+2Za g, &

—sW, , =0,

~,—sa g, )
—(e'+e)~,

—2Za2%, , +(k' —k)a2&, ) ——0,
(e' —e)W, +(k' —k}a g, )

—Sa W, ( ——0.

For k'=k, one gets the following expressions for the in-
tegrals encountered when calculating the space-curvature
modifications of the Lande g factor:

J

Z a e(3+2e') a~F(3k +3' 1)—
2(1—e')2 2(1 F—)

For k'= —k, one gets the following expressions for the
integrals encountered when studying the Stark effect:

' 1/2
2I 2

y'

3Za 6 io,
2(1 F)—

a Z a
I 2

—— 1 —k + (1+4e' ) I o,
2(1 e') — 1

4— Z Q

8(1—e )2 1 —e~

Z a (1+4K )
I2 ——

2(1—e )

k (1+2E )+3'—1

2(1 e)— Jp ——0, J,=rt I,

K g
——E I g+Za I g ] jt+1

1

2Z
Z a [3e k(1+2'—)] k 1 k2

1 —e
I o——0, L, = —2k I,t+1
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