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By closely following the work of Reid and %'alls, a fully quantum-mechanical treatment of an
atomic radiation-field interaction is developed with the aim of deriving basic equations for a nonde-

generate four-wave mixer. The resultant equations are examined in forward and cavity geometries
for their implications regarding squeezed states. Goad agreement between our theory and the exper-
iments of Slusher et al. is demonstrated.

I. INTRODUCTION

Squeezed states of the radiation field, which may have
potential application in low-noise precision measurement
and detection, offer an intriguing alternative to conven-
tional coherent states. Both single-mode and two-mode
squeezed states have been discussed from a theoretical
viewpoint, with emphasis in recent years focusing on an
analysis of two-mode squeezed-state generation by
parametric amplifiers and four-wave mixers. The level of
discussion has ranged from (semi-) classical and quantum
phenomenology to a fully quantum-mechanical analysis.
In particular, Reid and Walls have presented a fully
quantum-mechanical treatment including a two-level
atomic system for a degenerate four-wave mixer in which
signal and idler frequencies are equal, while Yurke has
developed a phenomenological quantum model by directly
adopting a four-photon interaction for a nondegenerate
four-wave mixer with unequal signal and idler frequen-
cies. The predicted squeezing and its dependence on
model parameters has been obtained for both models.

From an experimental point of view the creation of a
squeezed state by a nondegenerate four-wave mixer, as op-
posed to a degenerate one, is in some aspects simpler.
Indeed, the reduced variance in one of the field quadra-
ture components that is characteristic of a squeezed state
has been observed recently for the first time in just such a
system. Consequently, it becomes importMit to ask
whether the theoretical analysis of a fully quantum-
mechanical, nondegenerate four-wave mixer holds any
surprises regarding the properties of its squeezed states.
In this paper we address this question, and conclude,
within the friunework of the model and standard approxi-
mations to its solution, that the squeezed-state properties
are essentially those which one would expect from previ-
ous fully quantum-mechanical models. However, in con-
trast with phenomenological quantum models, it is
noteworthy that our results show a marked limitation to
squeezing at higher pump intensities for atomic-beam-
induced signal generation. It is likely that alternative
mechanisms to induce nonlinearities may lead to greater
squeezing.

We base our analysis quite closely on that of Reid and
Walls (hereafter referred to as RW), and as much as pos-
sible we choose to follow their notation. We do not repeat
their treatment fully, but instead implicitly refer to their

paper to fill any gaps in our presentation. When we must
deviate from the treatment of RW then our presentation
becomes more complete. Our conclusions are in good
agreement with the experimental results reported in Ref.
6.

II. THEORETICAL FOUNDATIONS

The model Hamiltonian corresponds to X atoms in a
total volume V and is taken to be H = f d rH, /5V,
where

4 No

H, = g i)kojajaf+ g —,'Acooo .

No No

+ig g (o;a, —o;a, )+ g (o;I +o;I ),

a, = ga, e '
j=1

Here the medium is modeled by a localized system of Nu
two-level atoms in a volume 5V with coo being the atomic
resonance frequency, while aj and a~t are standard annihi-
lation and creation operators, and I and I denote atomic
reservoir operators. The radiation-field frequencies are
given by

where 0&(&co. For a degenerate four-wave mixer (=0,
and (1) reduces to the Hamiltonian adopted by RW. We
proceed to study this model following the pattern of RW.

The by-now standard way to analyze such problems is
first to derive a c-number Fokker-Planck equation for the
amplitude f of a generalized form of P representation of
the density operator in which all complex variables are
treated as independent; e.g., if u' and u' appear, then the
latter is not the complex conjugate of the former. In this
treatment, the c-number~-number correspondence
u' go;, u' go';, D go, a'~„a' ~, is set
up, an initially infinite-order differential equation is ap-
proximated by a diffusion equation, and the relations
a=a'e'"' and u =u'e '"' (plus "conjugates") are intro-
duced. The resultant Fokker-Planck equation becomes
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(5)

Here c.c stands for a similar term with ai~ai, v~v,
etc , 5.=(too —to)/yi is the normalized detuning from line
center, y=yi(1+ i5), and yi and y~~ are the atomic
transverse and longitudinal relaxation parameters. If
(=0, then (3) reduces to the RW Fokker-Planck equation.

Next one passes from the Fokker-Planck equation to an
equivalent c-number Langevin equation to find an expres-
sion for the polarization v. Assuming that yi, y~~ &&yF, a
field damping rate, then one may set v=D=O and solve
these equations for the "steady-state" values of v and D.
It is important to observe that the drift terms in the
Langevin equations for v and D are proportional to the
coefficients of a/av and 8/BD in (3), respectively, and do
not involve g. Consequently, the equations v=O and
D=O are independent of g and are formally identical to
the RW equations for the degenerate case. As customary
at this point the pump fields are assumed large and non-
depleting, while the signal and idler field are treated to the
lowest appropriate order. In symbols, a =e+a,

ik& r iI, r a, r i k&.r
e=e&e + e2e, a=a3e +aqe, with e~ and eq

fixed. The result for the atomic polarization at r is given
by the RW expression

Np e~a+eat
v, =—g (e+a} 1 — +I, , (4)

ym' I,D

where np ——yiy~~/4g is the line-center saturation intensi-
ty I.= no(1+ 5 ) and 11= I + l e

I
2/I' For purely radi-

ative damping (y~~ ——2yi), the dominant, nonzero noise
correlations read

(I'„(t)I,(t') ) =D,5(t' —t),Npe-
D) —— (1—i5) +

y I (1+5 ) II 2np

—2C'

(1+5 )'(1+4III, )' '

X (1—35 ) 1+—22I I
Is Is

5/2

+(1+5')'
2

1+
s

—2C'(35 —5 ) 2I I
RI —— 1+—

(1+52)2(1+4I/I, )'" I
2C'

{1 +52 )2( 1 +4I /I )
5/2

5I 15I~

I, Iz

(10)

ai (y'+——ig}ai+Xa4+Fi(t),
(7)

a4=(y'+i g)a4+Xai+F4(t},

with similar equations for a & and a 4, where, with ei ——e2
and I=

l e, l
',

—2C'(1+2I/I, )

(1+i5)(1+4I/Ig )

2C'(2I/I, )X= =X@+tXt I
(1+i5)(1+4I/I, )

2C'=g N/yi, '

alternatively 2C'=ape, where ao is the line-center small-
signal field-attenuation coefficient and c is the speed of
light. Here E& and E4 denote integrated noise terms
which, exactly as in RW, exhibit the nonzero noise corre-
lations given by

( F3 ( t)F4(t') ) = (Fi ( t)F4(t') ) ' =R 5(t t'), —
(9)

(Fi(t)F2(t')) = (E4(t)F4t(t')) =A5(t t'), —

where

R =Rz+IR

aj(t)=if/aj(t)+(5V) ' f d re ' gv„(t), (6)

The equation for the field amplitudes aj, j=3,4, in-
volves g and reads

I2
x 12(1+5')—

I2
L

' 5/2

+(1+5 ) —1+1 4I
2

1 5I 15I
2 I,

where $2 ——g= —g4. The latter integral favors the phase-
matching condition ki+k2 ——k&+k4 for sufficiently long
interaction lengths I.. Since g appears separately the in-
tegral in (6) may be approximately evaluated as in RW.
The final phase-matched coupled equations are

For /=0, Eq. (7) reduces to that of RW, which indeed be-
comes their basic equation for application to degenerate
four-wave mixing in backward, forward, and cavity
geometries. Thus, for g ~ 0, Eq. (7) becomes our basic re-
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suit. Observe that if ai(t) and a4(t) denote a solution for
/=0, then

ai(t, g):a—3(t)e'~',

a4(t, g) =a4(t)e

denote a solution for g& 0, albeit for another noise sam-

ple. This remark follows because (7) implies that

a3(t g) —y a3(t g)+Xag(t g)+F2(t g)
(12)

a4(t, g) =y'a4(t, g) +Xaz(t, g)+F4(t, g),

where P denotes the angle of propagation separating the
two weak fields, a2 and a4. The imaginary term relating
to yq contributes an intensity-dependent addition to the
refractive index n, and does not affect the squeezing;
indeed yt may be effectively eliminated by working with

aj ——aiexp(iytz/c), j =3,4. With the change of depen-
dent variable from aj.(t, g) to aj(z), and with g being un-

derstood, Eqs. (14) are identical to that obtained by RW.
Consequently their solution applies without change, and
so, given that the initial states for ai and a4 at z=0 are
coherent states, it follows that at z =L

plus similar equations for ai and a4, where

F,(t, g)=e '&'F, (t),

F4(t, g) =e'~'F4(t)

( a3a4 ) —(a3a4) —
2 (+i2+ 2&23+ 234),
1

(a3a3& =(a4a4) = —,'tt(X34 Xi2)

where

(16)

are statistically equivalent complex white noises for all g.
Clearly all solutions of (7) for g & 0 are related to solutions
for )=0 in this way, and this connection makes relatively
easy the extension of results for four-wave mixers from
the degenerate to the nondegenerate case.

The fact that g makes so little imprint on our results
derives from the choice of the starting model in Eq. (1),
and the several approximations made in its analysis. For
sufficiently large g it is apparent that one or more of these
assumptions breaks down. However, as we shall see, in
the range of the present experiments the equations de-
rived above seem to be quite satisfactory, in part because
the pump intensity is small compared to the saturation in-
tensity.

III. FOUR-WAVE MIXERS

A. Forward four-wave mixing

Reid and %alls have given a rather complete discus-
sion and comparison of their work to previous work for
various geometries. For convenience we first consider the
case of forward four-wave mixing. Following RW the
relevant equations can be modeled quantum mechanically
if we make a change from ct to z as independent variable
in the temporal equations for ai and a4. For forward
four-wave mixing the resultant equations follow from (12)
as

X,l —— (II,J—/A, tj )[1—exp( —A,;JL)],

2(a+
I
X

I
) /23 2a /$4 2(a —

I
X

I
)

IIi2 ———2'a 2(2aA+R+a R '),
1122———,'a 2( —R+a R '),
1124——,'a ( —2aA+R+a R ') .

(17)

bXi ——,
' ———,

' [(coi/a))(aiait) +(co4/co)(a4agt)
2

+( QCI73C04/to)2 Re(e'~(aia4) )] . (19)

This solution for the covariance is just that of RW.
At this point in the calculation we must depart slightly

from the analysis of Reid and Walls to account for the
fact that generally r03 —co+ g&co4 —N g The qua«a-
ture components X, and X2 of interest to us are defined

by the relation

Xi+iX2= (Qcoi/—coai+e '&+co&/coa4)/v 2 . (18)

If (=0 this prescription reduces to that of RW. The vari-
ance of Xi or X2 involves correlations of the operators
a3,a4, and their adjoints, and when normally ordered
these correlations are identical to the expressions given in
(16). Consequently, it follows that

= —aa4(z)+X 'a, (z)+ G2(z),

das(z) = —aa3(z)+Xa4(z)+ G i (z),
dz

1a4(z)
dz

( Gt(z)Gt(z') ) = (G, (z)G, (z') )'=R5(z —z'),

( G, (z)G, (z') ) = ( G2(z)G2(z') ) =A5(z —z') .

(14)

As f varies the minimum of the right-hand side, for Xi,
say, occurs for the same value of f independently of g.
We shall discuss two choices of P.

Following RW we first choose e'~=a, which leads to
the final expression for squeezing given by

1 1 e
—2(a+ Ix

bXi ——=—(1+r)A
4 8 a+

I
X

I

Here, following RW, we have introduced

a=yznl[c cos(P/2)],

X =Xn /[c cos(P/2) ],
A =An l[c cos(P/2)],

R =Rn/[c cos(P/2)],

e
—2[ —I& I

]L

+(1—r)8

r —(1 (2/~2)1/2

A (X„zs XtRr)—l IX— —
8:4+ (Xtt Rtt —XtRt )/—

I
X

I

(20)
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When r =1 (/=0) this expression reduces to that of RW,
namely,

1 —e-" + I'I"
hX) —————A

4 4
(21)

a+ fXf

In ideal circumstances (a+ fX f
)L »1, so that the ex-

ponential term is negligible, and thus

1 1
(22)

4 a+ f7f
In the ideal noise limit, where A=A~ ——Xz ——0 and
~1=

I
X

I
= &r i—«»lows that ~ = —

I
& I

and so

b,Xi ——————z (23)
4 a+ frf

The conditions for the ideal noise limit to hold are 5»1,
I«I„and 10I «I, /5. Under these conditions

1+2I/I, I,
(2I/I, )(1+5')'" »5 ' (24)

which can be widely adjusted within the range of validity
of the ideal noise limit. Below threshold squeezing is
spoiled by loss, however as a/

f
X

f
~0 it would seem that

~2i —+0 leading to maximal squeezing.
Now let us return to the case r & I (g & 0) given by (20).

At first glance it appears that squeezing is spoiled by the
second term for in the ideal noise limit 8 =

f
X

f
and the

exponential term swamps the other terms whenever
( f X

f

—a)L »1. That would be true and cause for con-
cern save for the fact that in present-day experiments
(a +

f
X

f
)L «1, and as a consequence

f f
X

f

—a
f
L

«1 as well. Thus the exponential factors in (20) are in
fact of order unity. Moreover, in practice 1 —r = 10 ' so
that the six:ond term in (20) can really be dropped, which
again leads to (21). However, squeezing remains minimal
now, even in the ideal noise limit, since (by expanding the
exponent}

gX2 1 1 I~ I (1
—2(a+~T~)L)

4 4 a+fyf
=--'fXfL.

When operating conditions near the ideal noise limit are
attainable the preceding analysis is suitable for the case of
forward four-wave mixing. However, in the absence of
the ideal noise limit we must reexamine the choice of e'&

in (19). It is self-evident that to minimize ~, an optimal
choice of e'~ is one for which

AX i 4 g [(~3/~) (a3a3) + (~4/~) (aga4 )

(26)

When the various terms are substituted in this expression
it follows that

b,X, ——=— (1—e )+— (1—e )
1 I A —&)2L 1 8 —&34L

g a+ fXf 8 —frf
'2

(1 l2
) (1 34

) (1 —2aL)

a+
I
&

I

(27)

Here, as before, A, i2 ——2(a+ fX f ), A,34 —2(a fX f ), and
A and 8 are given in (20); the new factor is

make direct use of the analysis for the forward case car-
ried out in the present section.

(xliI(I+Xz~a )/
I
x —

I
~ (28) S. Cavity geometry

In the ideal noise limit C=O and this expression reduces
to (20), but not in general. When (a+

f
X

f
)L «1 and

r = 1, then (27) may be replaced by

bX, ——,
' = ,'L{(2+8)—[(8—3) —+C]'~2I . (29)

In this case the variance of the other quadrature is given
by

hX& ——,
' = —,'L {(2+8)+[(B—A)'+C']'") . (30)

As will become apparent later, the formulas developed
here for forward four-wave mixing when (a+ fX f

}L«1
imply negligible squeezing for the realizable situation of
Ref. 6. Backward four-wave mixing is not substantially
different than the forward case whenever g «c/L, an in-
equality that will be well fulfilled. Under these conditions
the analysis for a cavity geometry discussed below can

a~(out) = —sin8aj(in)+ cos8aJ(L),

aJ(0) = cos8aj(in)+ sin8aj(L),
(31)

for j=3,4. Here sin8 ( = 1) represents the reflectivity and
cos8 the transmissivity of a partially reflecting mirror at

A cavity geometry has the potential to increase squeez-
ing since the radiation repeatedly passes through the ac-
tive medium before exiting the cavity. Since a detailed
analysis of a cavity geometry has been treated elsewhere'
me shaH only outline the basic ideas. In addition to the
medium equations (14), which relate the initial and final
mode amplitudes, aj(0) and aj(L), j=3,4 respectively, we
have two sets of boundary conditions involving two addi-
tional mode sets aj (in) and aj (out), j=3,4. These
boundary conditions read
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one end of the cavity. Interest centers on the cavity out
modes a~(out), j=3,4 and the field-quadrature com-
ponents they engender in the manner of (18). In turn, the
expression of interest is given by

+(Qco3c04/ro)2 Re(e'~(PiP4) )], (32)

where we have set pj =—a&(out}. It follows, in a lengthy
but straightforward fashion, that

& p,p,') =(pu.'&
=-,'A, (1-.-" + ~'I")/(~+

~
X

~
)

+—B (1—~ " '' )/(~ —[X() (33)
1+ sin8
1 —sin8

(37)

As before we shall discuss two choices of e'". First if
e'~=a it follows that the maximum squeezing is given by

EXi —
~
= —,'(1+r)A, (1—e & + I&I & )/(a+

+ —,(1—r)B,(1—~ " ' ' ' )/(o —
~
X

~

) .

(36)

For (a+ ~X
~

)L &&1 and r=l this equation simplifies
considerably. It is even heuristically useful to consider
the simplification that arises when (a+

~
X

~
)L && 1

—sin8, in which case it follows that

1+ sin8
1 —sin8

and, with a *= —
~
X

~

/X as before,

a (PiPz)= ——,'A, (1—e +l&l~ )/(a+ IX I
)

+-'B (1—e "
~ '' )/(a —[X[)

+iC, (1—e )/a .

Here we have introduced

A, —:EA (1—sing e ~
I

I'
I

~L )i

(34)

and thus

1+ sin8
1 —sin8

hX ——=— . AL= , AL' . —
4 2 1 —sin8

Here

1+ Sii18

1 —sin8

(38)

(39)

B,:—EB(1—sin8e ' +~ ~' )
(35}

C, =EC[1—2e— sin8cosh( ~X ~L)+e sin 8],

cos (9

[1—2e sin8cosh(
~
X

~

L)+e sin28]

Note that for no cavity (sin8=0) these formulas just
reduce to the ones given previously.

denotes an increased, effective active medium length,
which when A &0, tends to enhance squeezing. The fac-
tor (1+ sin8)/(1 —sin8) is the normal intensity enhance-
ment factor for a passive cavity or for an active cavity re-
stricted to the linear regime.

With the alternative convention for e'~ it follows that

~Xi ——'= —'(&PiP~& —r
~

&PiP~&
l
),

which leads in the general case to

(1—e )—
a+ [7'f

&e —A,3~I(1—e ) +
2

1/2

C,
( 1

—2aL)
c (41)

When (a+ ~X
~

)L &&1—sin8 and r=l this equation
simplifies to become

b,Xi —
4
= ~L I(A+B)—[(B—A) +C ]'~ j, (42)

with L' given as before. Again this equation shows an
enhanced squeezing over that of (30). The quadrature
component variance is given by

EX22, = ,L' [(A +B)+—[—(B——A)'+C']'~'I . (43)

For small amounts of squeezing, where (42) can be trust-
ed, it is apparent that the effects of the cavity can be re-

placed simply by considering an active medium of effec-
tive length L'. Of course, if (a+

~
J

~

)L &&1—sin8 is
not a valid approximation then the cavity effects are more
complicated and the full expression (41}should be used.

C. Relation to experiment

Lastly we turn our attention to a comparison eath the
experimental results reported in Ref. 6. In these experi-
ments laser light (A, =5980 A) is used to pump Na atoms
in a four-wave-mixing fashion with co/2~=5&(10' Hz
and g/2m=1. 4X10 —4.2X10 Hz; hence 1 —r &7
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X10 '. In line with the experimental setup we have
chosen the line-center small-signal field-attenuation coef-
ficient ao ——7 cm, the line-center saturation intensity

no ——10 mW/cm, and the detuning parameter 5=200.
The active medium length is 1 cm. For a forward (or
backward) geometry choosing L= 1 cm is appropriate;
this is also true for a ring cavity having a single pass
through the active medium per cavity round trip. Howev-

er, for a simple cavity in which the radiation travels back
and forth through the active medium twice per cavity
round trip it is appropriate to take L=2 cm. This latter
case reflects the experimental geometry of Ref. 6. For the
cavity in question cos 8=0.02, which leads to an effective
cavity enhancement factor (1 + sin8)/(1 —sin8) =198.

It follows from (41) that if I/I, =0.03, then

~i ——,
' ——0.0386, i.e., a 15.4% squeezing is predicted.

If I/I, =0.025, then ~i ——,
' = —0.0701, or a 28.0%

squeezing. For I/I, =0.02, then BXi —~
= —0.0900 or a

36% squeezin~. For the three chosen cases
aL &3.24X10, ~X ~L &3.54X10 ', and so
(a+

~
X

~

)L & 3.86 X 10,which is about 2.6 times small-

er than 1 —sin8=1.01X10 2. Thus we may expect that
(42) yields similar predictions for squeezing accurate to
within 40—50%; this is indeed the case. Incidentally, for
I/I, =0.025, for example, 2 = —5.57 X 10
8=2.26X10, and C=8.37X10 showing that for-
mulas such as (36) and (38) that neglect C can lead to sig-
nificantly different predictions.

Two additional effe:ts need to be considered. For con-
venience they are illustrated for (42) while the changes for
(41) are simply indicated. First, if f is not chosen exactly
optimal then (42) should be replaced by

EXi ——,
' —— L*I(A +B) [(A——8) +C2]'~i}; (45)

for (41), the right-hand side is multiplied by il. For the
experiments reported in Ref. 6, rl =0.50; thus for the case
I/I, =0.02 a 18% squeezing still persists. Finally, for
I/I, =0.02, the combination of these two effects leads to
a 8.2% squeezing. Although some parameters of the ex-
periment are less certain than we have implied, the vari-
ous predictions we have derived compare favorably with
the experimental results of Ref. 6 where a 7% squeezing
was reported for comparable intensities.

We observe that the change of squeezing as I/I, de-
creases in the chosen regime arises principally from a
change of the factor A. As can be seen from (10) when
5p&1 both A and Ra are rapidly changing functions of
I/I, in the interval 0.01 &I/I, & 0.1. Since
~XI/Xx

~

=5 ', the principal change in A then comes
from the change in A, the factor that reflects spontaneous
emission, and this change comes, in turn, just about at the
onset of the third condition for the ideal noise limit; in
particular for I/I, =0.025 we have 10(I/I, ) =0.006
=5 '=0.005.

Note added. On completing this paper we received a
copy of work by Reid and Walls that relates to the same
subject.

f =sin(%) j%. In the case of (41) the appropriate formula
is obtained if r is replaced by fr. We note for the case
I/I, =0.02 a uniform phase jitter with

~
bg

~

&ql= 1 rad
still yields a 16.4% squeezing. Second, if the photodetec-
tors used to measure ~ have a quantum efficiency
rl & 1, then (42) should be replaced by

EX, ——,
' = ,'L'I(A +8)—f—[(A—8) +C )' (44) ACKN0%LEDGMENTS

where f=cos(b,g). If there is a phase jitter then

f =cos(b, g) denoting an average over the distribution of
b,f. For a uniform distribution with

~
hf~ &%' then
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