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W'e develop the formalism for studying transient four-wave-mixing phenomena in a Raman medi-
um, and apply it to the study of sohtary-eave propagation. %'e consider the problems of second-
Stokes generation, anti-Stokes scattering, and two-pump Raman scattering.

I. INTRODUCTION

Over the past few years the field of Raman solitons has
received much attention following the observation of these
solitons in a nondispersive medium by Carlsten, Wenzel,
and Druhl in 1983.' Raman solitons were first discussed
by Chu and Scott, Tan-no et al. , and Makhviladze et al.
in 1975 and more recently by Kaup, Steudel, and
Meinel. Other work on Raman solitons has been done
by Makhviladze and Sarychev, who looked at soliton sta-
bility and dispersive effects, and by Hasegawa, 6 who con-
sidered propagation in optical fibers where dispersive ef-
fects are very strong.

Historically, these solitons were first observed to appear
at random, roughly every twentieth shot, during Raman
scattering experiments performed by Wenzel and Carlsten
at I.os Alamos. In discussing this phenomenon with
Driihl they learned about the work of Chu and Scott, z

which showed that the pump was a hyperbolic secant
function and the first-Stokes a hyperbohc tangent func-
tion. Since the hyperbolic tangent function is reminiscent
of a function which simply changes sign or undergoes a m

phase flip, Druhl in his computer model simply inserted
this phase fiip in the electric field envelope of the first-
Stokes seed. The output of computer simulations showed
that a soliton could be generated and located temporally
so as to reproduce the experimental results. The next
question asked was "Why did the soliton appear in the ex-
periments at all?," since no effort was made to induce the
soliton's formation. While the answer to this question is
still under speculation, these solitons are now consistently
generated experimentally by introducing a n phase shift in
the first-Stokes seed pulse's temporal profile using a Pock-
els cell. Now that a reliable technique for generating
these Raman solitons exists, new studies of the subtle de-
tails of soliton formation are being made both theoretical-
ly and experimentally.

In this paper we will generalize the theoretical work on
Raman solitons to include all four-wave-mixing phenome-
na which occur in a Raman medium. We plan to study
three-field processes, i.e., second-Stokes generation and
anti-Stokes scattering, and four-field processes, i.e., two-
pump conversion. In Sec. II the equations of motion will
be derived. In Sec. III we will di.scuss the essential phys-

ics of the four-wave-mixing process and the analytic cal-
culation of mathematical soliton solutions. In Sec. IV
computer generated simulations of these soliton processes
will be shown. A summary will be presented in Sec. V.

There is one caveat to this work which must be under-
stood before reading the paper. We are interested in the
essential physics of four-wave-mixing processes in a Ra-
man medium and soliton formation. Because of this goal
we wiB not pursue fine details of the physical processes
involved which are or may be relevant to the real world,
but do not affect the fundamental physics of the process.
Some examples of these details are complex field en-
velopes, gain parameters, field frequencies, bandwidths,
field intensities, transverse beam profiles, dispersion, off-
resonant detuning, etc.

11. EqUATIONS OF MOTION

A. Material medium

The essential physics of a Raman medium requires the
existence of at least three energy states (0,1,2) where the
highest-energy state (1) is electric-dipole coupled to the
remaining two states (0,2). Only the ground state (0) is in-
itially populated. For simplicity, we will assume the two
transition dipole moments are equal ()Lto, =pi2) and equal
to p. The energy of state (1) (in frequency units) is too, .
The energy of state (2) is 6, and state (0), zero. In Fig. 1

we show this three-state system.
Since all the electric fields in the four-wave-mixing

problems under consideration, i.e., pump, first-Stokes,
second-Stokes, . . . , first-anti-Stokes, etc. , are potentially
capable of coupling states (0-1) and (1-2), we will represent
all of them generically by a single electric field E(z, t),
where we are considering plane-wave propagation in the z
direction. Using the notation that n refers to a specific
field, i.e., first-anti-Stokes, pump, first-Stokes, etc. , we can
define

E(z, t)= —,
' g [I'„(z,t)e

(2.1)

The quantities 8'„, k„, and co„are the electric field en-
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order in b /tool we find

P11=O ~

pE(z, t)
Pol = ~ (Poo+Poi)

01

pE(z, t)
(P22+P02}

01

(2.5a)

(2.5b)

(2.5c)

FIG. 1. Three-level system describing Raman medium.

velope, the wave vector, and frequency of the nth field.
The electric fields are all linearly polarized in the same
direction. Since me are not interested in generating the
fields initially from noise, i.e., only from a seed pulse or
four-wave mixing, we use classical fields.

The Hamiltonian for the material medium dipole cou-

pled to the total electric field is

H =~0111&&1I +~
I

2& &2
I

(Il)&oI + Io)&1I + Il&&2I

+ I2)&1I). (2.2)

pE(z, t)
i P 1 1

——— (P10
—Pp1 +P12—P21), (2.4a)

p,E(z, t)
lP22 = (P12—P21), (2.4b}

ttE(z, t)
l poo = (pill —ppi ) (2.4c)

p,E(z, t)
lP01 ~0!Ppl+ (Pl 1 Poo P02) (2.4d)

Specifying y, and E to be parallel allows us henceforth to
drop the vector notation. The density-matrix equations
generated from (2.2) using the notation

(2.3)

where by working to this order of approximation we have
neglected any possibility of Stark shifts in the final equa-
tions.

Substituting (2.5) into (2.4) we obtain a self-consistent
set of equations describing the reduced two-level system
(0,2):

Q = —l (&—5)Q Q(z, t—)e's'ill, (2.6a)

ill =2[0(z,t}e ' 'Q+Q(z, t)e'O'Q'], (2.6b)

where conservation of probability implies poo+p22 ——1.
We have used the definitions

Q= ie' —'p02,

—=P22 —Poo

Q(z, t) —=
1

01
p,E(z, t)

fi

(2.7a)

(2.7b)

(2.7c)

5=ton ton—1+& 0 ~ (2.7d)

where n, as in (2.1), defines a specific field such that n + 1

refers to its companion field with lower frequency, for ex-

ample, if n defines the pump field, then n + 1 defines the
first-Stokes field. The frequency difference, 5—5, which
is assumed small, is the frequency mismatch 5 of nearest-
neighbor field pairs, n and n+ 1, from the material
medium's resonance at h. We have required that all the
field pairs have the same detuning 5 in order to simplify
the problem. However, since we are always injecting a
pump and first-Stokes field initially into the material
medium with a well-defined detuning 5, we know that all
subsequent four-wave-mixing processes will have their
highest gain at the same detuning 5, substantiating this
approximation.

The last step in reducing (2.6) is to select the time-
independent rotating-wave-approximation (RWA) terms
from the quantity Q(z, t)e +' '. All the othe-r variables are
already implicitly slowly varying. Using the definition of
E(z, t), (2.1), we obtain

lP12 (~01 ~}P12

pE(z, t)+ (P22 P 1 1 +P02 } (2.4e)

2

Q = —l (~—5}Q— " g @'Nn@'N, n+ le
2fPC001 N n

(2.8a)

i2E (z, t)
lP02 %02+ (P12 Pol ) '

fi
(2.4f)

2
m= "

fPCd 01

Q' g g'N„8'N „+,e' ""' +c.c. . (2.8b)
N, n

Equations (2.4a)—(2.4c) conserve probability, pop+ pl 1

+p22 ——1, making one of the equations redundant.
Since we are interested in studying off-resonant Raman

scattering where the intermediate state (1) is never popu-
lated, we can adiabatically eliminate all of the variables
which involve state (1) by assuming F00, much greater than
all other frequencies in the problem. Therefore, to lowest

The indexing has been generalized such that the index X
now refers to the ¹hfield chain defined by the ¹hinput
pump field. This index is only required when there is
more than one input pump field. The index n refers to
the particular field in the ¹hchain. The summation
(gN „)is over all field pairs which match the two-photon
transition. The quantity 5k~„ is defined to be the differ-
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ence in the field pair's wave vectors, bkN„=kN„—kN, , + i.
The quantity which appears in large parentheses in (2.8a)
and (2.8b) represents the generalized complex Rabi fre-
quency for this effective two-level system. In order to
simplify writing the equations we have dropped the expli-
cit z and t dependence of 8)'N„.

There is one important effect missing from (2.8) which
plays a major role in the experiments. It is the effect of
collisions in the gas medium. To include this effect we

simply introduce a dephasing rate constant 1/T into (2.8a)
for the polarization. It is also possible to introduce popu-
lation redistribution effects into (2.8), but these are not of
any consequence here and, therefore, are not considered.
The medium equations now become

T

e

Q= —i (b 5)+——QT

B. Maxvre11's equations

In this part, since our fields are classical, we begin by
using the second-order Maxwell equation for the electric
field:

82

az2

4m. 82
E(z, t) = P(z, t),

c Bt c Bt
(2.10)

where the polarization is obtained from (2.2),

P(»t) ™p(poi+pio+piz+p2i), (2.11)

M is the molecular density. Using relations (2.5b), (2.5c),
and (2.7a) we obtain

P (z, t) =XE(z,t)(1+poz+ p2o)
2p i hk~„g

Pfn N, n + I W,2~ot x n
I

(2.9a)
=XE(z,t)+iX[QE(z, t)e 's' —c.c.), (2.12)

Q g @N I,„& " +c.c.
Oi N, n

(2.9b)

where X is the linear susceptibility of the medium
(X=2M' /))ttooi). Substituting (2.12) into (2.10) and us-
ing (2.1) we equate coefficients of all terms proportional—l fll~
to e

2 21 (0 l(kN s —
FAUN

t)

Bz c Bt

4ir ~
IX@ ( )

~)kNn~ ~Nn~)
X[gg ( )

~~ Nn+l~ ~Nn~
go g& ( t) N n —1 Nn ] ]c dt

(2.13)

By moving all terms not proportional to Q and Q from the right side to the left side of (2.13), we rewrite (2.13) as

82 2 ~2 i(k z —co t) 4~[g ( t) N NNn ] X I[gg ( t) Nn+I Qeg ( t) Nn —) ] Nn

Bz c Bt c Bt

8 8'N„
I +No I tv' » (2.15a)

(2.15b)

To lowest order we find

where rl is the index of refraction of the medium,
rt = I+4irX and k)v„=rlcvN„/c. In order to be consistent
with the equations derived for the material medium we
make the slowly varying envelope and phase approxima-
tion (SVEPA) in the Maxwell equation, (2.14), i.e.,

(2.14)

where we have introduced the group velocity vtv„ in place
of the constant velocity c/rl. This substitution of the
group velocity in (2.16) is the most important modifica-
tion that we make in order to properly account for the fre-
quency dependence of the linear susceptibility and the in-
dex of refraction. We explicitly calculate this result in the
Appendix. The reason for this frequency dependence is
the presence of other high-lying energy levels and the fact
that coo) is not infinitely large. The coefficient on the
right side of (2.16) also suffers with respect to its precise
frequency dependence for exactly the same reason. How-
ever, it is a much smaller effect and is ignored here. This
derivation also neglects the population dependence and,
therefore, the implicit time dependence of the index of re-
fraction; however, this is consistent with the experimental
conditions discussed in the next section.

4irMy, ~ ~ id/N „)z
OiNn V ~N, n ie-

iSccoo~'g

III. ESSENTIAL PHYSICS

A. Simplification of equations

—i 6k~„z—Q@'N, »+ ie (2.16)
In order to study soliton formation analytically, so that

we have a basis for understanding the "experimental"
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4n.M
~N (Q'I'x, . i

—Q&N, +1)
Ac 6)p&'g

where the w equation is eliminated by (1).
It is convenient to redefine the variables in (3.1} such

that we have a system of units which is consistent with
the experimental description of the process, i.e., intensity
in MW/cm, frequency in cm ', time in ns, distance in
cm„etc. Equations (3.1) become

(3.2a)

8 1 8 ~~n+—
s ~ w. =Pe (Q'&~,. i —QN'x, .+i»z U& Br co~&

(3.2b)

where co~, refers to the frequency of the first-Stokes field
in the ¹hfield chain, and Pz is related to the steady-
state gain (Gz in cm/MW) of the first-Stokes field in the¹hfield chain, Pz =Gz/T. Obvio—usly,

~

8'~n
~

and Q
are now in units of MW/cm and mJ/cm, respectively.

By further specifying exact resonance, b, =5, and as-
suming real fields and, therefore, a real polarization, the
equations now only will contain the most basic informa-
tion necessary for studying soliton formation in four-wave
mixing. In addition, it is useful to transform the variables
z and t into a reference frame which is traveling with the
fields at velocity Us. Later it will be necessary to
transform into a different reference frame, i.e., one which
travels with the soliton at velocity O'. Therefore, we
transform (3.3) into a reference frame which is propa-
gating at velocity u and choose this velocity to be either Ug

or U' depending on the circumstances. By defining a local
time r and space variable g, such that r:t —z/U and-
/—=z, we rewrite (3.2) in this new coordinate system:

BQ Q
T + g +Xn +N, n+1 ~

X,n

(3.3a)

simulations of the next section, we must further reduce
equations (2.9) and (2.16). The approximations that we
make are consistent with the experimental conditions: (1)
m= —1 and (2} b,kzinz, =-b,kjjz, &&n/2, where z, is the
length of the cell. The first approximation means that we
have many more molecules than photons, i.e., even if
there is complete photon conversion from pump field to
first-Stokes field, the molecular inversion which tracks
the number of photons converted reinains in the ground
state. The second approximation means that the optical
medium is short with respect to the frequency dependence
of the index of refraction such that the field pairs' relative
phases are equal and small. This approximation also im-
plies that all the relative group velocities are equal and
equal to U&. The Maxwell-Bloch equations become

2

Q= —i (b, —5)+—Q+ 2 g N'~n8'z„+,2' No&
L

(3.1a)

1+——@'x.
Bz U& dr

8 1 1 8+ ———
Bg Ug U dr

=&w Q(&n, .-i —@'x,.+ i»
CO

and

8 1 3 (j+
Bz U dr Bg

Br di

B. Method of solution

In this part of Sec. III we discuss a method of solving
equations (3.3) which is valid independent of solitary wave
generation and illustrates the basic physics of phase-
matched transient four-wave-mixing processes. A related
method was described by one of us (J.R.A.) several years
ago for steady-state four-wave-mixing processes. '0

It is convenient to first choose a local-time frame mov-

ing with the fields at velocity U&, i.e., U =Us. Equations
(3.3) become

T + g +Xn +N, n+1 ~

N, n

8 ~en
N'x. =Pe Q(N'~, . i

—@'iv,.+i)
xs

(3.4a)

(3.4b)

We now define a new variable 8(g, ~) such that all the
fields 8'~n (g,r) depend on g through 8, i.e.,
O' N„(g, r) = 8'z„(8,r) In addit.ion, we define 88/8(—=Q.
Using the chain rule for differentiation of 8'z„ in (3.4b),
noting the appearance of 88/Bg on both sides of this
equation and canceling it, and substituting for Q in (3.4a)
we obtain

(3.5a)

8 @'~.=P~
~us

(3.5b)

Equations (3.5b) are linear first-order differential equa-
tions with constant coefficients in 8. For problems with a
small number of fields the solutions are sine and cosine
functions of 8. After finding these simple functions of 8
and substituting them into (3.5a), the complete dynamics
can be obtained by solving a single second-order partial
differential equation for 8, (3.5a). Therefore, the physics
of these phase-matched four-wave-mixing processes is
determined by a single variable, 8(g, r), which translates
the photon transfer dynamics of (3.5b) into real space-
time dynamics.

C. Mathematical solitons

The type of solitons we will study in this section are
those which are rigorous mathematical solutions to the
equations of motion. In this sense these are not the soli-
tons observed in the laboratory, but are local representa-
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tions of the experimental observations. This will be easier
to understand once we have reached Sec. IV.

Before considering specific examples of mathematical
solitons, it is necessary to return to (3.3) and further
reduce these equations. The first step is to go into a
frame of reference which is moving with the soliton,
U =U*. If a soliton solution exists, then in this reference
frame it must be independent of g, i.e., (i)/Bg)S'N„——0.
The second step is to assume an infinite relaxation time,
T +co,—which is consistent with the work of Chu and
Scott on Raman solitons. t As was observed in the case of
Raman scattering, these mathematical solutions can
represent accurately, but only qualitatively, the local time
dynamics of the electric field envelope in the vicinity of
the soliton. This results because the relaxation time is fin-
ite. With these considerations in mind (3.3) becomes

S'i ——cos(y8),

S'2 ——sin(y8),

(3.9a)

(3.91)

where the total number of photons is normalized to unity,
S'i+ S'p ——1.

Substituting (3.9) into (3.7a) gives

a'8 =—cos(y8)sin(y8) = ——,sin(2y8),~ 1 ~ (3.10)

where S'ii and S'iz are the pump and first-Stokes fields,
respectively. Since there is only one chain of fields in this
example, we will, henceforth, omit the chain index, N= l.
The essential physics of stimulated Raman scattering does
not depend on the precise values of the field's frequencies,
and, therefore, we set them equal, coi —co2. The solutions
to (3.8) are

N, n
Nn N, a+1 ~ (3.6a)

a ~N.
S'N. = yN— Q(S'N, n-i —S'N, .+i»

BT CONT

(3.61)

where yN=—pN/(1/U' —1/us). Since the experimentally
observed solitons propagate with a velocity v' & Us, the pa-
rameters yN are positive definite. Mathematical solitons
exist for U'~ us, but we will not consider them here.

Following the procedure outlined in Sec. IIIB, we de-
fine a new variable 8(r) such that all the fields O' N„(T ) de-
pend on r through 8, i.e., O'N„(r) = S'N„(8). In addition,
we define 88/BT —=Q. Using the chain rule for differentia-
tion of S'N„ in (3.6b), noting the appearance of 88/Br on
both sides of this equation and canceling it, and substitut-
ing for Q in (3.6a) we find

88 —g SNn SN n+1 ~ (3.7a)
N, n

8 NN
S'N. = yN —(S'N,.-i S'N, S—+i }

~Ni
(3.7b)

l. Tue-field case

Equations (3.7b), as with (3.51},are linear first-order dif-
ferential equations with constant coefficients in 8. No-
tice, however, the minus sign in (3.71) as compared with
(3.51). It is just this minus sign which leads to the rever-

sal of the "normal" time dynamics and the generation of
the soliton. In the next three subsections we will study
specific examples of four-wave-mixing solitons by solving

(3.7b) for S'N„(8), substituting these solutions into (3.7a),
and solving (3.7a) for 8(r}.

which is a variant of the sine-Gordon equation. After
multiplying both sides of the equation by a8/aT, we
rewrite (3.10}as

or

1 a a8
2 81 BT

I

a
cos(2y8),

4y

(3.11)

S'i ——sech(v yr),
S'2 ———tanh(v yr),

(3.13a)

(3.13b}

where —Tr/2&y8&Tr/2 and —00 &T & oo, respectively.
The solution for Q is easily found from (3.12),

1
sech(v yT) . (3.14)

Obviously, My is proportional to the inverse of the width
of the soliton which means by increasing the gain or by
making U' closer to U~ the soliton narrows.

In Fig. 2(a) we plot the pump amplitude S'i and first-

a8
'

[cos(2y8) +C],
aT 2y

where C is the constant of integration. Choosing C equal
to 1 and using a standard trigonometric identity we obtain

=+ cos(y8) .1 (3.12)
dr y

Upon choosing the + sign and integrating (3.12) with
the appropriate boundary conditions we find that
sin(y8) =tanh(~yr), i.e., (3.9) becomes

I}

gg
+11 71 S'i2 (3.8a)

This first example of soliton generation corresponds to
the case of stimulated Raman scattering studied originally
by Chu and Scott. %e do this example only to illustrate
the methodology.

Equations (3.71) become
0.0

1

INTENSITY

l

0.8 I-

0.4 }- I

J
I

1

o.o
—4 0 4

{b)

88 +12 7111 ~ (3.81) FKJ. 2. Raman soliton, pump field is 8'I, first-Stokes field is
8'2, (a) amplitude and (b) intensity.
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Stokes amplitude 8'2 versus r using (3.8) with y = 1. Fig-
ure 2(b) is the same as Fig. 2(a), except we plot the fields'
intensities, 8'i and 8'z. Looking at Fig. 2(a) we see that
this two-field soliton represents the appearance of pump
photons and the corresponding absence of first-Stokes
photons. At the point the pump is a maximum we ob-
serve a sign flip in the electric field envelope of the first-
Stokes field. It is this sign flip which originally inspirixl
Driihl to insert a ir phase change into the first-Stokes seed
in his computer model.

(3.15a)

a
80

@'2=y(&3 —&i), (3.15b)

(3.15c)

where we have set y~
——y and m&

——~q ——~3. The essential
physics of these two examples is not influenced by these
restrictions. One solution to (3.15) is

2. Three-field case 1+cos( v 2yg) 2 yg=cos (3.16a)
In Fig. 3 we show two types of three-field problems.

Figure 3(a) shows anti-Stokes scattering where the first-
anti-Stokes field, the pump field, and the first-Stokes field
in our notation are 8'i, 8'2, and 8'&, respectively. Figure
3(b) shows second-Stokes generation where the pump
field, the first-Stokes field, and the second-Stokes field are
in this case N'i, 8'i, and 8'&, respectively. We have
neglected the chain index here, as it is superfiuous.
Mathematically the only difference between these two
problems is in the choice of parameters and in the initial
conditions. Therefore, the method of solution for these
two problems is the same.

Equations (3.7b) for this case become

g2- sin(i/2yg) yg yg= —V 2 cos sin
2 2 2

(3.16b)

3= 1 —cos(v 2yg) . z=sin
V'2 (3.16c)

where we have normalized the total number of photons to
unity, 8'i+ 8'z+ 8'i ——1. The other free parameter, which
must be specified in order to have the unique solution, has
been chosen such that the source term in (3.7a) is maxi-
mized. Another solution to (3.15) will be studied later in
this section.

Substituting (3.16) into (3.7a) gives

Big sin(~2yg)
aH

which like (3.10} is a variant of the sine-Gordon equation.
If we let v 28~24 in (3.17), then (3.17) becomes identical
with (3.10). Following the same procedure as was done in
the previous example, we find in this case
sin( yg/v 2) = tanh( v y~), i.e., (3.16) becomes

8'& ——sech (V yr),
8'z ———~2 sech( My~) tanh( Wyr},
8'i ——tanh (~ye},

(3.18a)

(3.18b)

(3.18c)

where —m /2 & y8/i/2 & m /2 and —ao & ~ & 0o respec-
tively. The solution for Q is

Q =v'2/y sech( v y~) . (3.19)

In Fig. 4(a) we plot the amplitudes 8'i, W'z, and 8'3
versus 7 using (3.18) with y = 1. Figure 4(b) is the same as
Fig. 4(a), except we plot the fields' intensities, g'i, 8'z, and
g 3, Looking at Fig. 4(a) we see that this three-field soli-
ton represents the appearance of 8'i photons at the ex-
pense of 8'i photons. 8'2 photons appear in the inter-
change regions where w', and 8's photons are being ex-
changed. At the point of maximum 8'i or minimum 8'3
the field 8"2 undergoes a sign reversal. One may be able
to generate this three-field soliton by inserting a ~ phase
flip into the field 8'2.

Another solution to (3.15) is

FIG. 3. Three-field models, (a) anti-Stokes scattering, (b)
second-Stokes generation.

cos(~2y8)
1 (3.20a)
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AMPLITUDEf:—~
0.6 ~

2!

!
0.0 ———

! !!

0.6—

0.8—

0.4,"-

QQi
—4

INTENSITY

/', ,
t

I

Q a
g8+ll yl

CO& )
&i2 (3.23a)

3. Tue pu-mp four fi-eldcase

In Fig. 6 we show an example of four-wave mixing
where there are two pump fields present. Both pumps can
generate only their respective first-Stokes fields.

Equations (3.7b) for this case are

FIG. 4. Three-field soliton consistent with second-Stokes
generation, i.e., pump field is 8'~, first-Stokes field is 8'2,
second-Stokes field is 8'3, (a) amplitude and (b) intensity.

a
~8@'2i =y2

N2i
&22

8
88

&i2= —yi&» (3.23b)

(3.23c)

8'2 ——sin(~2y8),

cos(~2y8)

(3.20b)

(3.20c)

where the total number of photons is normalized to unity.
The second free parameter has been chosen such that the
source term in (3.7a) is a minimum, and the solution is

nontrivial.
Substituting (3.20) into (3.7a) gives

8 +22 y2 +21 (3.23d)

where there are a limited number of ways for choosing pa-
rameters in (3.23) so that analytic solutions are obtained.
%e set m~ ~

——~&2 and coq~ ——co22. In addition, we choose the
gain for chain 1 to be twice the gain for chain 2,
yi ——2y2 —=2y, and the intensity for chain 1 to be half the
intensity for chain 2, g'i, +g', 2

———,
' and ~'z, +8'z2 ——1 ~

The solutions to (3.23) are

2g =0. (3.21)

cos(k')
1

8'2 ——sin(kr),

cos(k')3=

(3.22a)

(3.22b)

(3.22c)

The solution to (3.21) in this case is ~2y8=kr, i.e., Eqs.
(3.20) become

cos(2y8)
v2
sin(2y8)

v2
8'2i ——cos(y8),

8'22 ———sin(y8) .

Substituting (3.24) into (3.7a) gives

c} 8 cos(2y8)sin(2y8)
aH 2

—sin y8 cos y8

(3.24a)

(3.24b)

(3.24c)

(3.24d)

where 0&V2y8(m and 0&k'&m, respectively. The
solution for Q is Q =k/~2y, a constant. The width of
the solution (3.22) is independent of both the gain and the
velocity u'.

In Fig. 5(a) we plot the amplitudes N'i, 8'2, and 8'3
versus r using (3.22) with k=1. Figure 5(b) is the sameas
Fig. 5(a), except we plot the fields' intensities, 8'i, N'2, and
g 3 ~ Looking at Fig. 5(a) we observe that at r=m/2 the
first and third fields undergo a m phase change. There-
fore, it may be possible to generate this soliton by intro-
ducing a n. phase change into either or both 8'& and N'3.

cos(2y8)sin(2y8)
2

sin(4y8) sin(2y8)
4 2

sin(2y8)
2

(3.25)

which is a variant of the double sine-Gordon equation.
After multiplying both sides of the equation by B8/8'

AMPLITUDE INTENSITY '21 '22

0.6— Q.s I-

!

O. 4'

'12

0 ) 2

FIG. 5. Three-field soliton consistent with anti-Stokes
scattering, i.e., anti-Stokes field is 8'&, pump field is 8'2, first-
Stokes field is 8'3, (a) amplitude and (b) intensity. FIG. 6. Two-pump four-field model.
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[cos (2y8)+2cos(2y8)+C],1

4y

where C is the constant of integration. Choosing C equal
to 1 and using a standard trigonometric identity we obtain

88 1=+ cos (y8} . (3.27)
dr y

Upon choosing the + sign and integrating (3.27) with
the appropriate boundary conditions we find that
tan(y8)=vye, i.e., using standard trigonometric identi-
ties (3.27) becomes

1 1 yr—
1+yH

(3.28a)

2vy~
v 2 1+yd

(3.28b)

1+2i= (3.28c)(1+y&)'~'

vyg
(I+y+)'"

where —m j2 & y8 & n /2 and —ao & ~ & oo, respectively.
The solution for Q is

I

(3.28d}

l 1

vy
(3.29)

In Fig. 7(a) we plot the amplitudes 8'» and 8'&2 versus
v using (3.28) with y= l. Figure 7(b) is the same as Fig.
7(a), except we plot the fields' intensities, 8'ii and N', 2.
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FIG. 7. Two-pump four-field soliton, pump~ field is 8'II,
first-Stokesi field is 8'I2, pump2 field is 8'2I, first-Stokes2 field is
8'22, (a) field pair& amplitude and (b) intensity, (c) field pair2 am-
plitude and (d) intensity.

0.4—

and using the middle form of (3.25), we rewrite (3.25) as
'2

1 8 88 1 8
[cos2(2y8 }+2 cos(2y 8)],2 8'r dT Sy 'r

(3.26)

Figures 7(c) and 7(d) are the same as 7(a) and 7(b), except
for 8'zi and 8'zi. Looking at Figs. 7(c) and 7(d} we ob-
serve that the soliton for these fields is similar to the
two-field soliton shown in Fig. 2. In this case, however,
the shape of the fields is Lorentzian, and, therefore, much
broader. In Figs. 7(a) and 7(b} we see very different
Lorentzian type soliton structures. The pump field in this
case is initially a maximum with the first-Stokes field,
zero. The pump field in time then proceeds to deplete to
zero, undergo a n phase shift and return to a maximum at
the halfway point. During this time period the first-
Stokes field builds from zero to a maximum, correspond-
ing to the zero in the pump, and returns to zero as the
pump returns to a maximum at the halfway point. The
first-Stokes field undergoes a n phase shift at the halfway
point. As we proceed from the halfway point to positive
infinity, both fields reverse their time dynamics, with the

pump symmetric and the first-Stokes antisymmetric.
Since in this case there are several n phase shifts, it is not
clear how to experimentally generate this soliton.

Before concluding this section we would like to point
out that these examples of four-wave-mixing solitons are
not the only cases which exhibit analytic solutions. There
are actually many others. However, like the last case they
may require very special parameter choices. In practice it
is possible to choose more realistic parameters and still
obtain solitons, but (3.7a) probably will require numerical
integration. It is also possible that soliton solutions may
not exist for certain parameter values.

In the next section we will consider the potential for ex-
perimentally generating the solitons discussed here using
the technique of introducing a n. phase shift into the elec-
tric field envelopes. We will numerically simulate experi-
ments by integrating equations (3.4).

IV. "EXPERIMENTAL" SIMULATIONS

In this section we numerically study the sob, tons de-
rived in Sec. IIIC. Our computations will use the tech-
nique of introducing a n phase shift in one or more of the
input fields in order to generate a soliton structure. Since
in real experiments the relaxation time of the polarization
is finite, not infinite as assumed in Sec. III C, we will set
T= 1 ns. In all cases the frequencies will be set equal.

Our pulses in time will be super-Gaussian such that
they appear relatively square. The full width at half max-
imum (FWHM} of the pulses will be roughly 20 ns.
When a n phase shift is introduced in a pulse envelope, it
will be introduced at the center, except for the two-pump
two-field case. We will view the fields in a reference
frame moving with u =us such that the solitons are de-
layed relative to the rest of the pulse envelope as viewed at
the cell exit. The input pump energy will be 20 mJ/cm
so that the input pump intensity is roughly 1 M%'/cm .
The input first-Stokes energy will be three orders of mag-
nitude smaller than the pump. The gain will be chosen in-
dividually for each case such that the pulses' central tem-
poral region shows sufficient photon conversion to be con-
sistent with soliton input conditions. The cell length will
be 3 ns.

The figures in this section will show each pulse's tem-
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INPUTporal intensity profile at input to the cell and at output
from the cell versus local pulse time T.. Superimposed on
these figures will be the phase of the electric field en-

velope versus ~ where zero radians is in the center, 2m ra-
dians very close to the top, and —2m radians very close to
the bottom of the rectangular viewing area. Since the
electric fields are real, we will only observe zero and +n..
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FIG. 9, Same as Fig. 8, except the input first-Stokes field has
an instantaneous m phase shift introduced into its electric field
envelope.
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FIG. 10. Second-Stokes generation input temporal intensity
profiles, (a) pump, (b) first-Stokes, (c) second-Stokes, (d)—{f)are
corresponding output temporal intensity profiles. Axes are the
same as in Fig. 8.

FIG. 8. Raman scattering input temporal intensity profiles,
(a) pump, {b) first-Stokes, (c) and (d) are the corresponding out-

put temporal intensity profiles. Horizontal axes are time (ns}
and vertical axes are intensity (MW/cm ).

For this example we have a pump and first-Stokes field.
The temporal intensity profiles at input to the Raman cell
are shown in Figs. 8(a) and 8(b). Notice the phase of both
fields is zero. In Figs. 8(c) and 8(d) we show the intensity
profiles at output from the Raman cell. Our choice of pa-
rameters gives very strong pump depletion. The asym-
metry in the pump field is due to the finite relaxation time
of the medium. If the relaxation time were infinite, then
the output fields would be symmetric. The output fields'
phases are zero. This type of output was typically ob-
served experimentally by Wenzel and Carlsten.

In Figs. 9(a) and 9(b) we show the intensity profiles at
the input to the Raman cell where we have now intro-
duced an instantaneous Tr phase shift in the Stokes electric
field envelope. In Figs. 9(c) and 9(d) we show the intensi-
ty profiles at the output from the Raman cell. The spike
in the output pump field and corresponding dip in the
output Stokes field represents the induced soliton struc-
ture. This soliton should be compared with the
mathematical soliton shown in Fig. 2. Notice the relative
location of the Stokes phase shift on input and output.
This difference corresponds to the slower velocity of the
soliton relative to the fields' group velocity. Due to the
finiteness of the relaxation time, the shape of the soliton
structure is not of the form given in Sec. IIIC1. It is
structures like these that were observed by Wenzel and
Carlsten randomly and rarely in their original experi-
ments. In comparing Figs. 8 and 9, one observes that the
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intensity of the output fields in the two cases only differs

by the soliton structure, all other features remain un-

changed.

B. Second-Stokes generation (three-field case)

We consider normal second-Stokes generation first, i.e.,
all the input fields have the same phase, zero. Initially,
we will set the input second-Stokes field to zero which
forces it to arise entirely from four-wave mixing. In Figs.
10(a)—10(c) we show the input temporal intensity profiles
of the pump, first-Stokes, and second-Stokes fields tem-
poral profiles, respectively. In Figs. 10(d)—10(fl we show
the same fields at the output from the cell. The gain has
been chosen such that the pump and first-Stokes fields are
strongly depleted. The transiency results in very asym-
metric temporal profiles.

Referring back to Fig. 4, we observe that the input can-
ditions for this soliton are depleted fields one and two and
an undepleted field three, which is consistent with Figs.
10(d)—10(f). In addition, we observe that it is the second
field which undergoes a sign change at the center of the
soliton. Therefore, we introduce an instantaneous ir phase

shift in the first-Stokes field. In Figs. 11(a)—11(c) we
show the input fields' temporal profiles. In Figs.
11(d)—11(fl we show the corresponding output fields.
Comparing the location of the first-Stokes phase change
on input and output shows a delay in the soliton with
respect to the body of the pulse. Comparing the differ-
ences in the fields between Figs. 10 and 11 gives the
features representative of the soliton. The second field
shows a two-spike structure whereas the first and third
fields show a spike and dip, respectively. The spike in the
first field is narrower than the dip in the third field.
These features are all consistent with Fig. 4(b). Both
Wenzel and Carlsten plan to look for this soliton in the
near future.

C. Stimulated anti-Stokes scattering (three-field case}

In order to study "normal" anti-Stokes scattering we set
all the initial phases to zero In .addition, we set the anti-
Stokes field intensity initially to zero forcing it to arise
solely from four-wave mixing. In Figs. 12(a)—12(c) we
show the input fields' temporal profiles where the first
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FIG. 11. Same as Fig. 10 except the input first-Stokes field
has an instantaneous ~ phase shift introduced into its electric
field envelope.
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FIG. 12. Anti-Stokes scattering input temporal intensity pro-
files, (a) anti-Stokes, (b) pump, (c} first-Stokes, (d)—(f) are the
corresponding output temporal intensity profiles. Axes are the
same as in Fig. 8.
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field is the anti-Stokes field; the second field is the pump
field, and the third field is the first-Stokes field. In Figs.
12(d)—12(fl we show the output fields, respectively. Be-
cause of our initial conditions and parameter choices, we
are able to generate a significant amount of anti-Stokes
before the phase matching halts the on-axis forward con-
version. " Due to the transiency there is some asymmetric
conversion easily visible in the first-Stokes field. Note
also that the phase of the output anti-Stokes fte1d is shift-
ed by n relative to the other fields.

The soliton illustrated in Fig. 5 shows that the first and
third fields have equal intensity initially and that the
second field is depleted initially. The first field is rr out of
phase with the third field. These initial conditions are
consistent with Fig. 12, even though they are not exactly
the same. Since initially we do not have any anti-Stokes
photons, we will insert an instantaneous n phase shift into
the third field, the first-Stokes, and see if we can induce
the solitary wave structure. In Figs. 13(a)—13(c) we show
the input temporal profiles. In Figs. 13(d)—13(fl we show
the output temporal profiles. Comparing Figs. 12 and 13
enables us to distinguish the features of the soliton. Com-
paring the input and output first-Stokes' phase shift in
Fig. 13 shows that the velocity delay of the soliton is very
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FIG. 14. (a)—(c) are the same as in Pig. 13(d)—13(f), except
the gain has been increased.

D. Two-pump conversion (four-field case)

small. In addition, we see that the phase of the first and
third fields on output from the cell are now consistent
with Fig. 5. In Sec. III C2 we found that this soliton was
independent of y and, therefore, independent of U' and the
gain. In order to test the insensitivity of the soliton to
gain we repropagated the fields, but with the gain signifi-
cantly increased. The results are shown in Figs.
14(a)—14(c) where we observe only a slight increase in the
conversion efficiency and no substantial change in the sol-
iton. Since the relaxation time from a physical standpoint
must play an important role in the rise and fall of the soli-
ton, we again repropagated the fields, but with the relaxa-
tion time doubled. In Figs. 15(a)—15(c) we show the nu-
merical results for the output temporal profiles. We ob-
serve a doubling of the soliton width.
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We will correlate this simulation to that studied in Sec.
III C3 by choosing the input field intensities such that the
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FIG. 13. Same as Fig. 12, except the input first-Stokes field
has an instantaneous m phase shift introduced into its electric
field envelope.
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FIG. 15. (a)—(c) are the same as in Fig. 13(d)—13(f), except
the relaxation time has been doubled.
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first pair has half the intensity of the second pair. The
gain for the first pair will be twice that for the second
pair. Normal Raman scattering for this case will occur
when all the input phases are zero. In Figs. 16(a}—16(d)
we show these input fields' temporal profiles. Figures
16(a) and 16(b) correspond to the pump and first-Stokes o
the first field pair, and Figs. 16(c}and 16(d) to the same
fields for the second field pair, respectively. In Figs.
16(e)—16(h) we show the corresponding output fields.
The gain has been chosen such that the second field pair
is in the normal depletion regime. The first field pair is in
a reverse regime where the first-Stokes is returning pho-
tons to the pump field, after having gone through the nor-
mal depletion regime earher in the cell. The asymmetry
in the fields' envelopes is due to the transiency of the
medium. One should also notice that the phase o the
first pump is n out of phase with the other fields.

Referring back to the soliton structure shown in Fig. 7,
we observe that the output temporal profiles shown in
Figs. 16 are consistent with this soliton's initial condi-
tions. The first field pair has an undepleted pump field

and depleted first-Stokes field with the phase of the pump
at n. The second field pair has a depleted pump field and
undepleted first-Stokes field of the saine zero phase. In
order to generate the soliton shown in Fig. 7 we mill intro-
duce a m phase shift into the first-Stokes field of the
second field pair. Since the soliton structure found in Sec.
III C3 is a Lorentzian and, therefore, very broad, we will
introduce the m phase shift earlier in the temporal pulse

. 17 a)—17(d)envelope than in the previous cases. In Figs. a-
we show the input temporal profiles. In Figs.. 17 e)—17(h)
we show the output teinporal profiles. Comparing Figs.
16 d 17 enables us to observe the soliton structure andan

b-identify it as that shown in Fig. 7. The structures o-
served are broader for the second field pair as compared
with those for the first field pair. Comparing the phase
shift on input and output for the first-Stokes field of the
second field pair, we observe a substantial delay in the so-
iton. We believe that this single rr phase shift was suc-
cessful in generating this complex soliton structure be-
cause it is the only m phase shift which is consistent with
the initial conditions at the cell input.

0.4

0.2

PUMP,
I

INPUT

0.0004

0.0002

FIRST-STOKES g

0.4

0.2

PUMP,
I

INPUT

0.0004

0.0002

FIR8T-STOKE8

0.0
0

PUMP2
I

6 12 18 24

(a)

0.0000
6 12 18 24

(b)

FIRST-STOKES g

0.0
0 6 12 18 24

(a)

0.0000
0 6 12 18 24

(b)

0.8

0.4

0.0 I I I I

0.0008

0.0004

0.0000 I I I I

0.8

0.4

PUMPS
I

0,0008

0.0004

FIRST-8TOKES g

6 12 18 24
(c)

OUTPUT

6 12 18 24
(d) 0.0

0 6 12 18 24
(c)

0.0000
0 6 12 18 24

(d)
PUMP)

I

0.4—

0.2

FIR8T-STOKE8

0.4

0.2

0.4

0.2

PUMPS
I

OUTPUT FIRST STOKE81

0.2

0.0 I I I

0 6 12 18 24

(e)

PUMP~

0.0
6 12 18 24

(~)

FIRST-STOKES'

0.0
0

I I 1

6 12 18 24
(e)

0.0
0 6 12 18 24

(~)

0.8-

0.4

0.8

0.4

0.8

0.4

PUMPS
I

0.8

0.4

FIRST-STOKES'

0.0
0

i I I i

6 12 18 240 6 12 18 24
(g) (h)

FIG. 16. Two-pump Raman scattering input temporal inten-

sity profiles, {a) pump~, (b) first-Stokesi, (c) pump2, (d) first-
Stokes2 (e)—(h) are the corresponding output temporal intensity2t

profiles. Axes are the same as in Fig. 8.
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FIG. 17. Same as Fig. 16, except the input first-Stokes field
of the second field pair has an instantaneous m phase shift intro-
duced into its electric field envelope.
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APPENDIX

In Sec. III we showed several examples of mathematical
soliton solutions for two-, three-, and four-field problems.
These analytic solutions demonstrated the potential rich-
ness for solitary wave generation in four-wave mixing
problems in a Raman medium. We specifically discussed
the problems of anti-Stokes scattering, second-Stokes gen-
eration, and two-pump Raman scattering. %e believe that
there are many other four-wave-mixing problems which
can exhibit solitary wave formation.

While our parameter choices are artificial, it should be
clear to the reader that realistic parameter choices for
similar types of problems will lead to solitary wave gen-
eration. The exact form of these solitons, however, re-

quires numerical simulation, but should be closely related
to the solutions found here.

The technique of introducing instantaneous n phase
shifts in particular input fields was shown to lead in all
cases to stimulated scattering phenomena closely related
to the analytic solutions. This technique is accessible both
to the theorist and the experimentalist.

We look forward in the future to seeing real experi-
ments demonstrating these or other solitons using the
physics of four-wave mixing in Raman type media. More
realistic numerical simulations of these experiments will

expand our knowledge of this subject.¹teadded in proof. The term soliton has historically
been used for these wave structures observed in Raman
scattering, and we have used this terminology here. In the
earlier examples and in our more general four-wave mix-
ing case, we believe the term "solitary wave" is more ap-
propriate, although we have used the terms soliton and
solitary wave interchangeably in the text
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In this appendix we show the relationship between the
SVEPA and the group velocity in Maxwell's equations.
These results are well known to researchers whose work
involves propagation in optical fibers or other highly
dispersive media. ' ' However, since we have noticed
that many researchers do not distinguish n/c and Us in
the Raman scattering literature, this seemed to be an ap-
propriate forum to illustrate a simple derivation of the
proper result.

We first expand any electric field and its generated po-
larization in terms of their frequency components:

] [{kI-k)z —{raI-a))t];{k ]jS(z,t)= e Ie e'
I

g (z r)ei (ks cot)—

i[(ki —k}s (cui ——u)t);(k ~q)

I

p (z r)&i{km ut)—

(Al)

(A2)

BX (i ~) BiX
X(coi)=X(co—)+(cubi co) —+

C0 2
(A3)

where X is a slowly varying function of io. Substituting
(A3) into (A2) and recognizing that each power of
(coi —co) in the summation is equivalent to iB/Bt of the
summation, we obtain the following expression for p in
the time domain:

(A4)

where X, BX/Bco, and 8 X/Bco are all evaluated at the car-
rier frequency. Substituting (Al), (A2), and (A4) into the
second-order Maxwell equation (2.10) and combining
terms we obtain

where 8' and p are slowly varying. In order to be con-
sistent we expand the frequency-dependent susceptibility
X(roi) in a Taylor series up to second order in the carrier
frequency co:

BS' 1 BS' 1 Bz@'

Bz Us Bt 2ik Bzz
+ + a+k

Uii Bco
=0, (A5)

where we have used the definitions

1 3k
Uii BiLi

(A6a)

I

Therefore, the differential operator to lowest order is

(A7)

(A6c)

and have accounted for the frequency dependence of the
index of refraction, ri. In (A5) we neglect terms propor-
tional to 1/k in order to be consistent with the SVEPA.

where the zero on the right side of (A7) for the Raman
medium under consideration is really the nonlinear four-
wave-mixing part of the polarization described in Sec.
IIB. For the problems studied in the text the second
derivative term in (A7) is negligible. All terms in (A7) are
consistent with Refs. 6 and 12—15.
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