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Novel method for the calculation of Cerenkov free-electron-laser gain
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Cerenkov free-electron-laser gain has been calculated in a number of ways by many authors.
Often, the method employed depends upon the operational regime, either single-particle or collec-
tive. A technique is presented here which is largely regime independent and offers an intuitive pic-
ture of the stimulated-emission mechanism. The technique employs the "averaged Lagrangian, "
and the reader is referred to Whitham for a more thorough discussion of that method.

I. INTRODUCTION II. THE AVERAGED LAGRANGIAN

V'

The Cerenkov free-electron laser uses a relativistic elec-
tron beam coupled to a dielectric-lined waveguide mode
(slow-wave structure) to produce and amplify radiation.
The electrons enter the waveguide and spontaneous
Cerenkov radiation is emitted. Some radiation will be em-
itted into a waveguide mode propagating with a phase
velocity approximately equal to the electron-beam veloci-
ty. This mode will interact with the beam and induce a
longitudinal bunching of the electrons on the order of a
modal wavelength. Energy can be transferred from the
beam to the radiation field, thereby increasing its ampli-
tude, and the coherence of the enhanced radiation is en-

sured by the bunching. This describes the stimulated
emission mechanism of the device and it is this rate of en-

ergy transfer which determines the single-pass gain. 'z
The gain is dependent upon the strength of the radiation-
beam interaction as well as the inherent dispersive proper-
ties of the waveguide. Since the beam interacts most
strongly with radiation which has an electric field com-
ponent in the same direction, it is the fundamental TM (or
TM-like) mode which is most easily amplified.

The first task in the gain analysis is the evaluation of
the TM-mode dispersion relation for the waveguide
geometry of interest with an electron beam propagating in
the longitudinal direction. This is done simply by describ-
ing the beam as a region of effective dielectric "constant"
et, and solving Maxwell's equations in the beam, vacuum,
and dielectric regions. Continuity of the appropriate
fields at each interface yields the desired dispersion rela-
tion as a function of the frequency co, the wavenumber k,
and et, . Some dispersion relations for common geometries
are given in the Appendix.

The role of the dispersion relation is twofold. First, it
is a characteristic equation relating co to k. Thus, for ra-
diation traveling synchronously with the electron beam,
the dispersion relation supplies the functional dependence
of output wavelength on beam energy. Second, and this is
the focus of this paper, it can be used to solve for the
single-pass gain in both the Compton (single-particle) and
collective limits. Furthermore, the functional form of the
solutions provides insight into the relation between these
limits.

Whitham has developed a formalism which examines the
slow variations of these wavetrains for a variety of dif-
ferent physical systems. In this paper the method is
adapted and extended to calculate the resultant radiation
amplitude growth due to interaction with an electron
beam.

In general, the Lagrangian density can be written

L =I-(t it 0' 0 0' ~4 ~4') ~

Here /=a(x)e" "",where z is the propagation direc-
tion, x the transverse directions, and f represents the
longitudinal electric field component (for TM modes).
Furthermore, for co complex, g can be written as the prod-
uct of a time-dependent amplitude and the phase

i (kg —coot)
e where m=mo+i~". That is,

f= a (x)e 'e ' =A (x, t)e'& .

If A, co, and k are slowly varying (with respect to P),
then an average Lagrangian density can be described as

J I.(t, A, A ', (tp, P„e'~)dttp .

The averaged variational principle is then proposed:

5 J dt dz W(t, A, A ',P,P, ) =0 .

Variations in A and A ' yield the two equations

(la)

W„,=O.

Variation in P yields the Euler-Lagrange equation

(lb)

Wk=O
dt i3z

where

A linear dispersive system is characterized by solutions
of the form

i(k x ut)—
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i'= —o

For linear systems, the Lagrangian density is quadratic
in amplitude, which allo~s one to write

W=
~

A f(t, id, k) .

However, evaluation of Eqs. (1) yields

f(t, cg, k) =O=D(t, co,k),

where D is just the dispersion relation for the system.
An energy conservation equation is derived from the

Euler-Lagrange equations by an application of Noether's
theorem. The final result becomes

QF i (kv —u)t
5f =eE,(x)

Bp i ku —cd

When substituted into Eq. (6), the following expression
for the conductivity cr results:

i (ku m)t—

~ 2e —l (kz —ciPE)

Bp i (ku —co)

and consequently,

Eb =1- e dpu
rg) Bp i (ku —co)

—(COW ) — (CO&k)= —W, ,
dt Bz

(3)

The energy density E is just os&„, while the fiux densi-

ty F is —(8/Bz)(cd&k). Thus, an integral over the
waveguide length of Eq. (3) is an expression of Poynting's
theorem

f dzE +F= f dz W, . (4)

For the case where all of the energy given up by the
beam is converted to radiation energy, i.e., no loss mecha-
nisms in the waveguide, this becomes

8~A 2 a
dt f dzcdD =

i
A

i f dzD, + f dz (AD„)—
Bt

In the collective regime, the interaction wavelength is
long enough and the beam dense enough so that the in-
duced modulation propagates with the beam, i.e.,

$f l(kU —ol)f

Therefore, the linearized Vlasov equation becomes

BFo
i (ku a))5F =e—E,

and the induced current density is thus

BFo u5J=ie f dp E, .
p ku —co

The beam dielectric function is then

z coDk 4me' ~Fo u
eb =1— dp

oi Bp (ku —td )
(12)

In order to proceed further, the explicit form of eb
must be determined. It is this term which distinguishes
the single-particle and the collective regimes.

III. THE BEAM DIELECTRIC FUNCTION ep

The dielectric function is related to the conductivity by

4~i 0
eb ——1+

CO

where o is found from 5J =oEz. 5J is the induced longi-
tudinal perturbed current density which is a result of the
beam's interaction with the radiation field. It can be
found from the momentum-distribution-function pertur-
bation 5f via

5J = —e f dpu5f,

where 5f can, in turn, be found from the linearized Vlasov
equation

Since the growth rate in the collective regime can be rela-
tively large, cu cannot be approximated by its real limit
and remains a complex quantity.

Thus, two major distinctions are made between the
operational regimes. In the single-particle case, the
dispersion relation is explicitly complex and time depen-
dent where both characteristics are a result of the form of
eb. In the collective case, the dispersion relation is impli-
citly complex due to the complex form of co and is time
independent. With these expressions for eb, the gain per
pass can now be calculated for both regimes.

IV. GAIN

A. Single particle

Referring to Eq. (5), one makes the further assumption
that the beam interacts with the empty waveguide radia-
tion fields, i.e., Eq. (5) is evaluated in the limit as eb~ 1.
This becomes

. ~+0
6f = p- —

dt Bp

In the single-particle regime, co is approximated as coo,
i.e., the frequency shift and growth rate are small com-
pared to ado. A zeroth-order integration is performed over
Eq. (7) resllltlllg 111

3/a ]'
col.D„=2

~

A
~ f dz4n o, D.. . , (13)

E'b =1

where I. is the waveguide length. Note that the left-hand
side is now purely real since the only complex term in D
was eb, thus the growth rate can be written
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s~ ~ Db
Re dz cTgp

~A (z

(14)

The integration over a,~ is performed by parts with the
(cold beam) assumption that fo ——5(p —pp). Tliiis,

Thus, the single-particle gain is a linear function of the
beam current (~ co~) while the collective gain depends on
its cube root. Furthermore, Eq. (20) provides a condition
which defines the intersection of the two operating re-
gimes.

That is, when 9'„)——8',~ =8, then

I,p ——— 6'(8),
y U DN

( 3)
' 1/2

—6'(8)

where

82
8= (ku a) )L /—u,

When
~

6'(8)
~

is evaluated at, for example, its max-
imum, then

(21)

is the familiar single-particle line shape.

B. Collective

In the collective regime, Eq. (5), evaluated in the limit

eb ——1, reduces to just

Therefore, while Eqs. (19) and (20) allow one to evaluate
the gain in either the single-particle or collective limits,
Eq. (21) provides a criterion applicable in the neighbor-
hood of the intersection of the two regimes.

V, ATTENUATION

BDD= +D,

Integrating Eq. 12, one finds that

2
Np ]

eb ——1—
y' (kv —co)'

therefore

(16) The formalism described in Sec. II can easily be extend-
ed to include the effects of attenuation in the dielectric.
One assumes that the dielectric liner material can be
described by a complex dielectric constant. The disper-
sion relation, in the absence of the beam, is identical to
that of the passive (empty) waveguide with the substitu-
tion

or

2N
D

y (kv —a))

4mi cr6'~6 =6'+

An evaluation of Eq. (5), without the beam, yields the fol-
lowing result for low losses:

2N D&b
(ku —co) =

y3 D
1 BiAi

Bz

—8mo D,—

Dk
(22)

eb ——1

The gain per pass is defined as the product of the
growth rate and the one-way transit time L/v. Thus,

—26)p
(19)

y U D~

The right-hand side is evaluated at s=sp and the syn-
chronous condition ku =coo is assumed. A cubic equation
in the complex quantity (co, +ice") results. The imagi-
nary part of this equation yields the energy growth rate

2&D,
I qo) 2co i/3 (18)

y3 D

It is convenient to identify the conductivity with the
imaginary part of the dielectric constant, i.e., c7=coe"/4n. .
e" shall be assumed constant in the dielectric, a liberal re-
striction when one considers the dimensions of the dielec-
tric films which are used. The value of e" for the ap-
propriate wavelength region can be found in material
handbooks. It is usually given in terms of the "loss
tangent, " defined as the ratio of the imaginary to the real
part of the dielectric function: e"/e. With this substitu-
tion, Eq. (22) becomes

1 BiA f
„De'

Bz Dk

sp

—6'(8)

1/3

26)p

y3 u D„

(20)

Thus, a wave of initial intensity Io will be reduced in in-
tensity to I =Ioe after a distance z.

The change in the temporal growth rate due to the at-
tenuation in the dielectric can now be easily evaluated. If
the dispersion relation contains both an electron beam and
a dielectric of complex e, then Eq. (5), in the single-
particle regime, becomes
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8[A
/

8/A
/

cd — coDb
z

2/A /i
4+a, Re dzoh,

0

(24}

6'(8)—2e"
U D~ D„

In the collective regime, Eq. (5) becomes approximately

8/A /'
Dk .,=~ .

OZ

(25)

This is now a complex equation in ~, +ice" and co".
When one solves for the imaginary part of the equation,
the following cubic equation in co" results:

The only real positive root of this equation yields the
approximate solution (I',«/I'

~ && 1),

(27)

a well-known result from the traveling-wave tube litera-
ture.

VI. CONCLUSIONS

It is worthwhile, at this point, to review the assump-
tions and limitations of the preceding formalism. First,
the existence of a phase averaged Lagrangian density was
postulated. These averages were performed under the as-
sumption that the system undergoes slow modulations and
derivatives of amplitude, frequency, and wave number are
thus ignorable.

Second, it is assumed, for the single-particle case, that
co-co0. That is, the frequency shift and growth rate are
quite small compared to ~0. In the collective case, m

remains complex and one solves for the imaginary part of
the quantity ku —co.

In both cases, an expression is derived for the net rate
of energy transfer from the beam to the radiation field
minus the loss due to energy attenuation in the dielectric.

It should be apparent that the single-particle and collec-
tive growth rates presented here can both be derived as
limiting cases of a more general formalism. The utility of
the Lagrangian technique is that knowledge of the evolu-
tion of the system is obtained from the dispersion relation
and its derivatives. Furthermore, direct comparison of
the growth rates in the two regimes is greatly facilitated.

The formalism described here can also be used to exam-
ine the growth rate for systems where the beam cannot be
considered negligible. That is, instead of evaluating the
expressions in the no-beam limit, one could determine,
self-consistently, the effect of high-current beams on the
radiation amplitude. It should be noted that the growth
rates derived in this paper are only valid in the small sig-
nal regime where the growth can be considered linear.
The technique can also be employed to evaluate large sig-
nal, nonlinear growth rates with the difference that the
averaged Lagrangian is no longer simply proportional to
the dispersion relation.
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APPENDIX

Dispersion relations for some common waveguides loaded with a dielectric of constant b and an electron beam.
(1}The double slab with a vacuum width of 2d, film thickness of a, and beam width of 2b is

D = tanh(qd) tan(pa) — —iQ tanh(qd) —tan(pa) =0,

tanh(qb) —~eb tanh(sb)
Q(eb) =i

1 ~eh tanh(qb} tanh(sb}

(2) The single slab with parallel conducting plate with vacuum width of 5, film thickness of a, beam width of b, and
film-beam gap of 5 bis—

Eg tanh(qb) —tanh(sb ) /~eq
D = tan(pa) — tanh(q5) + —tan(pa) tanh(q5) =0 .

1 —tanh(qb) tanh(sb)/ eb p

(3}The single slab mth film thick ~s of a, bmm width of b, and film-b ~ gap of 5 is
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T

eq tanh(sb) eb+ tanh(q5) eq i+eh tanh(q5)
D = tan(pa)— tan(pa)—

p ~eb 1+ tanh(q5) p eb+ tanh(q5)

g =k —Qp /c, p =co 6/c —k, 5 =fbg
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