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Calculations of the photoionization cross sections of excited n/ states of cesium for n <9 and /<3

have been carried out within the framework of the central-field model.

In addition, oscillator

strengths for discrete transitions among these excited states have been obtained. The oscillator-
strength distributions are presented and analyzed and the prominent zeros in the matrix elements for
excited states are discussed in detail. Procedures and pitfalls in interpolation and extrapolation of
discrete oscillator strengths are discussed, and the photoelectron angular distributions from these ex-

cited states are also presented.

I. INTRODUCTION

The study of excited states of atoms allows one to in-
vestigate the phenomenology of physically large, yet rela-
tively simple, systems. In addition, by scrutinizing ioniz-
ing transitions one has a probe of continuum wave func-
tions far from the nucleus, a region inaccessible from
ground states. Since continuum wave functions are, in
general, the least understood element involved in theoreti-
cal descriptions of ionization, it is of great interest to
study them.

The simplest ionization process is photoionization since
the incident particle, the photon, disappears in the interac-
tion. Furthermore, the progress of laser technology has
made experimental measurements of photoionization of
excited atoms with one or two lasers or a laser plus a syn-
chrotron possible. Added to this is the fact that excited-
state photoionization is of importance in hot regions such
as stellar atmospheres and CTR plasmas, as well as being
very helpful in understanding the inverse process, radia-
tive recombination. Previous theoretical studies have un-
covered several new phenomena in the photoionization of
excited atoms, notably the existence of a number of zeros
in the transition matrix elements, far more than are seen
for ground-state atoms.!~ These zeros were predicted on
the basis of simple central-field calculations, but more so-
phisticated Hartree-Fock calculations reveal exactly the
same phenomenology.*® This points out the utility of the
central-field model, in view of its simplicity, to get an
overview of systematics and to reveal areas for more de-
tailed studies.

In this paper we focus on the photoionization of excited
nl states of cesium, up to n =9 and !/ =3. Cesium was
chosen because of its low ionization potential, making it
attractive experimentally, the rich phenomenology, seen
previously,'~* and the simplicity of the outer-shell struc-
ture, making it less likely that correlation effects are of
great importance. Calculations of the photoionization
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cross sections and photoelectron angular distribution
asymmetry parameters 3 were performed from threshold
to 5 Ry above threshold in each case. Additionally,
discrete oscillator strengths for the possible optically al-
lowed transitions among the various excited states were
obtained in order to study the optical oscillator-strength
distribution both above and below threshold.

In Sec. II a brief review of the theory and calculational
method is given. Section III presents and discusses our
results for oscillator-strength distributions, photoioniza-
tion cross sections, and photoelectron angular distribu-
tions. In addition, a discussion of interpolation in order
to obtain oscillator strengths for n/-—»n'l’ transitions
where n'>9 is presented. Section IV presents a summary,
conclusions, and a prospectus for future work.

II. THEORY AND METHOD OF CALCULATION

Within the context of the central-field model, the cross
section for photoionization of an nl/ atomic electron is
given by®

an

21 +1

onle)=(4/3)raa} (e—en)

X{U[R _(OP+U+ D[R, (T, (1

where a is the fine-structure constant, @, is the Bohr ra-
dius, N, is the occupation number of the subshell, € and
€, (intrinsically negative) are the photoelectron energy
after and before the interaction, respectively, and

Rysi(€)= fo‘” Po(r)rP 1+ (r)dr )

with P, (r)/r and P ,(r)/r are the radial parts of the in-
itial discrete and final continuum states. The discrete
function is normalized to unity and the continuum to unit
energy in rydbergs, i.e.,
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Py(r)—>m~ 2~ Yisin[€!2r — 3 Im+ €~ In2€! r
+0’1(6)+51(€)] as r— oo

(3)

with o(€e) the Coulomb phase shift and &;(¢) the non-
Coulomb phase shift.
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The photoelectron angular distribution for unpolarized
incident photons is given by’

1— Bnl(E)

danl _ Onl

dQ 41

P,(cosf) | , (4)

where P,(x)=(3x2—1)/2 and the asymmetry parameter®

I(I—=DRAP_ +U+ 1)U +2)RA — 611 + DR, _ Ry 4 1c08(€) 41— &1 1)

Bule)=

with §;=0,+56,.

Hartree-Slater central-field wave functions® were used
in this work. The potential appropriate to the ground
state was employed to solve the single-particle
Schrédinger equation for both the initial discrete and final
continuum states. Thus, exchange was treated only ap-
proximately, and core relaxation was neglected.

III. RESULTS AND DISCUSSION

Calculated results for photoionization cross sections,
discrete oscillator strengths, and photoelectron angular
distributions of excited states of Cs are the principal focus
of this work. Initial s, p, d, and f states with n =6—9,
along with the excited 5d, 4f, and 5f states have been
considered.

Owing to the lack of experimental photoionization
cross sections for excited states of Cs, it is difficult to es-
tablish the accuracy of our results. On the other hand,
some experimental and semiempirical work has been done
on discrete oscillator strengths. Since the accuracy of the
discrete and continuum wave functions should be compar-
able, comparison of our discrete oscillator strengths with
available values gives some indication of the accuracy of
our discrete wave functions and by inference, gives infor-
mation on the reliability of the continuum wave function
and photoionization cross sections.

Note that excited-state wave functions have an impor-
tant qualitative difference from most ground-state wave
functions in that a majority of their amplitude is in a re-
gion where the potential is purely Coulomb. Thus, for
most of their extent, these wave functions are purely hy-
drogenic with a quantum defect (phase shift for continu-
um states) generated by the inner non-Coulomb region of
the potential. For many matrix elements between two
such wave functions, the contribution of the inner region
is insignificant and the matrix element can be character-
ized by the quantum defects (phase shift) of each of the
states. This, of course, is the philosophy behind the
Bates-Damgaard analytic calculation of discrete oscillator
strengths.!® For this reason, along with the fact that
phase shifts are crucial factors in photoelectron angular
distributions, the calculated quantum defects and phase
shifts are discussed first.

(21 4+ D[IRA_; +(I+1)R? 1]

(5)

A. Quantum defects and phase shifts

For an atomic nl/ electron, the quantum defect p,,; is re-
lated to the electron binding energy €,; by'!

enl = (6)

n—pp ’
where R =13.6 eV. This is the fundamental equation of
quantum-defect theory.!! u,; provides information about
the inner non-Coulomb region of the potential. Its impor-
tance is enhanced by the fact that it varies very slowly
with increasing »n and rapidly approaches its asymptotic
value u,;. Furthermore, it provides a connection between
discrete and continuum spectra!! since the continuum
phase shift at threshold, §,(0) =mwy,.

Our calculated quantum-defect and phase-shift results
are shown in Fig. 1, where it is seen that the s- and p-
wave results drop monotonically starting in the discrete,
the d wave starts increasing and reaches a maximum in
the discrete, followed by a drop which continues for all
higher energies, and the f wave is increasing in the
discrete and exhibits a shape resonance just above thresh-
old. These results can be understood in terms of the effec-
tive potentials, i.e., actual potential plus centrifugal poten-
tial, “seen” by each of the partial waves.!? The s wave,
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FIG. 1. Phase shifts (in units of 7) and quantum defects (for
€ <0) for cesium.
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having no potential barrier, and the p wave, which has
only a weak centrifugal barrier at very short distances, are
very penetrating orbitals, even for the lowest member of
the discrete. Consequently, since increases in energy move
the orbital even closer in, cancellation effects occur and
the quantum defects and phase shifts decrease with in-
creasing energy,'® as seen in Fig. 1.

For the d wave, the effective potential has a rather dif-
ferent shape, with a larger centrifugal barrier near the nu-
cleus and a double well with a barrier between them at the
outer edge of the atom. This barrier results from the
“competition” between the attractive electrostatic poten-
tial and repulsive centrifugal potential; in the case it is an
“underwater” barrier, i.e., its height is below zero energy.
This d-wave barrier is fairly weak, but it still manages to
keep the lowest discrete d wave from penetrating com-
pletely. Going up in energy to higher discrete states the
barrier penetration increases, thus increasing the quantum
defect, as seen in Fig. 1. At energies above the barrier
height, the d orbital is penetrating, and the quantum de-
fect and phase shift decrease monotonically with energy.

The f-wave potential has a huge centrifugal barrier near
the nucleus and a double well like the d wave, but with a
much higher and broader barrier between them, about 0.5
Ry (positive energy) high.!> Thus, f states with energy
much below the barrier height are in the outer well pri-
marily; they have very little amplitude in the inner region
where the potential deviates from Coulomb. As a result,
the quantum defects and phase shifts are close to zero.
With increasing energy they do penetrate more, increasing
the quantum defects in the discrete and the phase shifts in
the continuum. As the energy reaches the top of the bar-
rier, the wave function moves in to the inner barrier rath-
er abruptly, giving rise to the shape resonance seen in Fig.

TABLE I. Threshold phase shifts (asymptotic quantum de-
fects) for cesium compared with experimental results from Ref.
14.

I Experiment?® Theory
0 4.06 4.02
1 3.58 3.56
2 2.47 2.61
3 0.03 0.03

2Reference 14.

To get some idea of the accuracy of both the discrete
and continuum wave functions, the calculated and experi-
mental'* asymptotic quantum defects are given in Table I.
The agreement for s, p, and f waves is seen to be quite
good; the d wave is somewhat less so, the theoretical value
being a bit larger than the experimental. This means that
the actual d-wave potential is less attractive than the
theoretical. The reason that this shows up in the d wave,
but no other, is due to the sensitivity of the barrier at the
outer edge of the atom. Since the barrier results from a
difference of two large numbers, a small error in one of
them could lead to a large error in the difference. The
comparison of Table I suggests that the actual barrier is
higher than our calculation predicts. Thus, it is clear that
the d-wave functions used in this calculation are slightly
too compact.

B. Discrete oscillator strengths

Oscillator strengths for absorption among the ground
6s state of cesium and all of the excited s, p, d, and f
states up to and including n =9 have been calculated.'
For reference, these oscillator strengths are given in Table

TABLE II. Calculated absorption oscillator strengths f,; - for cesium. The number in parentheses
is the power of 10 by which the entry is to be multiplied.

Transition Soinr Transition Srinr Transition Sfoinr
65— 6p 1.13 7p—9d 5.93(—2) 6d—9f 1.86(—3)
65—Tp 1.13(—2) 8p —9s 473(—1) 7d—8p 9.08(—2)
6p—8p 1.64(—3) 8p—8d 7.48(—1) 7d—9p 1.84(—2)
65— 5.0(—4) 8p—9d 1.67(—1) 7d—5F 1.49
7s—Tp 1.58 9p—9d 8.00(—1) 7d—6f 2.91(—2)
7s—8p 2.80(—2) 5d—Tp 1.01(-3) 7d —>17f 1.97(—-3)
7s—9p 4.82(—3) 5d—8p 4(—5) 7d—8f 1.20(—4)
85 —8p 2.01 5d—9% 3(—6) 7d —9f 1.8(—7)
8s—9p 4.54(—-2) S5d—4f 1.79(—1) 8d—9p 1.29(—1)
95s—9p 2.44 5d—5f 8.02(—-2) 8d —6f 1.79
6p—Ts 1.96(—1) 5d —6f 4.31(-2) 8d —>7f 6.16(—2)
6p—8s 1.94(—2) 5d—-17f 2.60(—2) 8d —8f 9.26(—3)
6p —9s 6.37(—3) 5d—8f 1.69(—2) 8d —9f 2.42(—3)
6p—5d 1.03(—2) 5d—9f 1.17(—2) 9d —T7f 2.06
6p —6d 6.71(—1) 6d—Tp 4.87(—2) 9d —8f 9.12(—2)
6p—7d 1.28(—1) 6d —8p 8.16(—3) 9d —9f 1.74(—2)
6p —8d 4.79(—2) 6d —9p 1.55(—3) 4f —17d 1.86(—1)
6p—9d 2.38(—2) 6d —4f 1.10 4f —8d 7.55(=3)
Tp—8s 3.36(—1) 6d—5f 9.1(—4) 4f —9d 2.03(-3)
7p—9s 2.98(—2) 6d —6f 1.95(-3) 5f—9d 1.58(—2)
7p—7d 7.04(—1) 6d—17f 2.63(—3) 6d —9d 5.72(—1)
7p—8d 1.51(—1) 6d —8f 2.31(=3)
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TABLE III. Comparison of discrete oscillator strengths f,; . for cesium. The results of our calculations are compared with ex-
perimental (columns with asterisk) and semiempirical results. The number in parentheses is the power of 10 by which the entry is to

be multiplied.

Transition This work Ref. 16 Ref. 17 Ref. 18 Ref. 19 Ref. 20 Ref. 21
65 —6p 1.13 1.05 1.07 1.05 1.09
6s—7Tp 1.13(—2) 1.48(—2) 1.42(—-2) 1.65(—2) 1.65(—2) 1.27(=2) 1.25(=2)
6s—8p 1.64(—3) 1.97(—3) 1.92(—-3) 2.32(-3) 3.33(—3) 1.86(—3) 1.79(—3)
65 —9p 5.01(—4) 5.53(—4) 6.50(—4) 9.93(—4) 9.93(—4) 5.55(—4) 5.36(—4)

This work Ref. 22
6p —9s 6.37(—3) 1.22(-2)
6p—7d 1.28(—1) 1.24(—1)
6p —8d 4.79(—2) 4.67(—2)
6p —9d 2.38(—2) 2.59(—2)
5d—6f 4.31(-2) 7.12(=2)
5d—17f 2.60(—2) 4.14(-2)
5d >8f 1.69(—2) 2.52(—2)
5d —9f 1.17(=2) 1.72(-2)

II; their systematics shall be discussed in the following
section. A variety of experimental and semiempirical re-
sults for discrete oscillator strengths in cesium have been
reported'$~?2 along with related results on transition
rates.”> In Table III, our calculated oscillator strengths
are compared with available experimental and semi-
empirical values'®~2? in an effort to assess our dipole ma-
trix elements, which are the essential ingredient of the os-
cillator strengths; the accuracy of the discrete dipole ma-
trix elements should be comparable to those in the contin-
uum. Unfortunately, only a handful of experimental os-
cillator strengths are available. In any case, we find that
our agreement of 6s—6p with experiment is quite good
(within 5%), while for the higher members of the series,
the agreement is less good, being worst for 6s—7p and
steadily improving for the higher transitions. Note that
the dipole matrix element is negative for 6s —6p and posi-
tive for 6s —7p and higher. This change of sign of the di-
pole matrix element, with increasing energy, is a very gen-
eral phenomenon and will be discussed further in a later
section. For the purpose of this comparison, however, it

TABLE IV. Comparison of lifetimes (ns) of excited states of
cesium theoretical results of Ref. 23.

State This work Ref. 23
Ts 56.0 48.2
8s 101.9 90.9
9s 181.7 164.3
6p 43.7 30.9
7p 186.4 142.2
8p 334.1 333.4
9p 768.6 614.0
5d 4720.5 1133.7
6d 40.7 58.3
7d 81.3 87.6
8d 134.0 139.4
9d 213.8 213.7

is sufficient to note that the poorest agreement with ex-
periment is found in the neighborhood of this change in
sign.

The agreement of the 6p— nd oscillator strengths with
experiment is seen to be quite satisfactory from Table III.
The 6p—9s is seen to be off by a factor of 2 from the ex-
perimental value, but in good agreement with a previous
calculation.?* This calculation is in very good agreement
for higher 6p— ns transitions, which leads us to be some-
what dubious of the experimental 6p —9s value. The cal-
culated 5d —nf oscillator strengths are about 30% too
small, which implies that the corresponding matrix ele-
ments are somewhat too small. This is due to the theoret-
ical d-wave potential being too attractive (as discussed
above) making the 5d wave function too compact, thereby
decreasing the overlap with the very diffuse nf wave
functions. It is expected that this will be less important
for higher nd states, which is borne out by the agreement
of the 6p— nd oscillator strengths given in Table III.

A comparison of lifetimes of selected states with other
theoretical results (which are in fairly good agreement
with experiment)?® is given in Table IV. Overall, the
agreement is reasonably good, indicating that our matrix
elements, and energies, are also reasonable. The greatest
discrepancy is about 30%, except for the 5d lifetime.
This is due to the sensitivity of the d-wave effective po-
tential, as discussed above.

The overall comparison of oscillator strengths and life-
times gives us some confidence, then, that our results are
reasonable, not only in the discrete range, but in the con-
tinuum as well.

C. Spectral distribution of oscillator strength

The differential oscillator strength df /de in the contin-
uum is simply proportional to the photoionization cross
section?’

df _ a(Mb)
d(e/R)  8.07
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with R the Rydberg energy. Using the one-electron sum
rule,’’

w Afper
gfnz,nw IR —ide=1. 7

Assuming the final discrete states in the summation of
Eq. (7) are rather dense, the sum can be well approximat-
ed by an integral over dn’,

0 ' 0 fnl,n’l'
gfnl,n‘l’z feofnl,n'l’dn = f‘o Wde » (8)

where ¢, is the energy of the lowest final state, so that Eq.
(7) becomes

0 fainr w Afpinr
- —_ =1 .
ffo de/dn’ de+ fO de de ®)

This shows how to represent the differential oscillator
strength in the discrete,?® as a histogram with bases laid
out about the binding energies €,,, widths de/dn’
(evaluated at €,), and heights of f,; ,/(de/dn’). The
top of the histogram forms a staircase which constitutes
an extrapolation of the continuum and, looked at in this
manner, the oscillator-strength distribution, both discrete
and continuum, can be treated on the same footing.

Before presenting and discussing the oscillator-strength
distributions, it is useful to discuss one of the most ubi-
quitous features found; the dipole matrix element passing
through a zero, as a function of energy, usually called the
Cooper minimum.®?” When these occur, the dipole ma-
trix elements have one sign at energies above the zero, and
the opposite sign below the zero. These zeros are clearly
seen in the continuum. There are also indications of
Cooper minima in the discrete, when plotted as discussed
above, but one rarely finds an exact zero owing to the na-
ture of the discrete.

It is known that the oscillator-strength distributions for
any state of the hydrogen atom has no zeros in the contin-
uum. Thus, any zeros found must be due to deviations of
the wave functions from hydrogenic. It is useful to think
of the dipole matrix elements from our calculations as
having contributions from two regions: an inner region,
close to the nucleus where the initial- and final-state wave
functions are complicated, and an outer region where the
potential is purely Coulomb thereby making the wave
functions hydrogenic, except for a phase shift (quantum
defect) induced by the inner region. Since we are dealing
with excited states of large spatial extent, most of the con-
tribution to the matrix element arises from the outer re-
gion.

As a zeroth approximation, the hydrogen initial- and
final-state wave functions are viewed as “in-phase”
sinusoids and, as mentioned, no zeros result. For our
case, the wave functions can be looked at as sinusoids
which are out of phase by the relative phase difference of
the initial- and final-state wave functions. Roughly
speaking, then, when this phase difference between initial
discrete and final continuum state is about 7/2, a zero
should occur right at threshold. For larger values of the
phase difference, the zero would occur above threshold,
since the continuum wave function moves in towards the

nucleus with increasing energy. As a corollary, it seems
reasonable that for a phase difference of about 37/2, two
zeros will occur in that transition, and three for 57 /2.
These arguments, of course, overlook the inner region en-
tirely as well as the fact that the wave functions are not
sinusoids, but they do provide a useful qualitative picture.

In our convention, all wave functions have positive
slope at the nucleus. Thus, all dipole matrix elements
must be positive at high enough energy where the matrix
element is generated near the nucleus. The mere existence
of a negative dipole matrix element, therefore, is a sure in-
dication of a Cooper minimum since at some energy it
must change sign. As an example, the 65—p oscillator-
strength distribution df/de is shown in Fig. 2. In this
case the phase difference between 6s and the threshold p
wave is just about 0.5 (in units of 7). Thus, by the above
discussion, we would expect a zero right around threshold.
This is just what is seen near €=0.1 Ry, just above
threshold. The dipole matrix element is negative below
the zero and positive above it, rising to a second max-
imum then falling off monotonically. This behavior is
typical of all of the ns —p oscillator-strength distributions
in Cs; with increasing principal quantum number, the
zero remains almost exactly at the same energy, the
threshold value of df/de increases, and the height of the
second maximum decreases. Note that for the s—p tran-
sitions, the photoionization cross section is just a constant
times df/de [Eq. (6)] in the continuum region (e >0),
since dipole selection rules allow only a single final state
for initial s states.

The oscillator-strength distributions df /de for 6p —d
and 7p—d are shown in Fig. 3. Both show a Cooper
minimum in the neighborhood of 4 Ry above threshold.
The p—d minima are much further out than the s—p
ones were because the threshold phase-shift difference is
now about 1 (in units of 7) between initial and final states.
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FIG. 2. Differential oscillator-strength distribution for the
65— p transitions in cesium as a function of final-state energy €
for both discrete (e < 0) and continuous (€ > 0) spectrum.
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FIG. 3. Differential oscillator-strength distribution for the 6p —d and 7p —d transitions in cesium as a function of final-state en-
ergy € for both discrete (€ < 0) and continuous (e > 0) spectrum. Note the arrow indicating the change in horizontal scale.

The p—d zeros move to slightly higher energies, with in-
creasing principal quantum number, moving 0.1 Ry in go-
ing from 6p to 9p.

The 6p oscillator-strength distribution is slightly
anomalous, compared to the other np ones, because the 6p
lies below the 5d energy, while the higher np’s all lie
above the respective (n —1)d’s. Thus a break in df /de is
seen for 6p in the discrete, but no similar break is in evi-
dence for 7p; there is actually a change of sign in the di-
pole matrix element between the 6p — 5d absorption (posi-
tive) and 6p—6d (negative). Here again, however, the
threshold value of df /de€ increases with increasing princi-
pal quantum number.

The results for 6p —s are shown in Fig. 4, where it is
seen that df/de is smooth with no indications of any
zeros. The relative phase-shift difference at threshold is
slightly below 7 /2, similar to the s—p case, but still no
minimum results. This is due to the effect of the inner re-
gion. For the s—p transitions, increasing energy moves
the ep wave function in toward the nucleus. This, in
essence, is like an increased phase shift so that in the s —p
case the phase difference can be thought of as decreasing
and the zero results. For the p—s case, it is the es that
moves in with increasing energy, resulting in an effective
increase in phase difference. When the energy increases
sufficiently so that this increase is enough for the outer
region to produce a zero, it is the inner region which dom-
inates the matrix element. Thus, no zero results. This
shows that there are some qualitative differences between
I—I1—1 and I—1+1 transitions. In addition, this sug-
gests the reason that zeros in the /—/ —1 transitions for
ground states, which are more compact to begin with, are
not seen since the inner region starts to dominate at a fair-

ly small energy.

The nd—f transitions exhibit some of the most in-
teresting features and, therefore, all of the calculated cases
are shown, in Fig. 5, rather than just a representative sam-
ple. The 5d—f case shows a smooth decrease in the
discrete region, then a sharp zero at €~0.1 Ry above
threshold. The dipole matrix element is found to be posi-
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FIG. 4. Differential oscillator-strength distribution for the
6p —»s transitions in cesium as a function of final-state energy €
for both discrete (€ < 0) and continuous (e > 0) spectrum.
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FIG. 5. Differential oscillator-strength distribution for the nd — f transitions in cesium as a function of final-state energy € for
both discrete (e <0) and continuous (€ > 0) spectrum. Note the arrow indicating the change in horizontal scale.

tive for the 5d —nf discrete transitions. Nevertheless, a
zero is seen just above threshold, where the matrix ele-
ment becomes negative. By the previous discussion how-
ever, the matrix element must be positive at high enough
energy. Since it is negative just above the zero shown, this
means that there must be a second zero at higher energy.
In fact, this is known! and this zero is at about 8 Ry
above threshold, above the range considered in this paper.

In addition, note that the threshold phase-shift differ-
ence is just about 2.57 (cf. Fig. 1). By the arguments
presented above, this large a difference would be enough
to support three zeros in the dipole matrix element. The
5d wave function is reasonably compact, however, so that
the inner region plays a role which always mitigates
against zeros. This is because for small values of r, the
phase shift (or quantum defect) is smaller than in the
asymptotic outer region, as can be seen from a phase-
amplitude analysis.?® That is, it starts off from zero at
the nucleus and accumulates value over the entire nonhy-
drogenic part of the potential. Thus, since smaller phase
shifts (quantum defects) mean smaller phase-shift differ-
ences, it is clear that the inner region of the matrix ele-
ment is more hydrogenic and, therefore, the contribution
of this region makes zeros in the matrix element less like-
ly. Then, since in the 5d —f case the phase difference is
about the minimum necessary to produce three zeros, the
strong effect of the inner region precludes the third and
only two are in evidence.

By the above discussion, for more highly excited nd
states a third zero should be possible since a smaller pro-
portion of the nd wave function is in the inner region for
higher n. Looking at the 6d—f in Fig. 5, it is seen that
this is indeed the case; a zero appears in the discrete be-
tween 6d —5f and 6d —6f. The dipole matrix element is
negative for transitions to 4/ and 5f and positive for the

higher discrete states and the threshold continuum region.
Then, about 0.1 Ry above threshold there is a zero, just
like the 5d case, and the matrix element is negative above
this point.

Going up further in n, it is seen from Fig. 5 that the
zero in the continuum at about 0.1 Ry above threshold
remains at a relatively constant energy as n increases.
The lower energy zero, in the discrete for 6d, moves to-
wards higher energy with increasing n, finally moving
into the continuum for the 9d —f transition.? This up-
ward movement is, of course, due to the decrease in im-
portance of the inner region for more and more highly ex-
cited states, as mentioned above. The zero at much higher
energy (~8 Ry) remains at about the same place with in-
creasing n, also, so only the lowest energy zero is affected
by increasing n.

It is worthwhile to reiterate, at this point, the fact that
for orbitals bound in ground states, at most a single zero
is seen for any given transition. The foregoing discussion
provides the reason: ground-state orbitals are so compact
that the inner region is always significant. Thus, even
though the relative phase difference of initial and final
states may be large enough for more than one zero, as in
the case of 4d —€f in Cs, the influence of the inner region
precludes the possibility. The phenomenology of ground-
state zeros is discussed in detail elsewhere.?

Note further that the three zeros in the 9d — f channel
are believed to be the largest number possible in any chan-
nel of any atom.? A fourth zero would require a
minimum phase-shift difference of about 3.5, and this
large a difference does not occur for an o;J)tically allowed
transition anywhere in the Periodic Table.!

It is evident from Fig. 5 that the existence of the zeros
profoundly affects the spectral distribution of oscillator
strength. Owing to the oscillator-strength sum rule (dis-
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cussed earlier), a zero in one spectral region leads to large
oscillator strengths in other regions. Of course, in the
continuum one looks at the photoionization cross section
which is a sum of /—/+1 and /—/—1 contributions so
that the zeros do not show up so well. This will be seen
more clearly in the discussion of total subshell cross sec-
tions below.

The nd —p results are shown in Fig. 6 for n =5 and 6
where a zero just below the ionization threshold is seen for
5d and somewhat above for 6d. The value of the phase-
shift difference in these cases is about 7 (cf. Fig. 1) so that
one zero is expected. As shown for the nd — f transitions,
as n increases the effects of the inner region near the nu-
cleus, which mitigates against there being any zeros, get
increasingly less important. Thus, the zero is seen to
move to higher energy in going from 5d to 6d. The loca-
tion of the zero is seen to dramatically alter the nature of
the oscillator-strength distribution in the region of thresh-
old. In the 5d case it is rapidly rising, but in the 6d case
it is rapidly falling.

The zero continues to move to higher energy, with in-
creasing n, as the effect of the inner region decreases, sta-
bilizing at about 0.15 Ry above threshold for 8d —p and
9d —p. Further, the threshold value of the differential
oscillator strength increases with increasing », as the zero
moves out to higher energies. It is interesting to note,
however, that although the continuum portions of the
5d—p and 6d—p oscillator-strength distributions are
completely different, looking at the whole distribution (in-
cluding the discrete range) reveals their essential similari-
ty; the difference being whether the zero occurs below or
above threshold. This point demonstrates the utility of
scrutinizing the oscillator-strength distribution as a whole.

It is important to emphasize that the zeros found in the
nd —p transitions are examples of zeros in /—/ —1 tran-
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FIG. 7. Differential oscillator-strength distribution for the
4f —d transitions in cesium as a function of final-state energy €
for both discrete (e <0) and continuous (e>0) spectrum. Note
the arrow indicating the change in horizontal scale.
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sitions. Such zeros are never found in ground-state orbi-
tals because they are very compact with significant ampli-
tude in the inner region. The contribution of the inner re-
gion thus precludes the existence of /—/—1 zeros in
ground-state orbitals. They have been shown to be a very
widespread phenomenon for excited states, however.>

In dealing with the photoabsorption by nf states, the
nf—g transitions shall not be discussed since neither the
initial nor final state, in these transitions, has a quantum
defect (phase shift) which appreciably differs from zero.
Thus, in the energy range considered, the nf-—g matrix
elements are the same as for hydrogen, the properties of
which are well known.!> For the nf—d transitions, on
the other hand, this is not the case as the threshold d-
wave phase shift is about 2.6, as seen in Fig. 1.

The spectral distribution of oscillator strength is given
for the representative 4f—d case in Fig. 7. The differen-
tial oscillator strength shows no zeros and drops mono-
tonically from the lowest 4/ —d absorption. This is rath-
er surprising as the threshold phase-shift difference is
close to 2.67r. For higher n up to 9f, the same behavior is
found; no zeros and monotone decreasing. Thus, the lack
of minima in Fig. 7 is not a consequence of the effect of
the inner region. Why then are no zeros found? The
answer lies in the energy range considered, up to 5 Ry
above threshold. Sample calculations show zeros at
higher energies, but the cross sections are so small above 5
Ry that the numerics become very difficult. This point
shall be discussed more fully in a later publication.

D. Total subshell cross sections

The total subshell photoionization cross sections that
one generally sees in an experiment are the sum of the
I—I1+1 and /—/—1 contributions. While it is possible
to measure each individually using various kinds of polar-
ized light,30 it is still of interest to investigate the totals.

In Fig. 8, the total is shown for 6p along with the
6p—d and 6p —s partial cross sections. The pronounced
zero in the 6p —d channel near 4 Ry is not evident in the
total owing to the strength of the 6p—s channel in that
region. A change of slope of the total cross section is all
that is seen in the neighborhood of the zero. This demon-
strates that the zero, dramatic as it is in 6p—d partial
cross section, can be almost totally masked in the total
subshell cross section. Information on this zero can be
obtained from measurements using polarized photons,*® as
mentioned above, or measurements of photoelectron angu-
lar distributions, which shall be discussed below.

Of course it is not always the case that one channel ob-
scures features of another. As an example, the situation
for 6d photoionization is shown in Fig. 9. Here it is seen
that the d —p channel has a zero just below the sharp
d—f zero. Thus, the d—f zero still shows prominently
in the total subshell cross section. Over the whole energy
range shown, the d — f channel dominates except near the
bottom of the zero.

The total subshell cross sections for excited states with
principal quantum number n <9 and / <3 are shown in
Fig. 10. Since, as discussed in Sec. III C, the zeros occur
at about the same energy for different values of n, the
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FIG. 8. Total photoionization cross section for Cs 6p along
with the p—s and p —d partial cross sections, as a function of
photoelectron energy €.

cross sections are shown in a manner to make their
features clear. The simplest cross sections are the nf.
For these the nf-—g transitions dominate in the region
shown. These transitions are entirely hydrogenic, as dis-
cussed above, so that they fall monotonically from thresh-
old. The threshold value increases and the falloff is more
rapid with increasing n; the threshold cross section is
about 20 Mb for 4f increasing to roughly 150 Mb for 9f.
The falloff scales approximately with the binding energy
so that with increasing n where the binding energy de-
creases, the faster falloff implies a larger threshold value,
since the oscillator-strength sum rule must be satisfied.
The nd cross sections are particularly interesting. Note
that the minima show up very distinctly. This is because
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FIG. 9. Partial d —p and d—f photoionization cross sec-
tions for Cs 6d as a function of photoelectron energy e.
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the minima are in the dominant d —f channel, coupled
with the fact that there are zeros in the d—p channels
quite close by as discussed in connection with 6d, Fig. 9.
They do not occur at exactly the same points, however, so
that the minima in the nd cross sections do not go to zero;
they are, however, very dramatic. Note that the lowest
energy 9d — f zero does not result in a minimum as sharp
as the higher energy one, or the minima in the other nd
cross sections. This is because this lowest energy 9d — f
zero occurs away from the 9d —p minimum; thus the
9d —p cross section is significant in this region and the
minimum is not so dramatic. Note also that the zeros in
the nd—p channels do not show up directly since the
cross sections are dominated in this energy region by the
nd — f channels. Their existence can be inferred from the
sharpness of the minima in the nd cross sections, as ex-
plained above, as well as from photoelectron angular dis-
tributions, which will be discussed later.

The np cross sections are interesting in their simplicity;
they fall monotonically from threshold. This is interest-
ing because the np—d channels have zeros in this energy
range, as seen previously. Thus, the np—d channels are
anomalously small, and the cross section in the energy re-
gion shown is dominated by the np —s transitions, which
were seen to have no zeros. This is shown clearly in Fig.
8 for 6p photoionization. Again, the existence of these
zeros can be inferred from the photoelectron angular dis-
tribution, discussed below.

Finally the ns cross sections all show a zero because,
for s state, only a single ns—p channel exists in each
case. Thus they reflect the spectral distribution of oscilla-
tor strength for a single channel with none of their
features obliterated by the addition of a second channel.
Actually this is only true in a nonrelativistic calculation.
Relativistic formulations allow for the possibility of
s—pi,, and s—p;3,, transitions. Since these two transi-
tions have their zeros at slightly different energies, this
has the effect of broadening the minimum and keeping it
from going to zero.}!*

E. Photoelectron angular distributions

As mentioned in the previous section, the existence of
zeros can be inferred from photoelectron angular distribu-
tions. We shall not consider s states because, within our
theoretical framework, Eq. (5) shows that their asym-
metry parameter, =2 and is independent of energy. The
situation is otherwise for p states as exemplified by the 8
for 6p shown in Fig. 11. Here we see an energy-dependent
structure in the S at low energies, which indicates both
p—s and p—d channels are contributing, followed by a
broad region, from 3 to 5 Ry, where S is roughly constant
and equal to zero. Note the =0 means an isotropic dis-
tribution and is indicative of the fact that the cross sec-
tion is dominated in this region by the 6p —s transition,
an s state being isotropic. The reason it is dominated by
the 6p—s transition is, of course, the zero in the 6p —d
channel, as seen in Fig. 8. Thus, it is seen that the broad
B=0 region implies a broad zero in the 6p —d channel in
that region; and it shows how examination of B can lead
one to the existence of a zero, even though the total sub-
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FIG. 11. Photoelectron angular distribution asymmetry pa-
rameter S for Cs 6p photoionization as a function of photoelect-
ron energy €.

shell cross section gives no hint of it.

A rather different B is obtained for the nd states, as
seen in Fig. 12 for 6d photoionization. Except for the
wild variation just above the 0.1 Ry, the variation of 8
with energy is quite slow and smooth. The wild variation
is caused by the 6d — f zero which causes the 6d — f ma-
trix element to change sign over a very narrow energy
range. In fact, Eq. (5) shows that at the zero, B= %,
which can be used to pinpoint the zero quite accurately.
The resonancelike structure of B indicates that there is
more than just a zero going on at that energy. The extra
is a very sharp shape resonance in the €f channel'* which
causes not only the d —f matrix element to vary rapidly,
but the phase-shift difference in Eq. (5) as well. Thus, the
change in sign of the matrix element acts like a change in
phase of , and the shape resonance gives a phase change
of , for a total of 27. This leads to a complete sinusoidal
variation of one full period, which is exactly what is seen
in S.

Leaving this region, it is important to note that from
Eq. (5), if the dipole matrix element for the 6d —p chan-
nel is negligible compared to the 6d — f, then B=+. Out-
side the resonance region (on both sides) B is never far
from this value, varying only between 0.55 and 1. This
indicates that outside the resonance region, the 6d—f
channel is quite dominant. For 3 to be exactly %, howev-
er, the 6d —p matrix element would have to vanish, i.e,, a
zero. From Fig. 12 it is seen that this value is attained at
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FIG. 12. Photoelectron angular distribution asymmetry pa-
rameter 3 for Cs 6d photoionization as a function of photoelect-
ron energy €.
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FIG. 13. Photoelectron angular distribution asymmetry pa-
rameter 3 for Cs 4f photoionization as a function of photoelect-
ron energy €.

about 0.09 Ry, indicating the presence of a 6d—p zero
there, just as was seen in Fig. 9.

For completeness, an example of an nf excited state,
the 4f, is shown in Fig. 13. The rise from threshold to a
maximum, followed by a decline to a broad flat region, is
typical of f subshells.’> The variation in B with energy is
not much affected by the variation of the matrix elements
which, in this case, is very smooth. The variation is due
primarily to the phase-shift difference term in Eq. (5), and
primarily the Coulomb phase-shift difference which is
most rapid near threshold.*

F. Interpolation and extrapolation
of oscillator strengths

The data presented herein can be used to generate oscil-
lator strengths from the initial states we have considered
to any higher final state with /<3 using the ideas of
quantum-defect theory.!! That this can be done reason-
ably can be seen from the dashed lines in the plots of the
oscillator-strength distributions, Figs. 2—7. For transi-
tions to states very close to the ionization limit, it is
shown by quantum-defect theory!! that

’

ni, '
fnl,n‘l’_> (n'*)> asn —oo, (10)
where n'*=n'—u,, p,r being the final-state quantum

defect and

Af ni,er

Co =2 ,
"2 d(e/R) |.oo

(11)

twice the differential oscillator strength (per unit energy
in Rydbergs, R) evaluated at the ionization limit. Since
Wnp very rapidly approaches the asymptotic p; with in-
creasing n’, it is clear that the oscillator strengths for all
of the transitions of a given symmetry to very highly ex-
cited states can be obtained from the two parameters u,
and C,;; the former were given in Table I and the latter
are presented in Table V.

As one moves to somewhat lower excited states, Eq.
(10) is no longer quite true. But one can factor out a good
deal of the variation with n by writing, in analogy with

Eq. (10),
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TABLE V. Theoretical results for the parameter C,, in cesium defined by Eq. (10). Note that
these are proportional to the threshold photoionization cross section of the given transition.

n

Transition 4 5 6 7 8 9
ns—p 0.0236 0.115 0.285 0.531
np —s 0.439 0.827 1.292 1.827
np—d 4.501 7.742 11.321 15.16
nd —p 0.001 84 0.0429 0.176 0.398 0.710
nd—f 7.975 1.866 0.608 0.401 0.796
nf—d 0.151 0.402 0.723 1.086 1.484 1.904
Copnv—Crp as n'— o (12)  ma in the discrete is crucial to any sort of interpolation.
Turning now to using these ideas to actually obtain os-
with cillator strengths, our results for four transitions are given
in Table VI, along with various experimental re-
Fainr= Conrr (13) sults.!®1%22 We have obtained the oscillator strengths us-
LT ing both the interpolation technique and Eq. (10); clearly

In fact, as seen by Eq. (11), this C, . is just twice the
differential oscillator strength in the discrete as defined in
Eq. (8). In any case, a knowledge of C,; , and ) are tan-
tamount to a knowledge of all of the oscillator strengths
in the series, except the lowest few (which have been cal-
culated directly). The C,;,p=(n"* )*fui,ny are shown in
Fig. 14 and can be used to find oscillator strengths not
calculated directly. These curves were obtained from the
calculated values of discrete oscillator strengths discussed
earlier, along with the threshold continuum value at €=0.
The intermediate region is, thus, interpolated.

Before going on to presenting oscillator strengths ob-
tained through this procedure, it is worthwhile to investi-
gate the C,;, curves themselves. Three of the sets,
ns—n'p, np—n's, and nf—n'd, are quite smooth. Thus,
the interpolation is simple and expected to be as accurate
as direct calculation. Looking at 6p—n'd, the nd —n'p,
and the nd—n'f results, Cooper minima in the discrete
are seen. This, of course, makes interpolation more diffi-
cult and tricky. It is seen then, that the oscillator
strengths through the minimum must be obtained, along
with the threshold continuum result, to perform any de-
cent interpolation. Thus, for example, for the 6d—n'f
transitions, if one knew the result for 6d —5f and the
threshold continuum result only, the interpolation would
be completely wrong by orders of magnitude. It is there-
fore clear that a knowledge of the existence of these mini-

the interpolation technique using Fig. 14 and Eq. (12)
should be more accurate, but the comparison shows that
they are not all that different than the results based on
Eq. (10). The agreement with experiment, overall, is fair-
ly good, especially considering the accuracy of the experi-
mental results, e.g., for the 6s— 12p transition the two ex-
perimental oscillator strengths differ by a factor of 2. In
fact, comparison with Table III shows that the interpolat-
ed results are in approximately as good agreement with
experiment as the oscillator strengths calculated directly.
This implies that the interpolated results are as good as
those calculated directly, a point we have confined by cal-
culating some transitions to highly excited states. Thus, it
is seen that the interpolation technique described above al-
lows us to obtain a whole Rydberg series of oscillator
strengths with remarkably little effort.

IV. CONCLUDING REMARKS

Calculated oscillator-strength  distributions, both
discrete and continuous, have been presented for a number
of excited states of Cs. The outstanding feature of these
results was the existence of zeros in the dipole matrix ele-
ments in discrete and continuous ranges, for both /—1 +1
and /—I—1 transitions. Further, the existence of as
many as three zeros in a single channel was found and ex-
plained in terms of relative phase shifts.

To test the accuracy of these calculations, we have com-

TABLE VI. Oscillator strengths obtained by interpolation using Eq. (10) and Eq. (12), as described in
the text, compared with experiment. The number in parentheses is the power of 10 by which the entry

is to be multiplied.

Transition Eq. (12) Eq. (10) Experiment
6s—12p 8.72(—5) 4.68(—5) 2.41(—5),% 4.46(—5)°
6p—10d 3.09(—-2) 2.53(-2) 1.66(—2)°
5d—11f 6.20(—3) 6.04(—3) 8.20(—3)°
6p—13s 7.04(—4) 6.06(—4) 1.10(—3)°

*Reference 16.
YReference 19.
°Reference 22.
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pared theoretical and experimental discrete oscillator
strengths and generally found fairly good agreement. The
exception was in the neighborhood of the zeros in the di-
pole matrix elements which, being extremely sensitive,
were often somewhat off in energy. The same result was
obtained in the continuum by comparing with more exact
Hartree-Fock results; the minimum was shifted but the
qualitative aspects of the results remained exactly the
same.** In regions away from Cooper minima compar-
isons between theory and experiment have been made for
photoionization of excited states of Na, and agreement
was excellent.3*3 Thus we conclude that our results
should be fairly good quantitatively except in the region
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of the zeros where only qualitative accuracy is guaranteed.

Finally, we note the need for experimental data, most
particularly in the continuous (photoionization) region.
Some benchmark measurements are important to establish
the existence and location of these various minima and to
allow the predictive value of theory to be tested. Cs, with
its low ionization potential, is an extremely attractive can-
didate for such investigations.
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