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The interference of scalar optical Floquet-Bloch waves in periodically stratified media is discussed

in detail. Two main types of interference are identified and fully analyzed: normal and exchange in-

terference, producing, respectively, real and virtual spatial fringes. In the paper considerable use is

made of a reciprocal-space representation of the Floquet-Bloch waves (the wave-vector diagram),

first introduced in the dynamical theory of x-ray diffraction. Experimental observations of the in-

terference of integrated versions of the Floquet-Bloch waves, made in corrugated planar Ta20~
waveguides, are included by way of illustration.

I. INTRODUCTION

The simplest electromagnetic disturbances that can ex-
ist in a periodically stratified medium are the Floquet-
Bloch waves. ' These waves consist of stable periodic
amplitude distributions transverse to the stratifications,
progressing in phase along them, with group velocities
pointing at some angle to them. Their group velocities
yield the directions of the rays of the Floquet-Bloch
waves, which play the same role as do the rays of conven-
tional optics in isotropic media. Thus one can imagine a
Floquet-Bloch ray getting reflected and refracted at an
interface, the incident energy being carried off in the rays
of the reflected and refracted Floquet-Bloch waves. There
is little published work in which Floquet-Bloch wave
analogies of effects well known and understood in conven-
tional optics are discussed. In this paper one such effect
is singled out for treatment —interference. In contrast to
the interference of plane waves in isotropic media, it turns
out that the Floquet-Bloch waves can interfere in two dis-
tinct ways, one resulting in a redistribution of energy in
real space, the other in a redistribution of energy in re-

ciprocal space. The first produces real (i.e., visible) fringes
of the conventional type, and the second virtual fringes
that produce no redistribution of energy in real space, but
instead affect its angular distribution, energy getting ex
changed between two groups of spectral plane waves trav-
eling in phase in directions parallel to the upper and lower
first-order Bragg angles. These two types of interference I
shall call respectively normal and exchange interference,
labels made necessary by the fact that this is the first time
such a distinction has been made. Two-dimensional in-
tegrated Floquet-Bloch waves can be observed directly in
the light scattered (due to ever-present cosmetic imperfec-
tions) from corrugated planar waveguides. ' The truly
two-dimensional nature of such waveguides allows the ob-
servation of many effects predicted (but not easily con-
firmed experimentally) by the dynamical theory of x ray-
diffraction in crystals. That theory" provides a natural
basis for the discussion in this paper, although my preoc-
cupations are rather different since corrugated planar
waveguides can be fabricated to order, unlike crystalline
materials. Some photographs confirming the existence of

normal and exchange interference between these integrat-
ed Floquet-Bloch waves are presented and interpreted. In
the course of the discussion, the roles of the Poynting vec-
tor and the group velocity are clarified, as they have an
important bearing on the interference of the Floquet-
Bloch waves.

II. THE INTERFERENCE OF TWO PLANE WAVES

As a starting point, I consider the interference of two
monochromatic plane ~aves in an isotropic lossless medi-
um. This is in order to clarify the roles played by group
velocity, Poynting vector, and phase velocity. As is well
known, the dispersion relation for the eigenmodes in this
kind of medium (the plane waves) takes the form

f(co,k)=(m/c) N —k =(k„N)—k =0,
where co is the optical angular frequency, k the wave vec-
tor, N the refractive index, c the velocity of light in Uacuo,
and k, =co/c. The group velocity ve follows directly
from the dispersion relation. One takes the gradient of co

in wave-vector space:

vg
——Vkco(k) =(c/N)k,

where k is a unit vector parallel to k. One can thus only
speak sensibly of the group velocity of a single plane wave
(eigenmode), and of course it points parallel to the wave
vector k. A complex field consisting of a linear superpo-
sition of n plane waves will have n independent group ve-
locities. However, the Poynting vector of this set of su-
perimposed plane waves is affected by interference. For
example, consider the case of two scalar plane waves

0
E(r)= g A zexp( jk —r) .

Their time-averaged Poynting vector takes the form

(S}= — ( Aoko+A ik
2cop

+ I2AOA ik„Ncos& cos[(ko —k, )-r] Ix},
(4)
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where the amplitudes Ao and A i have been taken to be
real variables, and 8 is half the angle between the two
wave vectors. This Poynting vector can be resolved into
components parallel and perpendicular to the fringes, in
the x and y directions, respectively. It might appear at
first glance that the amount of energy carried by the com-
bination fiuctuates across the interference fringes, suggest-
ing that power is not conserved. However, the Poynting
vector tells us that only the x component of (S) is spa-
tially modulated, indicating that power is merely redistri-
buted in real space. The y component of (S) (crossing
the fringes) is spatially constant, equal to zero if the two
waves have equal amplitudes.

Pi(r)=k„N [1+Mcos(K r)] . (5)

A Floquet-Bloch wave (or eigenmode) in this medium
consists of a complex, transverse, periodic amplitude dis-
tribution (period equal to the spacing of the stratifica-
tions) that progresses at a constant phase velocity parallel
to the stratifications, and travels (in the direction of its
group velocity) at some angle to them. Its field can be
described in terms of an infinite set of interfering spectral
plane waves chosen such that the resulting fringe pattern
has a fundamental spatial frequency of A. This is in ef-
fect the Floquet-Bloch theorem. To ensure that this re-

quirement always holds, the wave vectors of the partici-
pating spectral plane waves have to take the form

III. THE FLOQUET-BLOCH WA&ES

Before launching into a discussion of the interference of
the Floquet-Bloch waves, one needs a clear physical pic-
ture of what these waves are, and how they behave. I con-
sider a lossless dielectric medium in which the propaga-
tion constant P is modulated periodically, with a strength
M and a spatial period A (=2m/~ K

~

where K is the
grating vector):

sin8+ (EC/2—k—„N)= (A,,rr/2A }, (10)

where A,,fr is the effective mean wavelength of light in the
stratified medium. The two associated Lorentz points
(borrowing a term from x-ray theoristss) in wave-vector
space have the position vectors

kLP ——Ix[(k„N)—(K/2) ]'~ +yE(1+2n)/2I,

n =0, —1 (11)

where 2 and y are unit vectors, respectively, normal and
parallel to K, and the bar signifies that the wave vector
can exist only when M =0.

For M =0 the situation in wave-vector space is depict-
ed in Fig. 1, where the fundamental circle ko ——(k„N) is
drawn with a solid line, and the higher-order circles

(k„N) —kti M(k„N) /2 ~ Vo

M(k„N)'/2 (k„N) —k'
i

The dispersion relation follows straightforwardly by set-
ting the determinant of coefficients equal to zero. In
terms of spatial dispersion, we then have the loci in
wave-vector space of ko (and hence k, ) at fixed optical
frequency r0. For M =0, any value of ko (or k i) is al-
lowed provided its modulus equals k„X,but nonzero ac-
companying values of V i (or Vo) can appear only if ko
(or k i) points exactly in one discrete direction. This
direction defines the Bragg condition,

k„=ko+nK,

where k„is the wave vector of the nth spectral wave. In
the simplest case, the field itself can be described quite ac-
curately in terms of just two of these spectral waves (this
yields a sinusoidal transverse distribution„ in the so-called
two-wave approximation}, and the scalar Floquet-Bloch
field (polarized in the z direction) is then

E(r) = g V„exp(—jk„.r) =a (y) exp( —jko,x),

where V„is the amplitude of the nth spectral wave, and

ko„ the x component of ko. Notice that the Floquet-
Bloch wave can also be written as a transverse periodic
distribution a (y) across the grating, with a phase velocity
~/ko„ in the x direction along the grating lines. Putting
Eq. (7) into the scalar wave equation

[V' +P2(r)]E =0

and setting the coefficients of like exponentials to zero,
the following matrix equation is obtained:

FIG. 1. Plot of the wave-vector diagram for positive values
of k„(thegrating lines lie parallel to the x axis in real space).
The wave vector ko is defined as having a positive k„com-
ponent, and k

&
as having a negative. For zero grating strength

(M =0), the only two waves that can coexist with nonzero am-
plitudes, at the same time satisfying the Floquet condition in
Eq. (6}, are those whose wave vectors satisfy the Bragg condi-
tion as shown in the figure. The points (0) and (—1) thus de-
fined are called the I.orentz points.
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k„=k+ ii& (of which because of the finite size of the di-

agram only two are to be seen, those for n = + 1) are
drawn with dashed lines. By Floquet's theorem, the wave

vectors of all the spectral plane waves [given by Eq. (6)
for all values of n], are required for consistency, even

though in the two-wave approximation only two of their
associated amplitudes ( Vo and V i ) are non-negligible.

For M&0, the points where both Vo and V
&

are
nonzero expand into regions of wave-vector space, and
stop bands form around the Lorentz points. To evaluate
the shape of the stop-band branches, we shall define a new
set of axes (g, ri) with its origin at the upper Lorentz point
[given by n =0 in Eq. (11)]. Putting

k„=kLp +Px+i)y (12)

into the determinant from Eq. (9) and neglecting terms of
order higher than 2 in g/k, N and ri/k„N, the locus of the
stop band (see Fig. 2) takes the form

(2g/w sa ) = 1+(2' tan8s /w ss }

where wsa is the minimum stop-band width, given by

wsa Mk„N/——2 cos8& =2ii/cos8&

(13)

and i~ is the coupling constant of coupled-wave theory.
This is the equation of a pair of hyperbolas with asymp-
totes at ri=+gcot8&, these asymptotes are the theory's
approximation to the two circles that intersect at the
Lorentz points in Fig. 1. It can be seen that the size of
the interaction region in the vicinity of the Lorentz point
(which scales with the stop-band width) depends directly
on the grating strength M.

The group velocity of any particular Floquet-Bloch
wave follows from the dispersion relation as in Eq. (2):

FIG, 2. Magnified drawing of one of the shaded regions in

Fig. l for nonzero grating strength. The crossing dotted lines

represent the intersecting circles, and the solid lines the locus of
solutions of the dispersion relation. The tie points labeled 0 and
1 yield a difference wave vector 5 which defines the spacing and
orientation of the interference fringes created by the two associ-
ated Floquet-Bloch waves, whose group velocities are given by
the double-headed arrows.

makes with the x axis (i.e., with the grating lines) is

a=arctan[ —(rI /g )tan8g] .

The normalized mode shape [V] of this Floquet-Bloch
wave 1s

ri =2' tan83/wsa,

g =24/wsa .
(16)

From Eq. (15), the angle a which the group velocity

I

vs ——Vkco(ko) .

It points normal to the stop-band branches, and can there-
fore lie anywhere between +8& (compare Figs. 1 and 2).
A straightforward analysis [with the same approximations
as those used to obtain Eq. (13)] yields

vs = (c /N )[x cos8s —y ( 'g /g )sin 8s ] (15)

where the normalized coordinates ri" and g are defined by

where the plus sign refers to a Floquet-Bloch wave with a
"tie point" (i.e., its position on one of the stop-band
branches) on the right-hand branch, and the minus sign to
one with a tie point on the left-hand branch. Tie points
on the left-hand branch yield Floquet-Bloch waves with
faster phase velocities along the grating lines compared to
those on the right-hand branch. I shall therefore desig-
nate these two types of Floquet-Bloch waves as fast and
slow. [VI is real-valued provided g ~

&1, a condition
that holds for traveling Floquet-Bloch waves, i.e., ones for
which ko is real-valued. Scaling this dimensionless modal
shape with an electric field Eo, the time-averaged Poynt-
ing vector of the Floquet-Bloch wave is

(S)=(-,' )Re(EyH*)

=(EON /2pc )(vg+(c/N)[xcos8s[1 —(tana/tan8~) ]'r ] cos(K r)) . (19)

The x component of (S) is spatially modulated with a
period A. Po~er is redistributed spatially, just as was the
case for the two plane waves discussed in Sec. II. In fact,
the Poynting vectors in the two cases are identical in
form. One cannot tell from Eq. (19}whether we are deal-

ing with a pair of independent plane waves in an isotropic
medium or with a Floquet-Bloch wave. Gnly by looking
at the group velocity is the fundamental difference ap-
parent. If the Poynting vector is averaged over a grating
period, the oscillatory term in Eq. (19) vanishes, and the
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resulting vector (S,„)points parallel to the group veloci-
ty. The group of spectral plane waves constituting the
Floquet-Bloch wave travels not in an oscillatory path as
one might be tempted to suspect from Eq. (19), but in the
direction of the group velocity .A single Floquet-Bloch
wave has an angular spectrum containing two 5 functions
in the directions of ko and k i, if the energy carried by
these spectral delta functions is spread out over a finite
angular range, then in real space one will see a finite
Floquet-Bloch beam traveling in (and diffracting about)
the direction of its central group velocity, not parallel to
either of the now quasiplane spectral waves.

Notice that as a~+a& in Eq. (19) the Poynting vector
looks more and more like that of a single plane wave,
traveling parallel to v, with only a very slight periodic
modulation superimposed on it. For a=O however, the
modulation is 100%, and vs points parallel to the grating
lines.

IV. INTERFERENCE OF T%0
FLOQUET-BLOCH WAVES

Three general conditions are required for interference to
occur. The two waves first have to ouerlap in space. In
the case of two finite Floquet-Bloch beams, the points of
launching and the directions of the group velocities must
allow this to occur. Secondly, there must be a relative
difference in the lengths or directions of the wave vectors
of the two Floquet-Bloch waves. This ensures that spatial
beats will occur. And thirdly, the polarization states of
the two Floquet-Bloch waves must be nonorthogonal. But
are these three conditions sufficient for the observation of
visible fringes. The answer is no, not necessarily, for
there are in addition two classes of Floquet-Bloch wave
interference, which I shall designate normal (real fringes)
and exchange (virtual fringes). Pure normal interference
implies redistribution of energy in real space, without any
change in the angular energy distribution of the field.
Pure exchange interference implies no redistribution of
energy in real space, but instead its angular distribution
changes, energy getting exchanged between the (0) and
( —1) groups of spectral plane waves. Assuming that light
in a corrugated planar waveguide gets scattered out of the
guide plane in an isotropic scalar manner (i.e., proportion-
al to the local intensity, independently of the orientation
of the phase velocity and the polarization of the light),
pure normal fringes will be visible, and pure exchange
fringes invisible. However, as I will now show, mixed
cases can also occur, exhibiting elements of both types of
interference. In the discussion the infiuence of the polari-
zation is not considered, the electric fields of the two
Floquet-Bloch waves being taken as having scalar ampli-
tudes. This point will be further considered in Sec. V.

A. Notation

The two interfering Floquet-Bloch waves are labeled
with superscripts 0 and 1 in front of their parameters.
Scaling their normalized mode shapes with the real-valued
field constants E and 'E, the total electric field is

1 0
E(r)=z g g F. V„exp(—j k„r).

m=o n= —1

(20)

The tie points of two Floquet-Bloch waves are shown for
one particular case on the stop-band branches in Fig. 2.
The orientation and spacing of the coarsest fringes that
can occur is given by the shortest wave-vector difference
that exists on the wave-vector diagram, that is, the wave
vector 5 between these two tie points

5=(+—'k, ) =(k,—'k, ) . (21)

The spacing of the fringes is then 2m. /
~
5

~

and they will
be oriented normal to 5. In terms of the coordinates g
and rt, 5 can also be written

(22)

and the slant angle y between the fringes and the x axis
can then easily be shown to be

opt igt
tany = — t, &

tan8&, (23)

where normalized versions of g and rt have been used [see
Eq. (16)].

B. Normal interference

To test for the presence of real coarse interference
fringes, one simply takes the modulus squared of the field
amplitude in Eq. (20), and retains only the constant and
slowest-varying terms (i.e., those with spatial periods
equal to 2irl

~

5
~

). The resulting intensity distribution is

I(r)= E +'E +2 E 'F( V 'V + V, 'V, )cos(5 r)

yielding a normal visibility U~ of
0 1

Uiv = o. . .( Vo Vo+ V i V-»
2EE o 1 o

OE2+ 1E2 (25)

In deriving Eqs. (24) and (25), the fact that the mode
shapes in Eq. (18) are normalized has been used. This
visibility is the product of something that looks like the
conventional visibility of two interfering plane waves
times a term involving the mode shapes of the Floquet-
Bloch waves. A condition exists for U~ to be zero,
without either E or 'E being zero. This is

oy 1 V = —1.
Oy 1y (26)

From Eqs. (18) and (26), it is easy to show that U~ ——0 if
the tie points are on opposite branches of the stop band
with equal g coordinates, i.e., if

0 t 1
Yf g 7

Qgt ]gt

This is illustrated in Table I. What are the implications
of this result? %'e have two waves of nonzero amplitudes
and different phase velocities that do not produce any real
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TABLE I. Chart of various types of Floquet-Bloch wave interference. The total spatially averaged Poynting vector (S,„)of the
superposition of two Floquet-Bloch waves is found by adding together their average Poynting vectors (these lie parallel to their group
velocities). The fringe spacing is inversely proportional to the length of the difference wave vector between the two tie points.

Tie points
Fringes

and (S., ) OE y}E

(a)
1/[(1+ t)2]1/2

~Q
0
0

(b) +0

(c)

0

[ 1 ( I /gt)2] 1/2

~Q

(d)
( l +0~~2' l + 1~2)1/2

otherwise
0

~0
~0
&0

interference fringes. To understand how they interact, we
need to discuss exchange interference.

(S(r))=('S.,)+('S.,)+(S (r)),
where

(S (r)) =( E 'E/top)( VO'Voklp,

(28)

+ V, 'V, kLp, )cos(5 r)

(29)

and the first two terms in Eq. (28) are the spatially aver-
aged Poynting vectors of the Floquet-Bloch waves. Equa-
tion (29) is the interference term. If it has a nonzero com-
ponent parallel to 5 then power cannot be conserued, be-
cause the total amount of po~er carried by the field
would fluctuate from point to point. It can be shown,
after a bit of tedious algebra that, within the approxima-
tions of the analysis, (S (r)) is always oriented perpen-

C. Exchange interference

One can gain an interesting insight into the reasons for
exchange interference by considering power conservation.
First we need to derive the Poynting vector of the super-
position of two Floquet-Bloch waves in Eq. (20). It takes
the form

dicular to 5. Hence power is always conserved. Exchange
interference, as the name suggests, involves the redistribu-
tion of energy between the (0) and the ( —1) groups of
spectral plane waves. The (0} and the ( —1) groups in Eq.
(20), taken alone, yield the following intensity distribu-
tions:

I =('E'V )'+('E'V )'+2'E 'Zov„'V„cos(5r),
n =0, —1. (30)

Imagine now that it is possible to block out the scattering
from the (0) or the ( —1) group of spectral waves [this is
sometimes possible in planar waveguides because of the
different polarization states of the (0) and ( —1) waves].
Blocking out the (0} waves will result in an intensity dis-
tribution I 1 with a certain visibility. If this visibility
does not change when instead the ( —I) waves are blocked,
then we have pure normal interference. The visibility of
the fringes is then unaffected by whether or not either
group of spectral waves is blocked. If on the other hand it
is affected, then there is an element of exchange interfer-
ence. This condition is effectively a test of whether or not
the angular spectrum of the (0) group has the same shape
as ( —1) group. The visibility of the exchange fringes is
conveniently defined as half the difference between the
visibility of the (0) and the ( —1) fringes, and takes the
fortn (after some manipulation)

(oV V oV 1V )(OE20V 0V 1E21V. 1V )
UE ——E 'E

[(0EOV )2+(lE 1V )2][(OE OV )2+( 1E I V )2]
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Under what circumstances is UE zero~ The numerator
equals zero if either

'v, /'v, ='v, /'v, (32)

('E/'&)'='v 'v /'v 'v (33)

The first of these conditions represents the trivial case
when the two Floquet-Bloch waves are identical. The
second condition is rather subtle. It can be satisfied (a}
only if the two Floquet-Bloch waves have tie points lying
on the same stop-band branch otherwise the term on the
right-hand side will be negative (0E and 'E are rea/ quan-
tities); and (b) only if the component normal to the fringes
(i.e., parallel to 5) of the total average Poynting vector
(S,„)(=( S,„)+('S,„))is zero. From simple geometri-
cal considerations, this can happen only if the two tie
points lie on the same side of the stop band, confirming
the statement made in (a). This is also in agreement with
the discussion in the paragraph following Eq. (29); if there
is a component of total averaged power fiow across the
fringes, then energy conservation dictates that the fringe
type must be at least partly virtual, since otherwise the
amount of energy carried across the fringes would vary
from point to point, something that is impossible since no
energy sinks or sources exist.

A number of special cases are outlined in Table I. The
first case is that of Eq. (27}, and produces pure exchange
fringes regardless of the relative amplitudes of the
Floquet-Bloch waves. Case (b), with

ot
(34)

Opt lgt

wH1 exhibit pure normal interference if ( E/'E) =1 (oth-
erwise there would be an element of exchange interference
since the total averaged Poynting vector (S,„)would have
a component parallel to 5). Case (c},with antisymmetric
tie points, is mixed:

0~t 1~t

Opt lgt
(35)

It always has a component of (S,„)normal to the fringes,
and hence will always exhibit elements of both exchange
and normal interference. In case (d), there will always be
an element of normal interference, but vz ——0 is possible
provided the amplitudes E and 'E are chosen correctly so
that the component of (S,„)normal to the fringes is zero.
The condition that must be satisfied for this to occur is of
course Eq. (33).

These results are fairly extraordinary in several
respects. In case (b) we have two Floquet-Bloch waves
with rays diverging at angles 2er (0~a 8ir) producing
real spatial fringes with periods

Adr(2 sin8~ /M) [(tan8& /tana ) —1]'

and visibilities vN of

vN = [1—(tana/tan8~ ) ]'~

In a typical case, with a Bragg angle of 40, a grating

strength M of 0.01, a A,,rr of 350 nm, and an angle a of
35', the two Floquet-Bloch waves diverging at 70 will in-
terfere to produce real fringes with a period. of 29.7 pm
and a visibility of 0.55. On the other hand, in case (c) one
sees (at least within the approxiinations of the model) two
collinear waves producing real fringes with a similar
perj.od.

V. EXPERIMENTAL RESULTS

Finally I want to present some new experimental results
confirming the existence of both types of interference
(some preliminary results are available in Ref. 8). The ob-
servations were made in corrugated TaiO& (refractive in-
dex 2.12) waveguides, formed by rf sputter deposition
onto glass (refractive index 1.472) substrates. The guides
were made single mode [supporting one transverse electric
(TE), and one transverse magnetic (TM) mode ], the guid-
ing layer being typically about 160 nm thick, and corruga-
tions were rf sputter etched into them through holograph-
ic masks formed in photoresist. The grating period was
set to around 300 nm, permitting Bragg angles in the re-
gion of 40'. The corrugated waveguides that resulted had
losses of typically a few dB/cm. The analysis in the
preceding sections is valid in outline, if not in detail, for
the three different types of Bragg interaction that can
occur in these guides, namely TE-TE, TE-TM, and TM-
TM conversion. The differences are refiected lrl wsa and
~, which will now depend on the polarization states of the
two spectral waves (TE or TM), and hence on the Bragg
angles. ' The exact form of this relationship does not
concern us here, for it is possible to derive an accurate ef-
fective value of the modulation depth M from experimen-
tal measurements of the spacing between the interference
fringes of the two Floquet-Bloch waves.

And strange though it may seem at first, the visibilities
of the normal and exchange fringes discussed in the last
section are essentially unaffected by the fact that the elec-
tric fields of the two guided modes in any particular in-
tegrated Floquet-Bloch wave are vector, not scalar, quan-
tities. This is because the effect of polarization is impli-
citly present in the magnitude of the stop-band width

wsii. Should the state of polarization of the (0) group of
spectral waves be orthogonal to that of the ( —1) group,
then wsa will be zero, and no interference will occur.

A. Exchange interference

Exchange interference was observed in the situation de-
picted in Fig. 3, where a spatially narrow beam I (i.e., one
with a wide angular line-wave spectrum) is incident "at
the Bragg angle, " i.e., its central line-wave satisfies the
Bragg condition. On the left-hand side of the boundary
the waveguide is smooth, so that the incident TM beam
can be represented in wave-vector space (see the lower
part of Fig. 3) by a small arc of the circle

ko= (k„NTM)

where iVTM is the effective index of the TM modes. Re-
quiring that components of phase velocity parallel to the
boundary should be conserved leads to construction lines
such as AA and 88; the nodal line-waves I~ and I~~ of
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FIG. 3. Hook-shaped fringe pattern created by incidence of a
narrow beam at the Bragg angle. Along the dotted and solid hy-

perbolas the energy in the light is carried predominantly by
spectral waves progressing in phase in the ( —I} and (0} direc-
tions, respectively. The horizontal lines represent the orienta-
tion of the grating, and the coordinate axes go and g ~ are per-
pendicular to the upper and lower Bragg angles. The lower part
of the figure contains the reciprocal-space representation of the
light present on each side of the boundary, the group velocities
(the ray directions) of the various Floquet-Bloch waves being
given by the double-headed arrows. See the text of Sec. V A for
more details.

the input spectrum each excite two Floquet-Bloch waves
inside the corrugated region, with tie points a and b, and
c and d, respectively. This is true for every spectral line-
wave of the incident beam, and hence if the angular
spread of the incident light is large enough, tie points all
along both stop-band branches will get excited. The
consequence in real space (see top part of Fig. 3) is that
the light spreads out in the direction of the group veloci-
ties (indicatixl by double-headed arrows in the figures)
over a fan-shaped region bounded by the upper and lower
Bragg angles. In addition, interference will exist between
pairs of spatially superimposed Floquet-Bloch waves such
as a,c and b, d The sla.nt and period of the resulting
fringes is given by the difference wave vector between the
associated tie points. The fringe type will mostly be a
mixture of exchange and normal, except at the waist of
the stop band, where it will be purely exchange.

Experimental confirmation of Fig. 3 is shown in the se-

quence of photographs in Figs. 4—6, where a narrow TM
beam is incident at the Bragg angle (3S in this case) for
TM-TM conversion. First of all, in Fig. 4, no polariza-
tion filter was used, and the TM-polarized beam can be
seen entering the corrugated region from the upper left,
and spreading out over a fan-shaped region as predict& in
Fig. 3. Notice that a significant proportion of the in-
cident energy (i.e., that in the outer reaches of the angular
spectrum, exciting Floquet-Bloch waves with tie points
far from the stop-band center) travels through in the (0)

2 t11H1
FIG. 4. Photograph of narrow TM beam entering a corrugat-

ed waveguide region at the Bragg angle for TM-TM conversion.
No polarization filter was used. Notice way in which the light
spreads out over a fan-shaped region, and the absence of any
normal interference fringes along a line from the entry point
parallel to the grating lines (the x axis in Fig. 3j. The
anomalous streak is caused by a grating imperfection. See the
text for values of the experimental parameters.

direction without being affected by the grating. The pres-
ence of some normal interference is apparent, producing
low-visibility hook-shaped fringes in regions above and
below the x axis (refer to Fig. 3). Along the x axis, the
visibility of these normal fringes is zero, as predicted for
two Floquet-Bloch waves with tie points placed at equal q
values on opposite sides of the stop band.

TM modes in these strongly guiding single-mode guides
have a large component of electric field parallel to their
propagation directions, in the plane of the guides. The
other component of electric field (pointing normal to the
guide plane) scatters only very weakly. Hence the light es-
caping out of the guide plane from the (0) group of spec-
tral line-waves will have a polarization state almost
orthogonal (depending on the Bragg angle) to that scat-
terA by the ( —I) group. The consequence here is that ex-
change fringes can be made visible if a polarization filter
is used to block out the light scattered from either one of
these groups.

In Fig. 5, the light scattered by the (0) spectral group is
blocked out using a correctly oriented filter, and the visi-
bility of the hook-shaped fringe set is greatly enhanced.
This change in visibility points to the presence of strong
exchange interference. Finally, in Fig. 6, light scattered
from the ( —1} spectral group is blocked out, and a set of
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2 2
FIG. 5. The same situation as in Fig. 4, except that the light

scattered from the (0) group of spectral line-waves was blocked

using a correctly oriented polarization filter. Notice the strong
exchange fringes that appear along the x axis.

exchange fringes complementary (i.e., shifted half a fringe
spatially) to the previous set appears.

The absolute position of these fringes can be found
using the methods of two-dimensional coupled-wave
theory;" the bright fringes of the (0) group (drawn with
solid lines in Fig. 3) occur along the hyperbolas

x sinz8s —y cos 8+ —(z„!~)sin 28', (3&)

where z„is the nth zero of a zeroth-order Bessel function
of the first kind. The bright fringes of the ( —1) group
(dashed lines in the figure) occur when z„is the nth zero
of a first-order Bessel function of the first kind. The pa-
rameters used to construct Fig. 3 were derived from the
experimental results, and it can be seen that the
correspondence is fairly good. The optical wavelength
was 632.8 nm, and the grating period 310.5 nm, giving
(for the Bragg angle of 38') an average effective TM guide
index inside the corrugated region of 1.655. The period of
the exchange fringes along the x axis (parallel to the grat-
ing lines) was experimentally determined to be 0.199 mm
(width of corrugated region is 2 mm), yielding a coupling
constant a. of 12.44 mm '. If a hyperbolic output boun-
dary is fabricated, lying exactly over one of these bright
fringes, then a wide Bragg-reflected beam will leave the
corrugated region. One will obtain an efficient beam ex-
pander, the inversion of the beam squeezer reported previ-
ously. 4

Finally here I would like to point out that the system of
hook-shaped fringes in Fig. 3 is a picture of a two-

FIG. 6. The same situation as in Fig. 5, with the light scat-
tered from the ( —1}group of spectral line-waves blocked using a
correctly oriented polarization filter. Notice the strong ex-
change fringes (complementary to those in Fig. 5) that are visi-
ble along the x axis. This photograph, together with the one in
Fig. 5, was used as the basis of the hook-shaped fringe system
drawn in Fig. 3.

dimensional Green's function, yielding the influence of a
point excitation (I in this case) at the boundary on the
field amplitude at an arbitrary point inside the corrugated
region. The "point" in this case must be created by a
diffraction-limited beam with an angular spectral width
much greater than 2wss jNk„sin8&, so that a continuous
spectrum of Floquet-Bloch waves with tie points aB along
the stop-band branches can emanate from the entrance
point. Earlier evidence for this type of interference can be
found in the realm of x-ray diffraction by perfect crys-
tals, ' although because of experimental constraints the
fringes could not (unlike in the present case) be observed
directly.

B. Normal interference

Strong normal interference can be observed when
Floquet-Bloch waves get reflected at a boundary with a
smooth waveguide (see Fig. 7). The incident and the re-
flected Floquet-Bloch waves are then able to overlap spa-
tially, and since their tie points lie on the same stop-band
branch, the resulting interference is predominantly nor-
mal. Notice that (in order to make possible direct com-
parison with the experimental photograph in Fig. 9) the
sense of the x and g axes in Fig. 8 has been reversed.
Once again a narrow beam is incident at the Bragg angle,



3240 P. St. J. RUSSELL 33

Virtual Im, age Fringes
~ I ~ I
~ ~ 'I

~ ~ ~ \
~ ~ I
~ ~ I I
~ ~

~ ~

~ ~ ~ ~

~ I ~

~ ~ ~
~ ~

~ I
I

I
~ ~
I
~ ~

~ ~

~ ~

~ ~

~ ~

~ I

~ ~ ~

~ l

~ ~ ~
t ~ ~

88UBiNABF;:

~ ~
~ ~

~ ~
~ ~
~ ~
~ ~

~ t ~
~ ~

~ ~ t
~ ~

~ ~ I
~ ~

~ ~ ~ ~

~ ~ 1 ~

~ ~ ~
~ ~ ~ ~

1 ~ ~ ~

I I
~ I

~ ~

~ ~ ~

~ ~

~ % ~

I

~ f
~ ~ 0

~ ~ ~

~ ~
I ~
~ ~

~ ~

~ ~
~ ~ ~

~ ~

~ ~ ~

~ ~ I
I

~ I
~ I

~ ~

T ~ ~

~ ~
~ 4 ~

~ ~ ~

~ ~
~ ~

~ \

~ ~

e ~
~ ~

~ ~

~ ~

~ ~

~ ~

~ ~
~ ~

~ ~t ~

~ ~
~ ~

~ I
~ ~

~ ~
~ C

~ ~

~ ~

~ ~

~ ~
~ ~

~ ~ ~
~ ~ ~
~ ~ ~

~ ~
~ ~

~ ~
~ ~

~ 0 ~
~ ~

~ ~ ~
~ ~ ~

~ ~

~ ~ t
~ ~ r ~

e
~ ey

FIG. 7. Geometry used for the observing predominantly normal interference. For clarity, the hyperbolic loci of the antinodes of
the (—1) group of spectral line-waves are omitted. The dashed lines sloping down and to the left follow the bright normal fringes that
appear. See the text for more details.

and a spectrum of Floquet-Bloch waves spreads out over a
triangular region. For clarity the loci of antinodes of the
( —1) group of hyperbolic fringes are omitted. Upward-
traveling Floquet-Bloch waves get refiected at the hor-
izontal boundary, creating a set of reflected hook-shaped

fringes that appear to emanate from a virtual point source
I' a distance yo behind the boundary. The result is an
overlap region and {in the figure) a Moire pattern whose
beats define the position and orientation of a set of
predominantly normal fringes. The situation is further

I, t
CX
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I

I jul @' I Z
I.

I, '.r' I

—I—————————————

dp'
il

~ W

iJ
I'

FIG. 8. Diagram explaining the complicated fringe structure in the overlap region in Fig. 7. The dotted lines represent the paths
taken by the Floquet-Bloch rays. Predominantly real fringes (drawn in this time with solid lines and sloping downwards and to the
left) are created where these lines intersect.
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FIG. 9. Photograph used as the basis of Figs. 7 and 8. No polarization filter was used, and real fringes slanting upwards and to
the right are clearly visible. The curving left-hand boundary is purely coincidental, and is of no significance in the present discussion.
Also very faintly visible are a set of hook-shaped fringes similar to those in Figs. 5 and 6, although here they are finer, indicating that
the grating is stronger. See the text for values of the experimental parameters.

explained in Fig. 8, where the paths taken by the
Floquet-Bloch rays inside the overlapped region are drawn
in, their directions having first been obtained from the
eave-vector diagram. For example, the line-eaves I&
and IDD of the input spectrum excite Floquet-Bloch
waves with tie points a and e, and d and h, respectively,
where phase-velocity matching parallel to the vertical
boundary has once again been used to construct the lines
AA and DD. The Floquet-Bloch waves with tie points a
and h travel upwards towards the boundary, where they
generate a transmitted line-wave T, ~ in the smooth guide,
and two reflected Floquet-Bloch waves with tie points a'
and h' (identical to d and e). These reflected waves travel
back into the grating along trajectories given by their
group velocities. A11 along this path predominantly virtu-
al hook-shaped fringes are generated. The spectral line-

waves I» and Ic& yield construction lines 88 and CC,
and four Floquet-Bloch waves with tie points h and f, and
c and g, respectively. The rays associated with tie points
c and f cross the ray a', h', and at that point interference
occurs, with fringes whose orientation and period are
given by the wave-vector difference between the two tie
points c and a' (equal to that between f and h') on the
wave-vector diagram. The same is true for Floquet-Bloch
waves a', h' and b,g, and in fact at every point in the
overlap region four intersecting Floquet-Bloch rays can be
found. The result is a complicated lattice consisting of
two intersecting nets of predominantly virtual hook-
shaped fringes, and a set of predominantly real fringes
that slant upwards and to the right.

The photograph in Fig. 9 was used as the basis of the
plots in the previous two figures. The conversion was

TM-TM, the Bragg angle 40', the wavelength 632.8 nm,
the grating period 310.5 nm, yo ——0. 1 mm, and the max-
imum exchange-fringe period was 0.02 mm. These values
lead to an effective TM index of 1.585, a modulation
depth M =0.031, and a coupling constant of 120.3
mm '. The slanted normal fringes are easily seen, and
the correspondence with the previous two figures is con-
vincing. Earlier experimental observations of normal in-
terference can be found in the work of Uragami in x-ray
diffraction. '

VI. CONCLUSIONS

Floquet-Bloch waves can interfere in two distinct ways,
resulting in both visible (normal interference) and virtual
(exchange interference) spatial fringes. The wave-vector
diagram provides a powerful means of summarizing these
two types of interference, and of deriving detailed analyti-
cal results concerning the visibility, orientation, and spac-
ing of the resulting fringes. A very simple condition ex-
ists for testing for the presence of exchange interference.
It is based on the requirement that the fields should con-
serve power, and turns on the necessity that the total aver-
aged Poynting vector should have no component flowing
across the fringes. Given the correct choice of tie points,
and grating strengths that are realizable in practice, two
monochromatic Floquet-Bloch waves with either (a) col-
linear ray paths, or {b) with ray paths diverging at angles
of anything between a few degrees and 28~, can produce
real fringes with a spacing of some tens of micrometers.
Experimental observation of integrated Floquet-Bloch
waves in corrugated Ta205 waveguides gives one a way of
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seeing the two types of interference directly, through the
light scattered out-of-plane by ever-present and randomly
distributed cosmetic imperfections in the guides. Photo-
graphs of the images created by this scattered light con-
firm the general theoretical results. The Floquet-Bloch
approach, its usefulness substantially improved by the
wave-vector diagram, is most elegant in leading to a com-
plete description of all aspects of the behavior of light in
periodically stratified media.
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