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Magnetically induced optical self-pulsing in a nonlinear resonator

F. Mitschke, R. Deserno, %. Lange, and J. Mlynek
Institut fiir Quantenoptik, Uniuersitat Hannouer, Welfengarten I, 3000 Hannouer I, Federal Republic of Germany

(Received 21 October 1985}

We describe a simple nonlinear optical device which transforms an ingoing cw light beam into a
periodically modulated one. The mechanism of operation is due to a spin precession in the ground

state of optically pumped atoms with a J=
2
~J'=

z transition in the presence of a static trans-

verse magnetic field. With optical feedback from a resonator, this magnetically induced spin preces-
sion can be self-sustained and then can give rise to a self-pulsing of the transmitted light at roughly
the Larmor frequency. A detailed theoretical description of the system is presented and stability cri-
teria are considered. In contrast to earlier work, our calculations take into account the resonator
round-trip time, an optical detuning from the atomic resonance, and absorptive losses within the
resonator. New signal features are predicted: These include a complicated structure of the initial

transient as well as a precipitation to a stationary state. Our theoretical model is confirmed by mea-

surements which are performed by means of a Fabry-Perot resonator containing sodium vapor. The
behavior of the device is studied for a wide range of experimental parameters; threshold powers for
oscillation (& 5 m%') and the oscillation frequency and its tuning range (140 kHz —13 MHz) are in-

vestigated as well as the dynamics of the system following a step input of light.

I. INTRODUCTION

Nonlinear dissipative systems with at least two degrees
of freedom may exhibit limit cycle oscillations. In this
communication we will discuss such a system from the
viewpoint of optics. Our device transforms an ingoing cw
light beam into a periodically modulated output beam, a
process called optical self-pulsing. This process occurs in
the interaction of a light field and an atomic
J=—,~J'= —,

' transition inside an optical resonator in

the presence of an external static magnetic field (see Fig.
1). Optical pumping gives rise to an orientation of the
atomic spins in the J= —,

'
ground state; the magnetic field

causes the spins to precess, and this precession is self-
sustained due to optical feedback. As the oscillation fre-
quency is essentially given by the I.armor frequency, it
can easily be tuned by simply varying the magnetic field.

A device capable of producing tunable optical self-
oscillations is certainly interesting in view of possible
technical applications. On the other hand, a good deal of
motivation for the study of such a device stems from the
now widespread interest in "self-organizing" systems in
the context of synergetics.

Optical self-oscillations have been discussed in the
literature before: Mccall' showed that an optical bistable
device can develop self-pulsations if the nonlinearity con-
tains two contributions of opposite sign and with different
time constants (one of these usually being therinal). Sys-
tems based on thi. s concept ' have the disadvantage that
they are not easily tuned, in marked contrast to the system
we describe here.

The mechanism of magnetically induced self-sustained
spin precession was predicted by Kitano, Yabuzaki, and
Ogawa (KYO) in Ref. 4 and observed for the first time by
Mitschke, Mlynek, and Lange in a sodium-filled Fabry-

Perot resonator. In the present work we give an ad-
vanced formal description of the phenomenon and com-
pare our theory to more detailed experimental results.
After a phenomenological description of the mechanism
(Sec. II), a detailed theoretical analysis is given in Sec. III.
In contrast to the theoretical approach used by KYO, our
treatment also includes the finite- resonator round-trip
time, absorptive losses, and effects due to the atomic de-
tuning. Results from numerical calculations are given in
Sec. IV. In Sec. V vre present the experimental work
which is again performed with the use of a sodium-filled
Fabry-Perot resonator. As will be seen then, our theoreti-
cal results are in good agreement with the experimental
findings.

II. THE PRINCIPLE OF OPERATION

Our description is based on a representation of the ac-
tive medium as an ensemble of J= —,

' atoms. We are thus
concerned with a four-level system as shown in Fig. l. In
the following discussion we will assume that excited-state
populations are always small and that sublevel coherence
within the excited state can be neglected. Now let us first
suppose that only circularly polarized light (either a+ or
cr ) is present; thus only one of the transitions 1~4 or
2~3 is excited. This excitation will, in connection with
the spontaneous decay of the upper levels (decay rate I i)
create a ground-state population difference, or orientation,
m This orientation, which corresponds to an atomic spin
polarization in the J= —, ground state, is counteracted by
its decay rate y. If I i/y &&1, w saturates at an intensity
which is far less than the saturation intensity for the opti-
cal transition in a pure two-level system with decay rate
I l. The optical pumping thus gives rise to a strong non-
linearity already at low intensity, a mell-known fact which
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FIG. 1. (a) Simplified geometry of the vapor-filled Fabry-
Perot resonator with mirros M~ and M2. The nonlinear medi-
um is subjected to a static transverse magnetic field. {b)
Schematic of the atomic I=

2
~J'=

2 transition, interacting

with sr+ and o light; the quantization axis coincides with the
propagation direction of light {zaxis). The static magnetic field
8 can induce transitions between the degenerate ground-state
Zeeman levels with y denoting the corresponding relaxation
rate. The optical detuning is given by h. Excited-state effects
are neglected.

has been utilized to demonstrate, e.g., low-threshold opti-
cal bistability.

If, on the other hand, linearly polarized light is irradiat-
ed, the two optical pumping processes due to o+ and o
light are in competition with each other. Due to the sym-
metry of the level scheme, they would mutually cancel
and no orientation would arise if both processes were in-
dependent of each other. This independence means that
the absorption coefficient and the refractive index for one
transition are not affected by the intensity acting on the
other transition. For very low intensities, this condition is
obviously fulfilled, and no net optical pumping will occur.
The symmetry of the system is thus retained; we will call
this state the symmetrical one. The independence of both
pumping processes can, however, be lost in the saturation
regime. This is best seen as follows: Assume that the in-
tensities for both transitions are slightly different for a
short moment, e.g., due to fluctuations. A momentarily
dominant 0+ light will result in reduced absorption for
the corresponding transition and an increased absorption
for the other transition. Also, the refractive indices would
be different in the case of nonvanishing optical detuning
b, ; for the moment, however, let us assume perfect tuning
of the light field to the atomic resonance.

Now the optical feedback comes into action: under its

influence, the imbalance will be increased, because the
wave that is transmitted more strongly is also fed back
more strongly. One concludes that while the symmetric
state is always an equilibrium state, its stability is lost for
certain intensity ranges. Fluctuations can break the sym-

metry, and eventually the system reaches an asymmetric
state where light for one transition is highly transmitted,
while for the other transition one finds strong absorption.

Obviously, there are two such asymmetric states in ad-
dition to the symmetric one. In the symmetric state, the
transmitted light field in the output remains linear, like
the input light field, but in the asymmetric states it is
essentially circularly polarized, either to the left or to the
right. This can also be described in terms of the orienta-
tion of the atomic spins: While the spins are oriented at
random in the symmetrical state, they are parallel to the
light propagation direction in one and antiparallel to it in

the other asymmetric state. This means that there is a
macroscopic spin polarization and, as a consequence, a
macroscopic magnetization present in the asymmetric
states.

What we have described so far is an absorptive effect,
but the dispersive counterpart also exists. If the light field
has a frequency detuning with respect to both the atomic
and cavity resonances, the intensity-dependent refractive
index comes into play. It causes intensity-dependent
phase shifts of the light field, which in turn are
transformed into intensity changes by virtue of the in-

terference in the resonator. This dispersive effect has been
reported before, and the property of having three stable
states is referred to as "optical tristability;"5 ~' the change
of polarization state of the transmitted light field in the
symmetry-breaking transition has been termed "polariza-
tion switching. " Throughout this paper, we will in fact
concentrate on the dispersive effects.

Now consider the infiuence of a transverse magnetic
field 8 on the ground-state spins in this optically pumped
system (see Fig. I). The 8 field makes the spins, or the
magnetization, precess around the 8-field direction with
the I.artnor frequency QL -8. The spin precession can be
detected in the output intensities of the two circular polar-
ization components: they are modulated at the precession
frequency with opposite phase. Without optical feedback,
these modulations would damp out due to ground-state re-

laxation processes. With suitable optical feedback ap-
plied, the precession may be undamped, or self-sustained.
One requirement for this occurrence is that the precession
of the magnetization is much faster than its relaxation.
%then the magnetization rotates so far that its component
along the optical axis changes sign before being damped
out considerably, it can be reinforced again by the polar-
ized light field.

III. THEORY

We consider the behavior of a system consisting of
atoms in a resonator with an incident radiation field of
well-defined polarization, tuned to a J= —,

' ~J'= —,
' tran-

sition in the presence of a static transverse magnetic field
8. In this section we present a brief outline of the
theoretical description; for details the reader is referred to
Appendixes A and B.
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A. Equations for the nonlinear medium al =0g IB peffM +p (4a)

P12+P21~ U =1 —(P12 P21) ~ w P11 P22

whose components are related to the expectation values

(s;) of the spin components by 2'~ m;
~

=
~
(s;)—~. In

Appendix A it is shown that the temporal dependence of
m is described by the following equations:

u = (P++P +y)u —(P P~ )hv, — —(3a)

U= (P++P +y)U+—(P P+)bu —QLw, —(3b)

w= (P++P +y)w+QLU+—(P P+) . —(3c)

Here P+ and P represent pump rates introduced by the
a+ and o light, respectively, and Z=(cop —co)/I 2 is re-
lated to the detumng of the laser frequency co with respect
to the atomic resonance frequency pip. Equations
(3a)—(3c) can also be written as a Bloch-type equation

The time evolution of the atomic system can semiclassi-
cally be described by the equation of motion for the densi-

ty matrix

iraq)=(A P+A 21+% E,P) .

Here 4 p denotes the Hamiltonian of the atomic system
without external fields, A s and A z represent the interac-
tion of the atoms with the magnetic field 8 and the light
field E, respectively. Since we treat the direction of prop-
agation of the light beam as the quantization axis, 4 E
couples the levels 1 and 4 (cr+ light} and 2 and 3 (a
light) and gives rise to optical coherences P14 and P22. The
magnetic field is assumed to be transverse; it couples lev-
els 1 and 2 and levels 3 and 4 and gives rise to Zeeman
coherences p12 and P34 Tile simultaneous presence of E
and 8 creates coherences between levels 1 and 3 and levels
2 and 4. Moreover, the population densities of the four
levels, which are represented by the diagonal elements of
p, have to be taken into account. Finally, relaxation terms
have to be added to Eq. (1).

Under the conditions of the experiment several simpli-
fying assumptions can be made in solving Eq. (1) (see Ap-
pendix A): (i) The relaxation of the optical coherences
P13 P2$ p14, and P2i is assumed to be fast with respect to
all changes of field amplitudes, thus these quantities can
adiabatically be eliminated. As a consequence, the infiu-
ence of the radiation field on populations and Zeeman
coherences can be described by transition rates. (ii) The
optical transition is assumed to be homogeneously
broadened, i.e., the Doppler effect is neglected. (iii) The
population of the excited state and the Zeeman coherence
within the excited state are neglected, i.e., p»+p22-1,
P24-0. (iv) The ground-state I.armor frequency QI is as-
sumed to be small compared to the optical linewidth I 2,
i.e., QL &&1 2. (v) The Zeeman coherence and the popula-
tion densities in the ground state are assumed to decay
with equal time constants 1/y to their equilibrium values.

Under these assumptions the remaining variables are
pii —P22, representing the difference of populations in the
Zonnan sublevels of the atomic ground state, and p12,
representing the coherence between the Zeesnan sublevels.
It is convenient to define a Bloch vector m =(u, u, w) by

with

Q=(QL, O, (P P—+ )5),
P=(O, O,P P+—),
X.ff=P++P-+X .

(4b)

(4c)

B. The resonator equation

The optical feedback is achieved by placing the non-
linear medium inside a cavity. In our experiment we use a
Fabry-Perot resonator, i.e., a standing-wave device [see
Fig. 1(a)]. Although this configuration is experimentally
very convenient, a corresponding theoretical treatment is
strongly complicated by the intensity modulation through
the medium. In our model we thus prefer to use a ring
cavity, i.e., the simplest geometry, with fields circulating
in a single direction. In fact, a strong influence of
standing-wave effects on our experimental results was
ruled out by repeating part of the experiments in a ring
cavity; the signal forms were observed to be essentially the
same as in the Fabry-Perot experiment. This is not
surprising because under our experimental conditions the
atoms rgove many wavelengths during the pumping time
1/P+, or the decay time 1/y; consequently, the z depen-
dence of the relevant atomic variables (u, u, w) due to the
standing-wave structure of the pumping fields should be
essentially ~ashed out.

In the absence of light Eq. (4a) describes the precession of
m with angular frequency Qt around the magnetic field;
the amphtude of m decays exponentially with the decay
constant y in this case. In the presence of light the damp-
ing term y,ff is increased, but simultaneously a source
term is present, provided that P+&P . It should be not-
ed that in the case of unequal o+ and cr intensities
(P++P ) and off-resonant optical excitation (b,+0), Q
does not coincide with the direction of the magnetic field.
This represents a major difference in the analysis of KYO,
who omit the term (P —P+ ) E in Eq. (4b). Physically,
this term can be interpreted as a light-shift effect on the
ground-state sublevels that clearly shows up in the
response of the sublevel coherence to a step input of light:
the oscillation frequency of this initial transient (in the ab-
sence of optical feedback} is given by Q=[QL. +(P
—P+ ) lL ]'~ . Detailed experimental and theoretical
studies of this novel optically induced spin nutation will
be published elsewhere. '

In Appendix A it is further shown that the absorption
coefficient ap and the refractive index np of the unpolar-
ized medium have to be replaced by polarization depen-
dent quantities if the w component is nonvanishing.
Referring to o+ and a light, we find

a+ =ap(1+ w),

n+ =1+(np —1)(1+w) .

In the next subsection it will become obvious that P+
and P are not constants but functions of w as soon as
one takes optical feedback into account.



F. MITSCHKE, R. DESERNO, %. LANGE, AND J. MLYNEK 33

Here pr +(t) denotes the normalized incident field ampli-
tude and k =to/c. Rf (Rb) is the front (back) mirror in-
tensity refiectivity, tI)0 describes a constant phase shift,
and P+ n+k——L For .our numerical calculations we will
assume trt to be nonzero, but very small compared with
1/y; this rules out delay-induced instabilities of the Ikeda
type. "

Equations (3)—(7) constitute our model, which serves to
describe the time evolution of the system with optical
feedback. There are three major differences with the ear-
lier model of KYO. First, KYO implicitly assume a
broadband excitation; consequently, the terms proportion-
al to b, in Eq. (3) do not appear. Note that with these
terms included, the six:ond of Eqs. (3a)—(3c) is coupled to
the other ones which makes the system three dimensional.
Second, we consider absorptive effects in Eqs. (5) and (7}.
Third, our resonator equation includes the finite resonator
round-trip time ta In the n.umerical solutions of Eqs.
(3)—(7) we present below, it will become evident that all
three distinctions have consequences for the behavior of
the system. Let us first analyze, however, the stability of
the steady state of the system.

C. Stability analysis

In the stationary state we can set i=U'=m=0 and
p+(t) =canst; in this case the resonator equation is simpli-
fied and can be replaced by an Airy function [see Eq.
(811)]. We first calculate the steady-state solutions of
Eqs. (3a)—(3c). With the definitions S =(P +P+)/y,
D =(P P+)Iy, and Qr—

,
——QL /y and by denoting the

stationary values by an index s, we find

D,QI D,h

(S,+1) +D, b, +Qr S +1

D, QL

(S,+1}'+D'b,'+Q'
(Sg+1) +Dg 5 D,

(S +1) +D~ Q +QL S~+1
(10)

For simplicity let us assume in the following the case of
linear input polarization; then one has Pq+ ——I'I, and
u, =U, =m, =O is always a fixed point because for m =0,

The equation relating incident and intracavity field am-

plitudes for a ring cavity containing the atomic medium is
determined from Maxwell's equations together with ap-
propriate boundary conditions. %'e assume plane waves
and a slowly varying field envelope. Let W be the resona-
tor length and L the length of the nonlinear sample with
L «W. Taking into account the time delay ts ——W/c
due to the propagation, we find in the mean-field limit for
the normalized intracavity field amplitude p+ (t)
(

~ p+ ~

=P+ ) at time t and at z =0 (see Appendix 8):

p+(t) =+1 Rf—pr, +(t)

+ )/Rf Rbp+ (t —trt )

&&expI La—+(t trt ) —i [—P+(t t„)—+P 0]I .
i(, , = —(1+S,),
X„=—(1+S,)+-,' D;+-,' (D —4Q,')'" .

(12a)

(12b)

If the expression under the root is positive or zero, the
eigenvalues are real and no oscillations can occur; for any
of the A,; & 0, switching may occur.

If the argument of the root is negative, there are two
complex eigenvalues giving rise to oscillatory motion; the
oscillations are undamped if the real part is positive, or

D,'/(1+S, ) &2 . (13)

This expresses a sort of minimum differential gain for os-
cillations. The condition that the root be complex yields
QL &

~
D, /2 ~; this is a minimum magnetic field for oscil-

lations. It follows from the last two expressions that a
minimum Larmor frequency

Qg;„&1+S, (14)

is required for oscillatory motion to occur. Finally, the
oscillation frequency Qo ——Qo/y is determined by the
imaginary part of the eigenvalues. Assuming 2QL &D,',
Qo is given by

Dg
Qo=QI 1

2QL

The frequency of the large amplitude ascillations may
well be different.

The conditions for switching and oscillations can now
be found by calculating D,' from the resonator equation
which in the limit tri-+0 is given by an Airy function [see
Eq. (811)]. With the use of the Airy function, Eqs.
(13}—(15}can be applied to the dispersive and absorptive
case separately. ' One finds, however, that in the absorp-
tive case the conditions for oscillation require a violation
of previously made assumptions (optically thin medium,
power not too high so that the population in the optically
excited state is negligible). At this point we may already
mention that in the experiment we never found oscilla-
tions under absorptive conditions.

In the case of circular input polarization a stability
analysis is more difficult to perform. On inspection of
Eq. (4) it is plausible, however, that oscillations can also
occur in that case. The pumping rates enter the Eqs.
(3a)—(3c} in two places: (i) they appear in the dissipation
term y,tt=(y+P++P ), but a reduction of dissipation
by setting either P+ or I' equal to zero will hardly
quench the oscillations. (ii) They are present in the driv-
ing term P —P+. It is essential that this term not be

(15)

also o;+ ——a, n+ ——n, and D =0. %e mill now investi-
gate the stability of this fixed point.

After linearization of Eqs. (3a)—(3c) around
u, =U, =w, =0, one finds the characteristic equation for
the eigenvalues A, of the problem:

A, +i [3(S,+1)—D,']+A,[3(S,+1) —2(S, +1)D,'+Qr' ]

+(S,+1)[(S,+1) —(S,+1)D,'+QL]=0. (11)

Here D,'=dD/dw ~, stems from the Taylor expansion of
D(w) around w =w, . The solutions of Eq. (11) are given

by
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zero all the time. %e thus expect oscillations to occur not
only in the case of linear input polarization but also for
circular or elliptical polarization.

+
h

IV. NUMERICAL RESULTS

The complete set of time-dependent equations (3)—(7)
can only be solved numerically. %e will consider the
response of the system to a sudden switch-on of the input
intensity, i.e., the initial transient and the evolution to-
wards equilibrium. In particular, we compute the trajec-
tory of the Bloch vector in the ( u, v, w) space, visualized as
projections onto the (u, w) and the (v, w) plane. For a
comparison with the experiment we also calculate the
quantities PT + and PT that are related to the intracavi-
ty pumping rates P+ by Pr+ P+(1——R—s)exp( —2a+1.);
PT+ and PT are proportional to the two detector sig-
nals monitored in our experiment (see Sec. V).

With circular input polarization (PI+ or PI equals
zero) we find transient bistable switching with critical
slowing down for absorptive, dispersive, and mixed cases.
For linear input polarization ( Pi + PI ), ——tristable
switching is found in a very similar fashion; here, the
symmetry breaking due to small fiuctuations is simulated
choosing slightly different starting values for PI+ and
PI . Both absorptive and dispersive tristability can be
obtained. In the dispersive case and with a sufficiently
large magnetic field, there is an interval of intensities
where self-oscillations occur Thi.s is true for arbitrary
polarization states of the input light; we will, however, in
the following concentrate on the case of linear polariza-
tion.

At the low-intensity end of this interval with self-
osciHations, the oscillations build up very slowly and the
stationary amplitude is approached monotonously. In the
phase-space projection to the ( v, w) plane, this corresponds
to a trajectory spiraling out from the origin and smoothly
approaching the limit cycle without crossing it. With in-
creased intensity, the amplitude buildup is faster, and the
envelope has an "overshoot" [Fig. 2(a)]. In the projection
to the (v, w) plane, the trajectory spirals further out and
then approaches the limit cycle from the outside [Fig
2(b)]; for illustration, Fig. 2(c) shows the corresponding
projection to the (u, w} plane. In the (u, v, w} space the
trajectory does not intersect itself, of course. Note that
such an overshooting behavior is only possible in a phase
space of more than two dimensions. With a further in-
crease in intensity, the oscillations finally stop abruptly,
and the system remains at one of the asymmetric states
that already occurred in tristable switching (Fig. 3). If in
this regime the intensity is adjusted very carefully, one
finds narrow intervals with very complicated "staggering"
behavior in the inital stage of the oseillations, which even-
tuaHy reaches either the limit cycle or one of the two
asymmetric fixed points. An example for the first case is
shown in Fig. 4. Let us mention that whether a fixed
po1nt or the 11Hllt cycle 1s approached also depends on 1Q1-

tial conditions.
The linear stability analysis presented above does not

predict this precipitation of the oscillations at high inten-
sities, of course, because it can only describe a small vicin-
ity of the unstable fixed point. It also fails to predict the

0. 1 $

i i
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TIME ty

(b) -V

W

-0 3

(c)

-0.3
W

existence of an upper limit for the oscillation frequency, a
feature due to the finite round-trip time of the resonator.
It is clear that if the intracavity photon lifetime is longer
than the oscillation period, the oscillations are strongly
damped.

An estimate for the upper frequency limit can best be
made as follows: In the time domain, we are concerned
with a light field of oscillating intensity. This corre-
sponds, in the frequency domain, to a "carrier" at the op-
tical frequency with two (or more, for the harmonics)

FIG. 2. The onset of magnetically induced self-pulsing after
a sudden switch-on of the input intensity at t =0. (a) The calcu-
lated o+ and cr polarization components of the cavity output
PT vs time ty. (b) and (c) The projections of the Block vector
m=(u, v, w) on the (v, w) and (u, w) planes, respectively. Pa-
rameter values for (a)—(c) are PI + /y =0.408, Ql /y =30,
b /I'2 ——20, apL =0.124, $0———0.5, Rf =0.7, Ri, =0.9, and
t~y =5 && 10;number of time values on the abscissa is 20000.
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FIG. 4. A typical staggering transient, eventually reaching a
limit cycle. Pl +/y =0.446; otherwise parameters as in Fig. 2.

W

W

denoting the cavity finesse. Numerical results show that
indeed for Larmor frequencies in the order of this esti-
mate the waveform of the oscillations becomes more
sinusoidal, and also that the oscillation amplitudes shrink.
For somewhat higher Larmor frequencies the oscillations
finally disappear altogether.

We summarize and note that a comparison of our
theory with the earlier one from KYO reveals three major
modifications. First, including the terms proportional to
b, in Eq. (3) makes the phase space three dimensional
which in turn gives rise to the prediction of a complicated
behavior in the initial transient. Second, the inclusion of
the finite resonator round-trip time brings about an upper
limit for the oscillation frequencies, and also more com-
plicated dynamics in the vicinity of the asymmetric fixed
points. Third, taking absorption losses into account
strongly influences the waveform of the oscillations. Fig-
ure 6 of KYO is a typical result from a calculation with
no absorption taken into account; in contrast, our calcu-
lated signals can display a much smoother and more
symmetrical shape (see Fig. 5).

Let us finally comment on the complicated staggering
behavior in the initial transient at intensities near the
upper intensity limit for oscillations. During this tran-
sient, the motion is nonperiodic and can be highly irregu-

FIG. 3. The stopping of osciHations at a somewhat higher
pumping rate {Pl +/y =0.464) as compared to Fig. 2; otherwise
parameters as in Fig. 2. {a) The cavity output I'T+/y vs time
ty. (b} and (c) The projections of the Bloch vector on the ( v, w)
and {u, w) plane, respectively, showing the approach to an asym-
metric fixed point.

0'~ /(.
r

————r—
P

o.zI (

0.5

0.5

sidebands, at a distance equaling the oscillation frequency.
For small oscillation frequencies, the distance between the
sidebands may be small compared with the resonance
width of the resonator. In that case, all spectral hnes are
enhanced by constructive interference. For higher fre-
quencies, however, at least one of the sidebands inevitably
is suppressed in the wing of the Airy peak. Consequently,
the self-sustained oscillation is quenched. One estimates
that the frequency distance between the sidebands should
be of the order of the half-width at half maximum of the
Airy peak. This yields Qo -nc/(4LP ), with

0.2-

T1ME t v

FIG. 5. Self-pulsing in the cr+ and u components of the
transmitted light on a sma11 time scale. I'T+/y is displayed as
a function of time together with the time evolution of the
ground-state population difference w. Parameters are

Pg, +ly=3, QL, /y=20, 5/I', =8, aoL =0.3, P = —0.5,
Rf ——0.7, Rq ——0.9, and tery =10; number of time values on
the abscissa is 6000.
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lar. It has also been shown that two trajectories which are
initially very close to each other rapidly diverge exponen-
tially until they reach macroscopically distant parts of the
phase space. ' This is strongly reminiscent of the so-
called "chaotic transients" discussed in the literature. ' '
The occurrence of chaotic transients may be taken as a
hint that in their vicinity (in parameter space) continued
chaotic motion may occur. VA'th this in mind, we sur-
veyed this vicinity in numerical experiments and found
that with a slight increase in tz from ray=10 used
above to between 10 or 10 i (which is still small), the
asymmetric fixed points may become unstable, too. Each
of them then undergoes a sequence of period-doubling bi-
furcations towards chaos. Finally, transitions between the
two chaotic attractors appear; we nate that similar transi-
tions have been predicted for a somewhat related optical
system. '5 There is reason to believe that the whole
behavior can approximately be described by the one-
dimensional map x„+i——a sin(nx„) in the regime from
a =0 to a & 1. More detailed work on this aspect of our
system is in progress.

V. EXPERIMENTS

In this section we will present the experimental work
which was performed with the use of a sodium-filled
Fabry-Perot resonator. We also compare the experimental
flndings to our theoretial predictions.

A. The experimental setup

Let us first outline the essentials of the apparatus (see
Fig. 6}, which is an improved version of the setup
described in Ref. 5. The probe material is contained in a
heated ceramic tube of 10 mm diaineter„ the length of the
heated zone being 40 mm. The tube ends are cooled and,
by flexible bellows, connected to the resonator mirrors
which also seal the vacuum chamber; we thus avoid win-
dows internal to the resonator. The resonator is about 15
cm long and nearly confocal, the beam waist being 120
pm. Mirror coatings are chosen such as to give a finesse
of about 15 (without sodium). The mirror distance is de-
fined by quartz rods for thermal stability, with a possibili-
ty for fine adjustment with a piezo translator.

The light source is a free-running single-mode cw dye
ring laser. Optical isolation from the experiment is
achieved by a 45' Faraday rotator in cormection with two
polarizers. The beam is approximately mode matched
into the resonator with the help of a suitable lens. Polar-
izing optics and/or an electro-optic modulator may be
placed in the input beam if one desires to choose certain
polarization states or to control the input intensity. Sig-
nal detection includes a A, /4 plate, a Woiiaston prism, and
two photodiodes of the same type for monitoring the two
counterrotating circularly polarized fields separately. The
signals are first stored in a Datalab DL 922 transient digi-
tizer; they may then be photographed or further processed
by a microcomputer.

As a probe material, we employ sodium vapor. Typi-
cally, sodium number densities of 10' to 10' cm are
used, and the laser is tuned to the D&-resonance line. The
transverse magnetic field 8 is created by a pair of

DYE
LASER

FR EOM P, L M, )kB M, gi4

A ((
J I,(. li

SAMPLE PZT

PD,

M~ p

FIG. 6. Schematic of the experimental setup. FR, Faraday
rotator; EOM, electro-optic modulator; PI, polarizer or A, /4
plate; I., mode matching lens; M~, scanning lens; 8, transverse
static magnetic field; M2, rear mirror; PZT, piezoelectric trans-
lator; A, /4, quarter-wave plate; P2, polarizing analyzer; PD& 2,

photodiodes.

Helmholtz coils; the Earth's magnetic field is compensat-
ed for by means of additional coils. In a weak field 8, the
hyperfine interaction strongly affects the ground-state
Zeeman coupling and thus has to be taken into account in
the evaluation of the Larmor frequency. With nuclear
magnetism being neglected, the Lande gr factors for the
two hyperfine levels only differ by sign (

~ gF ~

=0.5), and
the Larmor frequency is thus given by
Qg ——2m(7. 00 MHz)8/mT.

In the experiments argon buffer gas is added to the
sodium vapor at a pressure of 200 mbar. The correspond-
ing pressure broadening of the resonance line of about 3
GHz (FWHM) thus masked the ground-state hyperfine
splitting (1.8 GHz) as well as the Doppler broadening (1.6
GHz}. Moreover, the I'&r2 excited-state orientation is
rapidly destroyed by collisions whereas the S~~2 ground-
state orientation is rather insensitive to collisions, thus al-
lowing efficient optical pumping. ' In our theoretical
model, we strongly simplify the overall optical excitation
process: hyperfine pumping is completely ignored, and
we model the sodium vapor as an essentially homogene-
ously broadened J= —,

' ~J' = —,
' atomic system with

excited-state effects being neglected.
The relevant decay rate y corresponds to the decay time

of the Si&2 ground-state orientation which is mainly des-
troyed by collisions with the cell wall. With respect to
our signal formation, y is determined by the transit time
of the optically pumped atoms through the laser beam; in
the presence of buffer-gas atoms, the motion of the Na
atoms is diffusive. For our purpose the decay time of the
orientation found within the interaction region can be
represented reasonably well by a single time constant 1/y
of the order y '=r /4D here r is the beam radius and
D =us/3 denotes the diffusion constant, ~ is the mean-
free-path length, and u is the average thermal velocity.
For our experimental situation with r=0. 12 mm and
D=3.5 cm /s, we find y '=10 ps. This estimate was
confirmed in an independent experiment where the decay
time of iu was measured directly.

B. Experimental results and discussion

As explained above, for circular input polarization and
a very small magnetic field one can observe optical bista-
bility. Thresholds for switching of 1.2 mW have been ob-
served for dispersive bistability, with somewhat higher
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values in the absorptive case (i.e., with both atomic and
resonator detuning being zero). With linear input polari-
zation, we obtain optical tristability at intensities from 2
mW on in the dispersive case [Fig. 7(a)] and again slightly
higher values for the absorptive case. In the asymmetric
polarization state, the ratio of the two detector signals

may exceed 10 .
With a transverse magnetic field, all switching thresh-

olds are shifted towards higher intensities. For fields
larger than about 0.03 mT, self-pulsation may occur [Fig.
7(b)] if the light intensity is not less than 5 mW. This also
requires an atomic detuning of 5—15 6Hz which is, how-

ever, uncritical. Also, the minimum required number
density of the sodium vapor is somewhat higher than for
bistability; this is the main reason that self-oscillations

were not observed in a previous study of optical bistabili-
ty. ' As mentioned above, we were not able to produce
self-pulsations close to the line center (absorptive case).
Under dispersive conditions oscillations are observed for
circular, elliptical, and linear polarization of input light.
But for the sake of clarity, we will again concentrate on
the case of linear input polarization.

According to Eq. (14), the lowest possible magnetic
field should be determined by the ground-state relaxation
rate y. The lowest observed frequency for self-pulsations
of Qo ——2n(140 kHz) is in rough agreement with the value
of 1/10 ps given above. We have also checked the fact
that with a resonator with a larger beam waist and thus
smaller y, the oscillations can be obtained at much lower
frequency, down into the audio range.

The pulse shape strongly depends on the parameters.
For a wide choice of parameter values, two maxima are
observed in each pulse; this feature is shown in Fig. 8,
where the self-pulsing is displayed on a shorter time scale.
It should be noted that our calculated wave form in Fig. 5
clearly matches this experimental result. For increasing
magnetic field, the waveform of the oscillations becomes
more sinusoidal, and for magnetic fields larger than about
1 mT, the amplitudes of the oscillations decrease, and fi-
nally the oscillations disappear altogether. The highest
observed oscillation frequency was Qo ——2n (13 MHz),
which is again of the order of the value estimated from
Qo, ,„-nc/(4LW) (see Sec. IV) with L =15 cm and
P =15 [nc/(4LP )=2m(17 MHz)]. Thus, there were no
oscillations at all whenever the Larmor frequency was
outside the range given in Secs. II and III.

The intensity threshold for the onset of oscillations was
found to be nearly independent of the magnetic field over
most of the tuning range. This is in accord with Eq. (13)
and with our numerical results. Below threshold, damped

200ns

I I
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FIG. 7. Experimental recordings of hysteresis cycles as the
input power is scanned forth and back. The ordinate displays
the signals of the two photodiodes PD~ and PD2 which monitor
the o+ and o components of the cavity output, respectively;
the two traces are separated vertically for clearness. (a) No
magnetic field applied. (bj 8 =0.06 mT [QL, —2m(400 kHz)j;
the self-oscillations appear as shaded area. Other experimental
parameters in (a) and (b) are 5=2m(5 GHz), XN, -10'~ cm
and pA, -200 mbar; linear input polarization.

FIG. 8. Magnetically induced self-pulsing on a shorter time
scale (200 ns per division; ground lines are at bottom and middle
line of graticule, respectively). It can be clearly seen that the
two circularly polarized components (o+ and o ) oscillate with
opposite phase.
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FIG. 9. Measurement of the self-oscillation frequency Qo as a

function o inpu powf in ut ower. The horizontal parts of the curve cor-
nd indicateres ond to the free-runmng frequency of the PLL and in icaterespon o e

that no self-pulsing is present. The ordinate is isp aye
of the Larmor frequency that was determined from t efrom the calibrat-
ed magnetic field coils (see text).

FIG. 11. The stopping of oscilations. With respect to Fig.
10, the input power is slightly increased.

oscillations can be observed in the response to the input
step. On the other hand, the intensity at which the oscil-
lations stop and an asymmetric polarization state is
reached is increasing roughly proportional with the mag-
netic field, which is again in agreement with our numeri-
cal findings.

the self-We also measured directly the frequency o the se-
oscillation as a function of either the input intensity or the
cavity tuning by means of a phase-locked loop (PLL)

h i ue. A typical result is shown in Fig. 9; here the os-
cillation frequency is displayed normahzed to the a o
Larmor frequency. The latter one was derived from t e
calibration factor for the magnetic field coils with the use
of the relation Qq pzgFB/mT; ——this calibration factor
was determined with the help of a double-resonance tech-
nique to a precision of 1%. At high pumping rates, we

typically find deviations of Qc from QL of about 10 o.
The decrease of Qo with increasing pumping rate is in
qualitative agreement with Eq. (15) which, of course, can-
not predict the high-intensity stopping of the oscillations
visible in Fig. 9.

s in theThe initial transient shows the same behavior as in t e
numerical simulations, namely, a monotonous approach
to the stationary amplitude for intensities not too ar
above threshold, an overshooting approach for higher in-
tensities, and finally an approach to an asymmetric fixed

Examples for this behavior are given in Figs. 10poln ~ xaQ1

and 11, respectively. In accord with the numeric
'

al find-
1ngs, we a so 01 bserve the staggering transients in t e ex-

Thet hich we interpret as chaotic transients. ey
occur at intensities slightly below the fina stopping o
oscillations. After the complicated transient, either a
fixed point or the limit cycle may be reached. The latter
case is illustrated in Fig. 12.
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FIG. 10. The onset of self-pulsing. After an initial stage a
regular pulse train develops; the oscillation frequency is

FIG. 12. Experimentally observed staggering transient, here
evolving towards a. limit cycle. Tke experimental conditions are
nearly identical to those in Fig. 11.
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VI. SUMMARY AND OUTLOOK

We have described theory and experimental results of
magnetically induced optical self-pulsing in a sodium-
filled Fabry-Perot resonator. The oscillation frequency of
the device could be tuned from 140 kHz to 13 MHz by
simply varying an external static magnetic field. Optical
powers of only a few mW from a single-mode laser are
sufficient to drive the system. Our experimental findings
are found to be in satisfactory agreement with numerical
calculations.

It is clear that a sodium experiment is not of immediate
interest for technical applications. We would like to em-

phasize, however, that the phenomenon reported here can
occur whenever circularly polarized cavity modes interact
via a J= —,

' —+J'= —,
' transition in the presence of an exter-

nal magnetic field. It seems not unreasonable to expect
that materials may be found that exhibit the type of limit
cycle described here while avoiding the clumsiness of the
present setup. As far as possible applications are con-
cerned, the feasibility of an optical data link was already
demonstrated further applications might include an opti-
cal modulator, an optical clock, or an optical magnetic
field-to-frequency converter. Higher frequencies than our
13 MHz can presumably be generated by making the Lar-
mor frequency equal to the cavity-mode spacing (or an in-

teger multiple of it); this assumption is in fact supported
by our numerical calculations. Let us also note that self-

sustained spin precession has been predicted in a some-
what similar device that circumvents the restrictions on
the upper frequency limit because it does not use an opti-
cal cavity. ' In addition, we may remark that very recent-
ly the same type of self-oscillations as described here were
also observed in the phase conjugated wave in an intra-
cavity four-wave-mixing experiment.

Finally, we would like to mention that bistable optical
devices having a symmetry vnth respect to the exchange
of two circular polarizations have also been discussed in
the context of chaos. "' ' In the experiment reported here
no experimental evidence of chaotic behavior was found
so far; as pointed out above, it was also not expected in

the parameter range studied in this work. %hat we do
see, however, are chaotic transients in both calculation
and experiment. For a cavity somewhat longer than the
one presently used, our theory predicts the occurrence of
sustained chaos: unlike the usual delay-induced instabili-
ties, here the required delay tz is only very small com-
pared with the relevant time constant of the medium
( t„y~&1). Experiments are now under way to test these
theoretical predictions.
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APPENDIX A: DERPf ATION
OF THE EQUATIONS OF MOTION

iRp=[A, p] .

The Hamiltonian

(Al)

(A2)

i,j =1,2, 3,4 .

The atomic transition frequency is defined by
co3 toi c00 The matrix elements of p, z E are given by

.P
l
2) P

eight

Pe e irut—1
(A4)

—&4l —&, Ell)= —P e'"+P+e (A5)

with P+ denoting the electric dipole coupling strength
with respect to the o+ transition:

P+ ——@ATE+ /2A . (A6)

Here p, @ is the reduced electric dipole matrix element.
The magnetic dipole matrix elements can be also easily
calculated:

(A7)

1 1
(AS)

Here III, ——piigg&/4 and QL, pzgg8/——& describe the Lar-
mor frequencies of the ground state and excited state,
respectively; )Ltii is the Bohr magneton and gJ denotes the
Lande factor.

We now phenomenologically introduce the following
decay times: ri and ~2 denote the decay of the ground-
state population difference pi i

—pi& and of the coherence

p», respectively. Correspondingly, ~& and r2 describe the
decay of p33 —p44 and of the excited-state coherence p34.
T~ is the excited-state lifetime and T2 the decay time of
the optical coherences. By defining 6=coo—co and

pg)=pg)& ~ & =3~4~ J =1~2

contains contributions from both the optical field E and
the static magnetic field B with p@ and pM being the
operators of the electric and magnetic dipole moments,
respectively. As a quantization axis we choose the z axis
that coincides with the propagation direction of the input
light field. Using the standard spherical basis, the optical
field is written as a monochromatic plane wave:

E(z, t) = —,
' g( —1)eEe(z)e qe'"'+c. c. , (A3)

with e+ ——+(e, +ie~)/~2 and ea=e, . Here E+ (E ) is
the field amplitude of the o+ (o ) polarized component
of the light field and E0 ——0.

The Hamiltonian satisfies the usual conditions:

In this Appendix we outline the derivation of Eqs.
(2)—(6) presented in Sec. III. We start from the Liouville
equation

and applying the rotating-wave approximation (RWA),
the equations of motions for the density-matrix elements
become
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0
P i 1

=1 (P i2 —P21) + l (P+P 14
—P+P4i )

2

1 1
(Pll P22)+ 2T (P33+P44) ~

1

0
P22 (P12 P21 } + 1 (P—p32 P p23—}2

1 I+ (Pi i —P22)+ (P33+P44»
71 1

0'
P33 1 (P34 P43) 1 (P—P32 P p23)—

2

1 1
, (P33 P44) P33

2'P1

0'
p44= —l (P34 —P43} l (P+ p—14 P+p41—)

2

(A10)

(A12)

lisions; thus we assume p34-0 and p33 —p44-0. On the
other hand, the atomic ground state is rather insensitive to
collisions. In fact, the relaxation of p12 and p» —p22 is
due to diffusive motion of the atoms through the
laser beam; thus we set ~1 ——~2. Moreover, in our ex-
periment the inequality QL, ,QL, « I!T2 is fulfilled
(QL, QL, &10 s ', T2-10 ' s); consequently, we
neglect the terms proportional to QL and QL in Eqs.
(A16)—(A 19).

In the experiment, ~1 is about 10 ps, i.e., p12 and

p11 —p22 are only slowly time dependent in comparison
with the fast time variations of the optical coherences
(T2-10 ' s). As a consequence, Eq. (A16)—(A19) can
be integrated; this procedure is also known as adiabatic
elimination of the optical coherences. If we finally as-
sume small light intensities, we can neglect the popula-
tions in the excited state. By setting p33 and p44 equal to
zero, Eqs. (A16)—(A19) yield

1 1+, (P33 P44) P44
2t'1 T1

(A13)
pl3 g yT P12 (A20)

~ ~
0L . g 1

p12 (Pi 1 P22) (P+P42+P p13} —P12 ~

2 'r2

(A14)

1
Q'

p34=1 (P33-p~)
2

+l (P-P24+P3iP+)- —p34,
V2

P14 g .~T Pl 1

p23= ~ .~T p22 s

P24 ~+ .~T P21 ~

(A21)

(A22)

(A23)

1 QL
P13 ~ P23-

T2 2

QL

2 P14

(A15) By defining

IP+I'—=y, =I 2, b=b/I 2, P+=
g2+1

(A24)

(P+P43+ P P12)— (A16)
and

"=P»+P2i u =l (p» —p2i} w =pii —p22 (A25)

1 QL QL
P14= E~ — P14—~ P24 — P»

T2 2 2

+ 1 P+(Pii P44)

QL Ql
P23 l 5 P23 l P13 P24

T2 2 2

l P—(P22 P33 }

(A17)

(A18)

t't = (P+ +P +y—)u (P P+ )hu-, —

u= (P++P +y}—u+(P P+ }du —QL w- ,

w = (P++P +y)—w+Qt, u+(P P+) . —

(A26a)

(A26b)

(A26c)

Equations (A26a) —(A26c) can be also written as a Bloch
equation [see Eq. (4)].

The optical polarization of the medium is given by

one obtains the following equations of motion for the
ground-state variables:

1
P24

—— S 5—
T2

Q,L QL

2 P14—
2 P23

H(z, t) = —, g( —1)q&qe qe'"'+c. c.=XTr(PEP},
q

(A27}

+l (P p34+P+p21)- (A19)

%ith respect to our experimental situation, the equations
of motion (A10)—(A19) can be considerably simplified.
Under conditions of high buffer gas pressure, the excited-
state sublevel coherence p34 and the excited-state popula-
tion difference p33 p44 are rapidly destroyed due to col-

&VE
H+ — (1+w)E+ ——e++E+ .

2A'I 2 g2+1
(A28}

with X denoting the atomic number density. %e are espe-
cially interested in the polarization components
With the use of Eqs. (A21} and (A22) and the relations

pii ———,
' (1+iu} and p22 ——T~(1 —w), we find
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n+ ——1+—,
' ReX+=1+(no —1)(l+w), (A29}

Here, X+ denotes the susceptibility of the medium with

respect to the sr+ component. For a dilute sample the ap-
proximation (1+X+)' =1+X+/2 holds and we finally
obtain for the index of refraction n+ and the absorption
coefficient a+.

E+ (r+zlc, z) =E+(r,O)exp[ —,'i—kW+ (r,z)],

Z

W+(r, z) = Xi(r+z'/c, z')dz'
0

XpE g &

' z
z+ w( r+z' /c, z') dz'

2@I geo g~+1

with

2G
ImX+ =ao(1+w),

XpEo=1+
4fie,l, g'+1

(A30)

(A31)

(85)
The time dependence of W+(r, z) is given by Eq. (A26c).
Combining Eqs. (84) and (85) with the boundary condi-
tion (81) and defining t =r+ Wlc, we obtain an equation
not involving the spatial coordinate:

XpEcu

4~@1 g 2
(A32)

APPENDIX 8: THE RESONATOR EQUATION

In deriving the resonator equation (7} we closely follow
a theoretical approach outlined by Ikeda in Ref. 11. For
this purpose we consider a ring cavity (see Fig. 13) with
partially reflecting input and output mirrors having inten-
sity reflection coefficients Rf and Rs, respectively; the
mirrors which close the optical path are perfectly reflect-
ing. L is the length of the sample, and W=L +1 is the
total physical length of the optical path in the cavity. Let
E+(t,z) be the complex envelope of the electric field (A3).
Then the following boundary conditions on the ampli-
tudes are required:

E+(t,O) =Ql RfE,—(t)
+QRfRbe '" E+(t —Wlc, O)

)&exp[ —,'ikW+—(t W/c, L)—] . (86)
The integral W+ in Eq. (86) can easily be calculated if
the spatial dependence of w over the sample length can be
neglected, i.e., if we assume an optically and physically
thin sample. More specifically, we set w (t —Wlc
+z'/c, z') =w (t W l—c,0)=w (t —W/c). Implicitly, we
thus also set

~

E~(z')
~

z=
~

E+(z'=0) ~; this is essential-
ly the basis of the well-known mean-field theories of opti-
cal bistability. W+ then yields

W+(t W/c, L)=— [1+w (t W/c)]L —.XpE
2 I zeo Qz+1

(87)
E+(t,0)=+1 RfEt +(t)—

++RfRbe '" E+(t l/c, L), —

Er +(t)=+I RsE+ (t,L)e—

(81)

(82)
p+(t}= 1 1

~2 22+1

' 1/2
PE„E+(t),

With the use of the definition

(88)

Here, Ez and ET denote the incident and transmitted
field, respectively. In the slowly varying amplitude ap-
proximation, the field distribution in the medium is given

by
dE+(t', z)

,' ikX+(t ',z—)E—+( t',z),
Z

(83)

Sample

z=L

FIGt. 13. The ring resonator (see text).

with X+(t',z} being defined by Eq. (A28). X+ depends on
t' via the time dependence of w and it also depends on z
because w is a function of

~

E+(t',z)
~

[see Eq. (A26)].
By introducing the retarded time r= t' —z/c, we can write
Eq. (83) in the following integral form:

Eq. (86) can now be written as

p+(t) =O'I Rfpt +(t) +—QRf Rsp+(t ttt )

Xexp[ La+(t ttt )— —

i/+(t ts ) ——i/0] . —
(89)

Here, t„=W lc is the resonator round-trip time,

$0 kl —2irM and ——P+ kLn+, a+ an——d n+ are given by
Eqs. (A31) and (A32). The transmittexl field amplitude
can easily be calculated by using the boundary condition
(82). We note that Eqs. (89) and (A26) can be interpreted
as difference-differential equations.

Equation (89) considerably simplifies if propagation ef-
fects can be neglected. In our case, this is justified if the
following inequalities hold:

t~y &&1, t~QL &&1, tgI'+ &&1,
(810)

BE+(t tg)—
tR

Bt

Under these conditions we can set E+(t)=E+(t tz ) and-
W+(t)=W+(t ts). The —resonator equation (89} then
transforms into an Airy function for the intracavity pump
rate P+(t) =

~
p+(t)

~

. By straightforward calculation
from (89) one finds
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(Bl 1)

—~+(t)L
R,tt(t) =QRf Rbe

Equation (B11)is used in the stahiiity analysis in Sec. III C.

(B12)

'S. L. McCall, Appl. Phys. Lett. 32, 284 (1977).
2M. Cheung, S. D. Durbin, and Y. R. Shen, Opt. Lett. 8, 39

(1983).
3J. L. Jewell, H. M. Gibbs, S. S. Tarng, A. C. Gossard, and %.

Wiegmann, Appl. Phys. Lett. 40, 291 (1982).
4M. Kitano, T. Yabuzaki, and T. Ogawa, Phys. Rev. A 24, 3156

(1981).
5F. Mitschke, J. Mlynek, and %'. Lange, Phys. Rev. Lett. 50,

1660 (1983).
F. T. Arecchi, G. Giusfredi, E. Petriella, and P. Salieri, Appl.

Phys. B 29, 79 (1982).
7M. Kitano, T. Yabuzaki, and T. Ogawa, Phys. Rev. Lett. 46,

926 (1980).
S. Cecchi, G. Giusfredi, E. Petriella, and P. Salieri, Phys. Rev.

Lett. 49, 1928 (1982).
M. W. Hamilton, %'. J. Sandie, J. T. Chilwell, J. S. Satchell,

and D. M. Warrington, Opt. Commun. 48, 190 {1983).
J. Mlynek, S. Burschka, and E. Buhr (unpublished).

' K. Ikeda, Opt. Commun. 30, 257 (1979); J. Phys. (Paris) Col-
loq. 44, C2-183 (1983).

'2F. Mitschke, Ph.D. thesis, University of Hannover, 1984.
T. Shimizu and N. Morioka, Phys. Lett. 69A, 148 {1978).

' J. A. Yorke and E. D. Yorke, J. Stat. Phys. 21, 263 (1979)~

'5M. Kitano, T. Yabuzaki, and T. Ogawa, Phys. Rev. A 29,
1288 (1984).

~6See, e.g. , L. C. Balling, in Advances in Quantum Electronics,
edited by D. W. Goodwin (Academic, New York, 1975), Vol.
3, p. 1.

7E. Koster, J. Mlynek, and W. Lange, Opt. Commun. 53, 53
{1985).
J. Mlynek, F. Mitschke, R. Deserno, and W. Lange, Phys.
Rev. A 29, 1297 (1984).

~9M. Kitano, T. Yabuzaki, and T. Ogawa, Phys. Rev. A 29,
1964 (1984).

E. Koster, J. Kolbe, F. Mitschke, J. Mlynek, and W. Lange,
Appl. Phys. B 35, 201 (1984).
H. J. Carmichael, C. M. Savage, and D. F. Walls, Phys. Rev.
Lett. 50, 163 (1983).

H. J. Carmichael and J. A. Hermann, Z. Phys. 8 38, 365
(1980).






