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Master-equation approach to collisionally induced absorption and emission
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%e study the collisionally induced excitation and photon emission of a neutral radiator atom sur-

rounded by a gas of neutral foreign perturbers within the binary-collision approximation. %e derive

an equation of motion for the reduced density matrix of the radiator and obtain the spectrum of the

spontaneously emitted photons including components due to collisionally induced radiation and to
Rayleigh scattering, which is valid in both impact and quasistatic regimes. In our formulation sin-

gle and subsequent collisional contributions are taken into account, and various coherent and in-

coherent corrections are examined.

I. INTRODUCTION

Collisionally induced transitions are intrinsically in-
teresting for spectral line broadening studies and inter-
molecular interactions. They are also of interest for their
possible applications in high-energy laser amplifier de-
vices. ' In these processes, which are of the type

R (i)+P(g)+~~R (f)+P(g) (excitation),

R(f)+P(g)~R(i)+P(g)+Rook (emission),

a neutral atom or molecule (radiator R), which undergoes
collisions with neutral perturber atoms (P), is excited by a
laser field of frequency to from its ground state

~

i ) to an
excited state

~ f ), or it decays from this excited state back
to its ground state, emitting a photon of frequency tok
As the transition

~

i)~
~
f) is dipole forbidden, these

processes can be due to (a) a higher-order multiple transi-
tion (e.g., electric quadrupole) or (b) a dipole moment,
which is induced in the radiator by collisions with per-
turbers.

The transition rate due to mechanism (a) is centered
around the frequency of the dipole-forbidden transition
(Ef E~)/fi wi—th a width determined by a typical (im-
pact) collision rate y, . In contrast, the collisionally in-
duced transition band due to process (b} typically extends
from (Ef E; )/A' to a few tim—es the inverse duration of a
collision (1/~, ) into the red or blue. These collisionally
induced transitions, which are the main subject of this pa-
per, have been studied in absorption and emission, both
experimentally and theoretically„and are usually inter-
preted in terms of (free-free) dipole transitions between
two molecular states of the radiator-perturber molecular
collision complex. The lifetime of this transient col-
lision complex, which is of the order of the duration of a
collision ~„determines the scale of the frequency depen-
dence of the collisionally induced transition rate. Ueda
and Fukuda have pointed out that for a satisfactory ex-
planation of the excitation profiles, the dipole moments of
the radiator and the perturber are important. In their
Ca-Xe 4s 'So—4s 3d 'Dz excitation experiment, for exam-

pie, they attributed the central peak around (Ef E;)/R—
(width -1/~, ) to a molecular transition involving the
perturber dipole, whereas the huge satellite peak in the
blue wing was assigned to a transition due to the radiator
dipole.

Collisionally induced excitation (or emission) experi-
ments are usually performed in a gas cell with a radiator
density that is small in comparison with the perturber
density. If the perturber density is low enough so that
(strong) collisions are well separated in time (binary-
collision regime), we can distinguish between single
(intra-) collisional and subsequent (inter-) collisional con-
tributions to the observable of interest. The single col-
lisional contribution to the excitation rate, for example, is
given by the excitation rate of a single radiator-perturber
collision complex multiplied by the number of perturbers
and radiators.

This molecular point of view, however, is not adequate
for treating the subsequent collisional contributions.
Lewis and Van Kranendonk ' have shown that intercol-
lisional contributions can lead to a dip in the excitation
rates of rotational or vibrational molecular transitions.
This dip is centered at (Ef E, )/A and h—as a width that is
small in comparison with 1/v, and is proportional to the
perturber density. This intercollisional effect is due to in-
terferences associated with a correlation of the relative
orientations of the dipole moments induced during subse-
quent collisions. These dipole moments are not randomly
oriented but are most likely pointing in opposite direc-
tions. This effect is predicted to lead to a peak in the
emission rate at (Ef E; }/ttt'. Herma—n's" calculations re-
veal that in HD-Kr this intercollisional contribution is
competitive with the interference contribution between a
(small) permanent dipole and the dipole induced during
single collisions. Interpretation of the work of Lewis and
Van Kranendonk indicates that these intercollisional ef-
fects are expected to become negligible if collisions are not
velocity changing as far as their effect on the mean in-
duced dipole moment is concerned. This is usually the
case in atomic or electronic molecular transitions, for
which a small lower-state interaction leads to the dipole
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moving oil a straight trajectory, whereas rotational or vi-

brational molecular transitions, for which the collisional
interactions in upper and 1ower states are almost equal,
tend to change the velocity associated with the mean in-
duced dipole significantly (and at the same time give a rel-
atively small phase change to the mean induced dipole
moment). '

In this paper we study collisionally induced excitation
of a dipole-forbidden atomic transition and the spectrum
of the photon that is spontaneously emitted during this
process. We start from the full density matrix equations,
which describe the dynamics of the radiator surrounded
by a dilute gas of foreign perturbers. The radiator and
perturbers thereby interact with the exciting laser field
and all other (unoccupied) modes of the radiation field.
Within the binary-collision approximation' ' (BCA) we
derive the reduced density matrix equation of the radiator
and an expression for the spectrum of the spontaneously
emitted photon. The exciting laser field is assumed to be
weak so that it does not significantly modify the collision
dynamics, but we allow for saturation of the dipole-
forbidden radiator transition. Our treatment automatical-
ly takes into account single and subsequent collisional
contributions and is uniformly valid for impact excitation
(or emission) as well as in the quasistatic limit. Our ex-
pressions also include effects due to degeneracy of the ex-
cited radiator state. For simplicity, we assume the ground
state of the radiator and the perturber to be nondegen-
erate. Our investigation focuses mainly on heavy radia-
tors whose velocity is essentially unchanged by collisions
with the perturbers. This simplifies the analysis consider-
ably, as the collision environment of the radiator is spheri-
cally symmetric in this case. However, we also comment
on modifications that are necessary if velocity changes of
the radiator become significant. As effects due to the ra-
diator velocity are usually small, if velocity-changing col-
lisions can be neglected, we expect our analysis also to be
valid for lighter radiators as long as only atomic or elec-
tronic molecular transitions are considered. 'z'

In Sec. II we present the physical system under investi-
gation and discuss the reduced density matrix equation of
the radiator together with the approximations involved in
its derivation. In Sec. III we derive the corresponding
equation for the spectrum of the spontaneously emitted
photon and discuss the physical significance of the vari-
ous terms. Details of the derivations can be found in Ap-
pendixes A and C. In Appendix 8 we discuss the gauge
invariance of the collisionally induced spontaneous decay
rate.

II. DENSITY MATRIX EQUATIONS

E,(x)= g [Ek k(x)+H. c. )
k, A,

with

(lb)

Ek k(x) =i ~k ae ~kX

i(kJ E,('xj, t)
j=R, 1, . . . , N

pj Eg( x)j+HF
j Ry 1) ~ ~ ~

with the free-field Hamiltonian

HF = g ~kuk, kt)k, A,

k, k,

(2)

Htt and H j() are the Hamiltonians of the internal degrees
of freedom of the radiator and the perturbers, and
V(

~
xti —xj ~

) is the collisional interaction between them.

pj is the dipole moment of atom j. For simplicity, we
have neglected the center-of-mass motion of the radiator
in the Hamiltonian of Eq. (2), which corresponds to con-
sidering a heavy-radiator limit (Mt( »M), although we
will comment about its effect when we compare spherical
and cylindrical symmetry of the collision environment.
We can therefore set xt( ——0.

The density operator of the whole system obeys the
equation of motion

—p, (t)= . [H,p, (t)], t&0.
dt

In the interaction picture defined by

p, (t)= U, (t,o)p, (t)

with

N

U()(t,0)=exp Lg+LF+ g (LF +LJ) t
j=1

this reduces to

and
~

k
~

=cok/c. akk is the polarization of mode (k, )(, )

and ak ~ is the associated photon destruction operator. V
is the quantization volume. The Hamiltonian determining
the time evolution of this system is, for the radiative in-
teraction in the dipole approximation, given by

r

N p. N

H =Hit+ g, +H(y) + g V(
~
xz —xj

~

)
j=1 j=1

We consider one neutral radiator atom, which collision-
ally interacts with i)))' neutral (noninteracting) perturber
atoms in a gas cell. (The generalization to Nt( «X radia-
tor atoms is straightforward. ) The radiator and the per-
turbers interact with an (assumed) classical monochromat-
ic laser field

(t)= L (")(t)+L(R)(t)d
dt S

+ g [V (t)+L,"'(t)+L,"'(t)] p, (t) . (4a)

E,(x, t) = g('Oee ' +c.c.

and the (transverse) spontaneous modes of the radiation
field represented by the electric field operator

The Liouville operators are defined as follows (see, for ex-
ample, Appendix A of Ref. 16, and also Ref. 17), where

J refers to an arbitrary Hilbert-space operator:
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for an arbitrary Schrodinger-picture operator 8'.
Define a projection operator (see, e.g., Ref. 16) in

tetradic notation (for a discussion of tetradics see, e.g.,
Appendix 8 of Ref. 17) by

L (I. j)— [H(j) I j]1

iA

L,' k'(t)[I . . j]= . [—yk(t) E,(xk, t), I j],

(4b}

n II&J

where RAD denotes spontaneous radiative modes, with

p, =
I g,g))p(pj)Trj. ( ) .

The reduced density operator of the radiator ol(t) in the
interaction picture is given by

L,'"(&)[I j]= [—p,„(t) E,(xk r»I ' ' ' j] er(t) =Tr~D (p)( &pl(t)1 . (6)

with

d'(t) = Uo (t,o)PUO(t, o)

N A 2
1 Pj

Uo(t, o)=exp' . Hx+HF+ g H(j }+
lA j=1

(4c)

Thus
I g ) is the ground state of the perturbers, which for

simplicity is assumed to be nondegenerate. p(pj} is the
density operator for the center-of-mass motion of the jth
perturber. We assume in the following that it describes an
equilibrium situation, i.e., L&p(p~) =0, and is normalized

in the sense that I d pjp(pJ)=1. I [oj } is the ground
state of the spontaneous modes of the electromagnetic
field so that

I Ioj, Ioj }) denotes the initial density matrix
for the spontaneous radiation field (compare Ref. 16). Tr.
(TrRAD) denotes the trace over the degrees of freedom of
the jth perturber (spontaneous modes). Tr(~} indicates the
trace over all perturber variables. The projected equation
of motion for the density operator, which fulfills the ini-
tial condition for decorrelation at t =0 (as discussed
below), namely, Dpi(t =0)=0, with B=1—9', is easily
obtained from Eq. (4a), namely,

+9' L,'"'(r)+ g V, (t}

&& I dr'G(r, t') L,'"'(r')+ g [BV;(t')+L,"(r')+L,"(t')] 9'p, (r'), t&0
i=1

(7a)

with

N—G(r, r')= L,' '(t)+BL,'"'(r)+ g [L,'J'(r)+L,'J'(t)+&V (r)] G(r, r'), r &t'
t j=l

(7b)

G(r', t')=1. This projected equation therefore as-
sumes complete decorrelation between all constituents of
the system at t =0 with all perturbers and all spontaneous
modes in their ground states. However, as correlations
within our system decay roughly on a time scale of order
maxIv;, rRAnj, where r, = 10 ' s is the typical duration
of a (strong} collision and ~RAn-10 ' —10 ' s is the
typical correlation time associated with the spontaneous
modes of the radiation field, ' Eq. (7a) is valid for times
t ~~max[r„rRAn j even if the above initial condition, i.e.,
&pl(r =0}=0, is slightly violated (because the effect of

any initial correlation will have decayed away' ). Equa-
tion (7a) is more general than the corresponding equation
of Ref. 16 because we also allow the perturbers to interact
with the laser field and we have not eliminated the spon-
taneous modes of the radiation field in a Born-Markov ap-
proximation.

Starting from the general equation (7a) we want to
derive a reduced equation of motion for the radiator,
which describes collisionally induced laser excitation and
collisionally induced spontaneous decay. To simplify
matters as much as possible we restrict our further inves-
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tigations to the following situation.
(1) For radiator-perturber collisions we assume a low

perturber density so that different (strong) collisions are
well separated in time, which is the usual BCA. ' *' ' %e
therefore require that the duration of a (strong) collision
r, be much less than the time between different collisions,
i.e.)

rq ((1/1'q

Ef-- Jf = 2

ENERGY

l 1

&
Iihz'e@'o

I IPJ'e&o I
«1««oi (10a)

We also neglect effects due to spontaneous emission of
I

where y, is a typical (impact) collision rate. Further, we
assume a spherically symmetric collision environment for
the radiator, consistent with the neglect of the radiator
motion in Eq. (2) (heavy-radiator limit). However, as
mentioned earlier, we later comment on what occurs if the
radiator is no longer heavy and spherical symmetry has to
be replaced by cylindrical symmetry due to the motion of
the radiator through the perturber ensemble.

(2) We focus our attention on a laser excitation process
as schematically represented in Fig. 1. A monochromatic
laser field of frequency t0 is almost in resonance with the
dipole-forbidden radiator transition

I
i )~ I

fa). For
simplicity we assume that

I
i ) is the nondegenerate

ground state, which is initially populated, and
I fa) is the

first excited-state manifold with total angular momentum

lf ——2 (a labels the various substrates). We allow only for
collisionally induced transitions and neglect radiative
higher-order multipole transitions. It is further assumed
that within the radiator or perturber, there is no other
transition that is in resonance with the exciting laser field.
The radiator states

I
k ) are considered to be sufficiently

separated from
I
fa) and

I
i ) so that inelastic collisions

can be neglected. Thus we have

I
«+i)I —&f I

I/rc « IEt —~k I I « Ek
I

. —

This adiabaticity condition assures that there is no popu-
lation transfer between

I f a) and any higher excited radi-
ator manifold, which may couple to

I
i ) via a dipole tran-

sition.
(3) The Rabi frequencies associated with the exciting

laser field are assumed to be small in the sense that col-
lisions between radiator and perturber are not affected by
the laser field, i.e.,

l~)
RADIATOR

E, -- J, =O Ig)
PERTURBER

FIG. 1. Schematic representation of the excitation process.

photons on the collision dynamics, which assumes that

y((l/r, . (10b)

However, because the excited radiator manifold
I f a) can

only emit a photon during a collision, y is a collisionally
induced spontaneous decay rate and relation (10b) is not a
severe restriction.

(4) We assume that the excited radiator manifold is
much more polarizable than the ground state, i.e., we as-
sume no lower-state interaction [see Eq. (A23)]. This type
of situation is usually found in studies of collisionally in-
duced absorption of, e.g., an alkaline-earth atom per-
turbed by noble-gas atoms. If collisionally induced rota-
tional or vibrational transitions in a molecule (as the radi-
ator) are investigated, this assumption is unrealistic. ' We
comment later on the differences between such transitions
and the collisionally induced atomic transitions, which are
the main subject of this paper. For simplicity we also re-
strict ourselves to detunings

I Ef —E;—fuu
I
«kT, so

that trajectory effects due to the perturber center-of-mass
motion are negligible [see Eq. (A24)]. '6

Condition (3) allows us to perturbatively expand the
propagator G(t, t') of Eq. (7b), which describes collisions
between the radiator and perturbers in the presence of
spontaneous modes and an exciting laser field, in terms of
L,'k', L,'"'. Inserting this expansion into Eq. (7a) and tak-
ing into account the adiabaticity condition [Eq. (9)], we
can write the reduced density matrix equation for the
excited-state manifold of the radiator in the form

«ffKQ I
ah(h) » = f ct'« ffKQ I Mo '(t t')

I ffKQ » «ffKQ I
at(t') »

+ g f dt'((ffKQ IMP'(t, t')
I
fi K'=2Q'))((fi K'=2Q'Ia, (t')))

Q'

+ g f dt'((ffKQ
I
MP'(t, t')

I
ifK'=2Q')) ((ifK'=2 Q'

I
ot(t')))

Q'

f Ck'((ffKQ IM2o'(t, t')
I
fflc'Q'))((ffK'Q'I oh(t')))

K', Q'

+ f dt'((ffKQ
I

M'(2ot, t') Iii K'=Q'=0))((ii K'=Q'=0
I
ah(t')))

f ck'((ffKQ IM' '(t, t') IffK'Q'))((ffK'Q'Io (t')))
EC', Q'
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and a similar set of equations for the ground-state popula-
tion, « iiK =Q =0

I crt(t))), and the optical coherences,
«fi K=2Q at(t))), « if K=2Q

I
ot(t))). The tetradic

operators M„' characterize couplings of nth order in
I.,'k' and mth order in L,' ' and are defined in Appendix
A.

In Eq. (11) we have also used the fact that due to the
spherically symmetric collision environment of the radia-
tor, the pure collisional coupling, represented by
Mz+(t, t'), is diagonal in the radiator tetradics

I ffKQ))
[see Eq. (A9)].'9 The physical significance of the various
terms of Eq. (11}is straightforward, and similar expres-
sions with similar interpretations are found in other prob-
lems related to the redistribution of radiation (see, e.g.,
Ap endix C of Ref. 17}. The first term proportional to
Mo '(t, t') describes collisional mixing within the radiator
manifold

I fa) (inelastic collisions are neglected). Be-
cause the transition

I
i )~

I
fa) is dipole forbidden, the

radiator can only be excited by the combined action of the
laser field and a collision, and it can only decay by col-
lisionally induced spontaneous decay. These processes are
represented by the other five terms of Eq. (11). It is
shown in Appendix A that all the M„'~'s in these terms
reduce to one-perturber averages within the BCA and are
therefore proportional to the perturber density N/V. The
fifth term in Eq. (11) describes collisionally induced laser
excitation from the radiator ground state

I
i ) during sin-

gle collisions, while the second and third terms character-
ize the same process occurring during subsequent col-

lisions. For subsequent collisions the creation of an opti-
cal radiator coherence, which corresponds to a mean in-
duced dipole moment, is involved. The fourth and the
last terms give rise to stimulated and spontaneous decay
of the excited radiator manifold

I
fa) during single col-

lisions. As the radiator coherences «fi K =2Q
I
ot(t))),

« if K =2Q
I
ot(t))) are also influenced by

«ff KQ
I
ot(t))), the second and third terms in Eq. (11)

also contain subsequent collisional contributions to the
stimulated decay rate of the excited-state manifold.

In Appendix A we outline the evaluation of the various
matrix elements of Eq. (11) within the BCA and show
that the reduced density matrix equation of the radiator is
given by

+f+ . Off(t)= Wa;;(t)
dt 2JJ + 1

—+W a;;(t)= y+ oJJ(t),
d W
dt 2jJ+1

which has to be solved with the initial condition

(12)

a;;(t =0)'=1, aff(t =0)=0.
The total excited- [ground-] state population of the radia-
tor is de~oted oJJ (t) =+2jJ +I &&ffK =Q =0

I

a'r(t) &&

[tr;;(t)= « ii K'=Q'=0
I
aI(t)))] [see Eq. (A9)].

The collisionally induced laser excitation rate W is
given by

W=N f d pi f f d p4p(p4)

x2Reg f dt'e' ' &fag p, I [D,'"'(t')+D,'"(t')]
I igp, &'

a,P

x « fagpi igpi I
Ut(t' o) If&gpss igp4»&f13g pi I [D' '(0)+D'"(o)]

I igp4&

with the collisionally induced dipole coupling
r

&fag p I
D'"(t)

I
ig p'& = fag p e;(t) el'0 1

it+ i g

+V(
I x, I,t) p&(t) eS'0 igp', j=R,1.1

(13b)

Here V( I xi I, t) is the "true" collisional interaction be-
tween the radiator and perturber 1, which is off diagonal
in the electronic radiator-perturber states; Ui(t', 0) is the
effective tetradic colhsional propagator of Eq. (A7b). In
Eq. (12) we have assumed that times t &&~, are of interest
so that the integration in Eq. (13a) can be extended to in-
finity, and the radiator density matrix elements are slowly
varying on a time scale of order ~, [see Eqs. (A29) and
(A30)]. Because of the resonance condition (9} the energy
denominators in Eq. (13a) are independent of the laser fre-
quency co. We further neglect the center-of-mass motion
of the perturber in these denominators, because kT « iiic0,

lk XIand put e ' '~1 since we always have to deal with the

lk~XI
product e ' V(

I xi I
) in Eq. (13a) and the collisional in-

teraction is short range, i.e., I k,
I
b «1 [b is the

Weisskopf radius; see Eq. (CS)]. Note that Eq. (13b) con-
tains terms that are usually considered "off resonant, " as
we11 as "resonant" terms.

In Appendix A2 it is shown that in a spherically
symmetric collision environment of the radiator, no
optical radiator coherence «fi K =2Q

I
a;(t))) or

«ifK=2Q
I
ot(t))) can be excited. The average col-

lisionally induced dipole moment of the radiator, which is
dominated by these optical coherences, is therefore zero
and the second and third terms of Eq. (11) do not contri-
bute to Eq. (12). For the optical radiator coherence, the
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collision environment of the radiator can usually be con-
sidered as spherically symmetric whenever the associated
trajectory of the induced dipole is essentially a straight
line, which is unaffected by colhsions with perturbers.
This is the case when the radiator either is hcavy or its
ground-state interaction is negligible [see condition (4)].
However, a moving radiator sees a "wind" of perturbers
moving by it with a velocity —v (Ref. 20) and the various
nt substates are differently affected by this wind. Effects
due to this breaking of the spherical symmetry by the
velocity of the radiator are expected to be small. This ex-

pectation is based on studies of radiator velocity effects in

line broadening (see, e.g., Refs. 15 and 20). However, an

analogous calculation for these collisionally induced tran-
sitions has not yet been performed. In general, the break-

ing of the spherical symmetry by the velocity of the radia-

tor will create an optical coherence, which will give rise to
a subsequent collisional contribution to the excitation rate.
This contribution will have a maximum at (Ef E;)/R—
with a width determined by a typical (impact) collision
rate y, . The value of the maximum will be proportional
to N in contrast to the peak height associated, for exam-

ple, with an E2 transition, which is inversely proportional
to ¹ However, the maximum of this peak is expected to
be down by a factor e «1 in comparison with the single
collisional contribution to the excitation rate. Here e is a
measure for the breaking of the spherical syinmetry of the
collision environment of the radiator (e.g. , @&0.1 for ve-

locities of importance around the mean velocity in the
study of Cooper and Stacey' of radiator velocity effects
in the line broadening by dipole-dipole interactions}. If
upper- and lower-state interactions of the radiator are
comparable in magnitude (e.g., in rotational or vibrational
molecular transitions), then collisions tend to change the
radiator velocity significantly. ' It has been shown by
Lewis and Van Kranendonk ' that in this case the di-

pole moments induced in subsequent collisions are corre-
lated and each collision on the average tends to change the
direction (by approximately 180') of the collisionally in-
duced dipole. This leads to a dip in the excitation rate at
exact resonance, i.e., E; +%co Ef=0, who—se width is pro-
portional to the perturber density. The value of this dip
can even become zero indicating that single and subse-

quent collisional contributions are equally important.
W in Eq. (13a) is the collisionally induced excitation

rate due to single collisions and is valid for both impact
excitation, i.e., R '

~
E;+eau Ef ~

~, &&1, a—nd quasistatic
excitation, where A' '

~
E(+fico Ef ~

r, &&1. It a—lso
determines the stimulated emission rate W/(2Jf + 1) from
the excited radiator manifold. As discussed in Appendix
A, W in Eq. (13a) describes both of these processes prop-
erly, if condition (A24), i.e.,

~
E;+%co Ef ~

&&kT,—is ful-
l

ENERGY

FIG. 2. Molecular potential curves as a function of the inter-

nuclear distance |m(l.

V I d'Ro (D(Ro) ('5(E;+~ Ef ~Vf i—(RO))

—fD(Rg)
f

db, Vf;(R)
dR

(13c)

Ro thereby indicates the initial positions of the perturber
and

filled. Otherwise, trajectory effects within the excited ra-
diator manifold might become important and the stimu-
lated emission rate as determined by Eq. (13a) must be
modified. Collisional mixing before the excitation process

~
i &~

~
fa& is unimportant if there is no lower-state in-

teraction [see Eq. (A23)], and it is negligible after excita-
tion or stimulated emission if one is only interested in to-
tal rates into a radiator manifold (1t.

' =0 multipole com-
ponents} and inelastic collisions are neglected (see Appen-
dix A3).' Equation (13a} properly takes into account
collisionally induced excitation (and stimulated emission)
due to the radiator and the perturber dipoles pR and pi
and allows for interferences between them. Strong col-
lisions between the radiator and a perturber, where

'
~

V~
~
r, & 1 [ Vt is the effective collisional interaction

of Eq. (A7c)], have been taken into account within the
BCA by the effective tetradic propagator U;(t', 0).

In the quasistatic limit of Eq. (13a) we can easily get
some insight into the dependence of W on the laser fre-
quency co by assuming classical paths for the perturbers
with straight-line trajectories. Assuming that there is
only one point of stationary phase R„where the laser
photon is absorbed instantaneously during a collision (see
Fig. 2), one finds (see also methods of Appendix E of
Ref. 17)

1 1
B(R)=(fjr ((»» ~(»i)»S'» V(R)+ V(R) (pa+@&)eS'o ig

Htt +H (1 E; —Eg— (13d)

E;+Ace Ef b, Vf t(R, )=—0 . — (13e)

characterizes the collisionally induced laser coupling. The
position of the stationary-phase point is determined by

I

The interatomic difference potential is given by

1

le. ~Vf„(Ro)=«fg, tg
I

Vl(Ro) Ifg, ig»
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[see Eq. (A7c)]. (Note that Eq. (13c) can be obtained
directly from Eq. (13a) with r~oo, since the stationary-
phase evaluation is equivalent to t'~Q with D (r) ~D (0)
and Ui(t', 0)~exp[Vi(0)t']. In obtaining Eq. (13c) we
have, for convenience of expression, assumed Vi(0) is di-
agonal, so that f expIi[hco —Vi(0)]t'Idt' reduces to
the 5 function in Eq. (13c). However, in general Vi(R) is
not diagonal, so we should in principle be dealing with the
"molecular states" that do diagonalize it, rather than

~
ig) and

~
fg). The structure of Eq. (13c) is of course

unchanged by such a unitary transformation. ) If we as-
sume that

b Vg;(R)=
C

(14a)

D(R) = (14b)

in the region of the stationary-phase point R„we find
that in the quasistatic wing the transition rate scales as

(14c)

For a radiator transition with
~

i ) =
~

So) and
~ f ) =

~

'D2 ), for example, this implies that for the exci-
tation rate due to the perturber dipoles, i.e., p,q ——0 in Eq.
(13d), m =4 for large internuclear separations because a
collisional quadrupole (radiator) —dipole (perturber) transi-
tion is involved. If we assume van der Waals —type
behavior of the molecular potential curves, i.e., n =6, we
find"

W, ~Z, +e Z—~
~-'" (14d)

and the transition rate is therefore monotonically decreas-
ing. For the excitation rate due to the radiator dipole, i.e.,
p, =0 in Eq. (13d), we have I =7 for large internuclear
separations, because there has to be a second-order effec-
tive collisional coupling involving a dipole-dipole and a
quadrupole-dipole interaction. Assuming again n =6, we
find

W, ~E, +a —Z~ ~'", (14e}

which is monotonically increasing. As long as R, is
large so that radiator and perturber are well separated and
a lowest-order multipole expansion for the collisional in-
teraction is appropriate, W~ ~p W~ due to the fact that
F~ involves a second-order collisional coupling. Howev-

er, because of the different dependence on the detuning of
the laser from resonance, Wz is expected to become dom-
inant for sufficiently large detunings. There has been
some recent experimental evidence for this type of
behavior in the study of the collisionally induced transi-
tion 4s 'S0~4s 3d 'Dz in a Ca-Xe system. However, in
the region where Wit-W&, interference effects due to
D,'"' and D,'", which are properly described by Eq. (13a)
or (13d), should be taken into account.

As we have neglected inelastic collisions, the excited ra-
diator manifold

~
fa) is metastable with respect to spon-

taneous emission of photons and collisional decay. Only
the combined action of a collision and the coupling of the
radiator and perturbers to the spontaneous modes of the
radiation field can cause a depopulation of the excited-
state manifold of the radiator. This collisionally induced
spontaneous decay rate is given by (see Appendix A)

y= g f d k 5(E~ E; Reek) ——&N f d p&d p2p(p2) g ~ (igpi
~
[d,' '(0)+d,'"(0)]

( fagpz)
~

(15a)2'(2n. )~ 2'+ 1

and

& ((((t(4"(t(
I
f«(t' &

= (((t(t Ha+H 1 E~ —Es—
+ttt(t( ett V((xt(t( fagp'I , j=R, (. (15b)

Therefore, we make the same assumptions as in the
derivation of W in Eq. (13a}. We have also used the fact
that the time of interest associated with spontaneous de-
cay is short, i.e., ~~D &&~„so that strong collisions are
unimportant during that time and U;(t, t'}~1 (see Ap-
pendix C). The frequency of the emitted photon corre-
sponds to the energy difference of the radiator states

~
fa) and

~
i ) because the spontaneous decay rate of Eq.

(15a) is due to the transition between two molecular
radiator-perturber states

~

Ia) and
~
F), brought about

by the coupling of the radiator and the perturber dipole
moment to the spontaneous modes of the electromagnetic
field (see Appendix 8). If we correctly use the vector po-

tential A, (x) instead of E,(x) for calculating the col-
lisionally induced spontaneous decay rate, we obtain the
same result, namely Eq. (15a). Incorrect use can give rise
to large differences as explained in Appendix B. Further-
more, if spontaneous decay is treated in the usual Born ap-
proximation, ' ' which neglects collisional effects during
the time the atoms interact with the spontaneous modes
[e.g., G, (ti, t') +1 in Eq. (A2—5a)], we fail to obtain Eq.
(15a). This shows that the Born approximation is inade-
quate for treating collisionally induced spontaneous decay,
though the Markov approximation applies, yielding a
time-independent decay rate [see Eq. (A30)].

If we assume that the radiator is excited by a broadband
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isotropic electromagnetic field with a mean frequency t0

and a large bandwidth b » I/r„we obtain a simple rela-
tion between the collisionally induced spontaneous decay
rate and the averaged collisionally induced excitation rate.
For that purpose we have to make the replacement

1y+ 8' . +1 t &&1,2jf+1

we therefore have

crff(t)~8't (18b)

260
i
I 0 i

~ f dcop(co) (16)
and the final-state population is proportional to the num-
ber of perturbers N. For long times t with

in Eq. (13a). p(c0) is thereby the energy density per unit
frequency of the exciting electromagnetic field. Noting
that due to the integration over the broad frequency dis-
tribution with b»1/~, the time of interest

~

t'~ in Eq.
(13a) becomes much less than the duration of a collision
r„we can replace U~i(t', 0)~1. This implies

1y+ ~ . +1
2jf +1

the final-state population saturates in time, i.e.,

%co 1
X 8m'

(2$') C 2Jf + 1 Ay~EI F.;—(17a)
y+8 . +11

2jf+ 1

(18c}

with the Einstein 8 coefficient defined by

Sp N= gfdQgW,
Sm'

(17b)

and the replacement (16) is thus taken into account. The
term p characterizes the possible polarizations of the ex-
citing laser field. Thereby we have assumed that kT is
large enough that the translational motion of the per-
turber is not affected by the eollisionally induced dipole
transitions involved in Eqs. (13b) and (15b), i.e., there are
only diagonal eouplings such as (fagp ~

D,'J'(t) ~igp) and
(ig p ~

d,'J'(t)
~
fagp). Equation (17a) is just the standard

relation between Einstein A and 8 coefficient. '

Because the rate equations (12) conserve the total popu-
lation, i.e., (d/dt)[o;;(t)+off(t)] =0, the general solution
is easily obtained for a square pulse of duration T and
times t (T, namely,

and becomes independent of the perturber density since
the collisionally induced spontaneous decay rate y is pro-
portional to N.

Equations (12) are only concerned with the total popu-
lations of the radiator manifolds ~i) and

~
fa) in a

spherically symmetric collision environment. However,
there are also higher multipoles ((ffKQ

~
at(t))) with

K&0, which are excited from the radiator ground state by
the combined action of the laser field and a collision.
Since these multipoles always decay with a collisional rate
y' ' [see Eq. (A10a)] even if inelastic collisions are
negle:ted (because this implies only that y' = '=0), their
magnitude is approximately given by

((ffKQ
~
ot(t))) = Wmintt, I/y'x'j &&1, (19a)

for times t & T [see Eq. (10a)]. In principle, these
multipoles can couple to the rate equations (12}, e.g. ,
through matrix elements such as

off(t) =
y+ 8' — +11

2jf +1

For short times t, i.e.,

P

1
1 —exp —y+ 8' +1 t

2jf+1

(18a)

((ffK =Q =0
i

I'(t, t')
i ffK'Q')),

but because of relation (19a) this influence is at most of
order fV/y' ' in comparison with unity and therefore
negligible. Furthermore, if 1/y' '« t these higher mul-
tipoles are negligible in comparison with
((ffK=Q=O~ crt(t))) [see Eqs. (18b) and (18c)], which
implies that all radiator states

~ fa ) are equally populated
(eollisional equilibrium). Equation (19a) also shows that
((ffKQ

~
at(t) )) with K&0 can only be comparable to

((ffK=Q =Gr ot(t))) if 1/y' '&t. In this situation the
ground state of the radiator is undepleted and
((ffKQ

~
ot (t) )) can be determined from
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—,
" +y'" ((ff~Q ~,(r)))

J=~ f d'p, f . . f d'p, p(p, ) f dr $ ( —1)'I ' (2E+1)'~'
0 Pl~

a', P'

&&(&fizgpi f&gpi l
Ui(i r') lf~'gp2 f&'gp~&&

, l &f&'gpss I
[D'"(r')+D'"'(r')]

I
igp~&'&&f&'gp2, igp~ I

Ui(t', 0)
I fygps ig p6&&&'"'

f2

X(fygp,
~
[D,'"(0)+D,' '(0)] ~igp, )

+ &f~'gp2
I
[D,'"(r')+D,'"'(i')]

I igp &

& «'gp4»&'gp3 I
Ui(r' 0}

I
&gp6 f'ygps»e '"'

&fygps I
[D'"(0)+D'"'(0}]

I
igp6&']

The right-hand side is the collisionally induced excitation
rate of the excited-state multipole K. The major differ-
ence between this rate and W of Eq. (13a) is the appear-
ance of the collisional time development operator
U;(t, t'), which describes the effects due to collisional
mixing within the manifold

~
fa) after the radiator has

been excited at t'. This colhsional mixing is unimportant
for the E =0 component, i.e., Ui (t, r')~1, because it can-
not affect the total excited-state population (if inelastic
collisions are neglected}, but it is important for the IC&0
components. This type of mixing has been studied recent-

ly in the context of polarization properties of dipole al-

lowed transitions' ' 2' (compare with the quantity I' '

of Burnett and Cooper' ).

III. THE SPECTRUM

In this section we study the spectrum of the photon
(k, A, ), which is spontaneously emitted during the excita-
tion process discussed in Sec. II. In particular, we are in-

terested in the frequency regime, which corresponds to the
dipole-forbidden transition

~
fa) ~

~

i ), i.e.,

I

from photon emission involving subsequent collisions.
However, as long as lower-state interaction is negligible

and the collision environment of the radiator is approxi-
mately spherically symmetric, we expect these contribu-
tions to be unimportant (see also the discussion of the cor-
responding contributions to the excitation rate in Sec. II).

To study the spontaneous emission process we consider
the physical system of Sec. II with assumptions (1)—(4).
In addition, we make the following simplifications.

(1} We assume that only the dipoles of the perturbers
interact with the spontaneous modes of the radiation field
and the laser field, i.e., pit ——0. Because the number of
perturbers is much larger than the number of radiators (in

our model we have only one radiator in the interaction
volume}, this is certainly a good approximation as far as

Rayleigh scattering is concerned. From detailed balance
we expect the collisionally induced spontaneous emission

to be characterized essentially by W of Eq. (13a) with co

replaced by cok. The arguments following Eq. (14e) then
show that the dipole moment of the radiator is likely to
become important f'or

I
E'+~k Ef I

/A&&1/v, . F—or
moderate detunings

~ Ef —E; Reek
~

/i—il) 1/r, we there-

~E, +a„Ef [ ~&a . — (20) SPECTRUM

In general, the spectrum consists of two very different
features (see Fig. 3). First, there is a narrow peak centered
at the laser frequency co, which is caused by Rayleigh
scattering. It is scarcely influenced by the collisions be-

tween the radiator and the perturbers since for most of the
time the Rayleigh scatterers are not subject to collisions.
This peak is surrounded by a broad asymmetric structure,
which is due to photons emitted during collisions. This
second feature is very sensitive to details of the collision
process and it vanishes in the absence of collisions. In ad-
dition, there is usually another narro~ peak at
cok =(Ef E;)/A' with a widt—h determined by a typical
(impact) collision rate y, . It is due to photons spontane-
ously emitted, e.g., in a higher-order multipole transition.
In the following we neglect this type of decay mechanism.
In general, this narrow peak also contains contributions

Ef —E,

I /r~

FIG. 3. Schematic representation of the spectrum.
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fore expect pz ——0 to be a good approximation for col-
lisionally induced spontaneous emission involving a

jf——2~j;=0 transition. This approximation may obvi-

ously be removed if one is prepared for more tedious alge-
braic manipulations.

(2) During the generation of the spontaneously emitted
photon (k, A. ) the influence of all other spontaneous modes
on the dynamics is neglected. Except for the Rayleigh

scattering contribution, this is valid as long as condition
(10b) is fulfilled, because a photon (k, A, ) can only be gen-
erated during a collision. As long as the Doppler width is
much larger than any spontaneous decay rate this is also
expected to be a good approximation for the calculation of
Rayleigh scattering.

Using assumption (1) in Eq. (4a), i.e., L,'"'=L,'"'=0,
we find

N

3—Fp, (r)=A g VJ(r)3Fp, (r)+3k g [Vj(r)+L,'J'(r)) I Ch'G(r, r') g [(1—3F)V(r')+L,"'(r')+L,""(r')]A@,(r')
j=1 i=1

(21a}

with 9F given in Eq. (A2),

G(r, r—') = g [(1 A) V~(r—)+L,"'(t)
dt

+(1—3P )L,"'(t)]G(r, t'), t & t' (21b)

and 6 (r, t' }= 1. This projected equation assumes

(1—3P)pi(t =0)=0. Following the procedure of Mol-
low we assume that only one photon is emitted into a
particular mode (k, A, ), so that the rate of emitting pho-
tons into that mode (which was initially unoccupied) is

given by

states of the radiator [all spontaneous modes except
(k, A, }]. The tetradic vector

~
1, 1&&=

~

1&&1
~

character-
izes one photon in mode (k, A. ), i.e., akiaki,

~

1&=
~

1&.
We use Eq. (22) for the spectrum rather than the standard
dipole autocorrelation function approach because we have

found that it is simpler with this form to invoke the BCA.
Now we use assumption (2) and neglect all spontaneous
modes except (k, A, ) in G (t, t') of Eq. (21b) and replace

[—p;(t')[Ek i(x;,t')+H. c.], ( I ] . (23)
ih

This implies

I'k, z= «1 1
I
Trz Tr{z}Tr~D [&pl(r)] . (22) Fkg ——Try 1, 1 t'M t, t' X t' (24a)

Trg (TrR&D ) thereby indicates the trace over the internal with

N

M(t, t')=Tr{ } g L'g(t) G(t, t') g [(1—&)V;(i')+L."(t')+L'j'(t')] g lg, g»p(p )

j=l g=1 m=1
(24b)

and

+(1—3F )Lqg(r)]G'(r, r'), t ) r' .

(24c)

unoccupiml. By expanding G'(t, t') ~erturbatively in
terms of Lqg, we obtain M(t, t') =M" (t, t')+M'2'(t, t')
(the upper index indicates the order in Lkji ) up to second
order in Lqg. Since none of the dipole-allowed transitions
within the radiator or perturber is in resonance with the
laser field, G'(r, r') can also be expanded perturbatively in

terms of L,'J', which is valid as long as condition (10a) is
fulfilled. Up to second order in L,'1' we therefore find

As long as the probability of creating a photon in mode

(k, A, ) remains much less than one, we can determine I k i,

perturbatively by keeping only the coupling to

« o,o
~

&(r') » = (r')

&(r, r')= g [m,'"'(r, r')+w-I"'(r, r')+m~, "'(r, r )],
n =1,2

in second order in Lkji', Equation (24d) thereby assumes
that omission of mode (k, A, } does not influence the
dynamics of the radiator, and mode (k, A, ) is initially

where the lower index indicates the order in L,'J'.

According to our resonance conditions (9) and (20), Eq.
(24a) therefore reduces to
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I'rt= QTrn((1, 1 I dt M'n"(t t 1'10)
i
i fa}}((ifa

i
((10 i

X(t')}}

+ QTrn ((1 1 j dt ~n' & t t &0'1)) if a I }}((fa i
i
((0 1

i

X(t )}'}

+ X Trn((t, t J dt W'', "&t t &1'0)) int n', }}((ntn't
i
((10[X&t'»&

I

+ g Trn((1, 1 f dt t',
'"

&t t &0',
1)) in„n', »(&nt, ni

I
«o, 11*&i'»&

tl))fl I

+Trg 11 t'~(22) t't 00 00 x t'

where the various radiator matrix elements involving
((1,0

~

X(t'))) or ((0, 1
~

X(t'})) can be obtained from Eq.
(21a) by making substitution (23) again. Note that this
substitution implies that we neglect all spontaneous modes
except (k, A, ) only in the process of generating the spon-
taneously emitted photon. Their influence on
((0,0

~

X(t'))) is properly taken into account by relation
(24d) and the fact that the (reduced} radiator dynamics is
determined in the presence of these modes, i.e., by Eq.
(12}. n& and n& in Eq. (26) are two degenerate radiator
states.

In Appendix C we outline the calculation of the various
matrix elements of Eq. (26) and show that they reduce to
one-perturber averages within the BCA. Let us now con-
sider the physical significance of the various terms in Eq.
(26). All terms of zeroth order in the perturber-laser in-
teraction describe collisionally induced emission of a pho-
ton (k, A. ) with the radiator initially in the excited-state
manifold

~
fa). In particular, the term proportional to

~0& }(t,t') describes this process occurring during single
collisions and the terms proportional to Mo& '(r, t'}
represent the subsequent collisional contributions. All
other contributions to Eq. (26) involve the participation of
the laser field in the process of emitting the photon (k, }).t&

&(2t,}t') specifically describes Rayleigh scattering by the
perturbers and laser excitation and photon emission
occurring during single collisions. The terms proportional
to ~&}"(t,t'} represent the same processes involving dif-
ferent perturbers (see Appendix C 3).

In Appendix C it is shown that the spectnun of the
spontaneously emitted photon (k, A, } consists of three con-
tributions„ i.e.,

(27a)

I (t) = g f dOk f"dcokI'(cok, a, r) .
0

(27b)

The rate due to Rayleigh scattering is

I R(&t}k,a, t)

k I
3

4~0c 2~c2

XX f d'U f(v)

1 ~, i [co—coI, +(k—k )v](t —t')
X —Re dt'e

0 (28)

with

I (cof„a,r} is thereby the rate of emitting a photon
(cok, ak ~) per unit solid angle and per unit frequency. The
total rate of emitting a photon at time t is then given by

(28'}

and the perturber velocity distribution f ( v ) with
d U f(v)=1. For convenience we have assumed that

the perturber is moving on a classical path with a
straight-linc trajectory, and when we can allow t~ oc, it
is proportional to 5(co—cok —(k —k, ) v). A more general
expression for I f&(cok, e, t) can be found in Appendix C 3

[Eq. (C12)]. The Rayleigh scattering rate of Eq. (28) is
due to the perturbers and does not depend on the state of
the radiator. This is only valid as long as the particular
part of ~'2 '(t, r') in Eq. (26), which describes Rayleigh
scattering, i.e., ~~(t, t') [see Eq. (C12)], is independent of
radiator coordinates so that



33 MASTER-EQUATION APPROACH TO COLLISIONALLY. . . 3095

Try((1, 1 IMtt(t, t')
I 0,0))ot(t')

= ((1,1
I
~x (t, t')

I
0,0)) Trio't(t')

=((1,1I K (t, t') IO, O)) (29)

ap+h
I ti(t)= g f dQk f dent, I tt(haik, a, t)

3

2N g f dQi, I Dti I

OW 2ac2
(28")

due to conservation of the radiator population. It is
shown in Appendix C3b that this is the case if inelastic
collisions are neglected. Atx;ording to Eq. (28) the width
of the Rayleigh scattered peak, which is centered around
the laser frequency eo, is determined either by the Doppler
width hD, ~ or by 1/t, whichever is larger. The total rate
due to Rayleigh scattering is given by

where 6» 1/t, b,D,~.
The remaining two contributions to the spectrum in Eq.

(27a), namely Is(cok, e, t) and I ss(c0/„e, t), describe the
spontaneous emission of the observed photon during col-
lisions and they give rise to the broad asymmetric feature
in Fig. 3.

Let us first consider the rate

k 1I ss(tok e t)=
4 z4~co 2ire'

X'N 'p 'happ, '
gp '" -gp

2%
i coI, (t —t')

x ((fetlgp2 igpi I
Ui {tt')

I f&'tgp4 tg ps »e

x&igp Id'"{t') If~~p &'

+ &ig pi I
d'"{t) Iftrigp2&'

x «'gpi frrigpz I
Ut{t t')

I
t'gps ftrsgps»e

' "

x &igps I
d'"{t') If~ep4&]

x g g ((fet2gp4ftrsgps I
Ut{t' o) If&gp6frgp6»

It', Q P, y

jf jf E
x ( —1)1™Q(2K + 1)'

tti ti
—t'ai r —Q

x((ffKQ Iot{t))) . (30)

Details of the derivation can be found in Appendix C 1. As in Eq. (12) we assume that (&ffKQ I
trt(t) )) is slowly vary-

ing on a time scale of order r, [Markov approximation; see also Eqs. (A29) and (A30)]. Equation (30) describes a process
where initially an excited-state multipole (K,Q) of the radiator is prepared and then a photon (cok, e, ) is emitted during a
subsequent collision. However, before this photon is emitted there is collisional mixing within the excited radiator mani-
fold, which is described by the collisional propagator Ui(t, O). This mixing is unimportant for fluorescence from
((ffK =Q =0

I ot{t))),if

I
z, +it, —zf I

«kT, (31)
which essentially implies that the motion of the perturber is not significantly influenced by the effective collisional in-
teraction Vi. ' However, it is important for fluorescence from all other excited-state radiator multipoles (K,Q) with
K&0. Because

I ((ffK&OQ
I
crt(t)&) I «((ff K=Q=OI oz(t))) for t»1/y' ' [see Eqs. (19a) and (18b)] only

fluorescence from ((ffK =Q =0
I
ot(t) &) is significant for these long times and Eq. (30) can in this case be greatly sim-

plified. Taking {31)into account we find

I ss(cok, e, t) =C(et& , k)oe'
f(f)t

with the emission rate

~k 1
C(teak, a) =

4neo& 2ire2

X N f d pi f . —f d p4p(p4) Re f dt'

4

x g &igpi Id,"'(t) If~gp2&&&f~gp2 tgpi I
Ui(t t') If' p4 tgps&&e

'
a,P

x &tgps I d.'"(t')
I fPg p4&*

(32a)

(32b)
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which is time independent, because t »~, (i.e., t~ ao can
be used). This expression involves only the perturber di-

pole p, ], because the radiator —spontaneous-modes interac-
tion has been neglected in the process of generating the
photon (cok, s). If we also neglect the radiator dipole in
the excitation process

I
i )~ I fa), i.e., we put pz ——0 in

Eq. (13a},we obtain a simple relation between absorption
and emission rates, namely

C(tok ——a), a = e}
8(1)(~ e)

1)lo) I

(2ir} c 2jf+1
(33a)

[provided kT is large enough; compare with Eq. (17a)].
The Einstein 8 coefficient, 8("(o),e), is thus defined by

W =8'"(o),e)2' I
N'o

I

' (33b)

with p)t ——0. If we had not neglected the radiator dipole
during the process of generating the photon (tok, a), we
would have obtained Eq. (32b) with the replacement

d(1) d(1)+d(R) (34)

Equation (33a) would still be valid, if 8")((o,e) were
determined by Eq. (33b} and the full excitation rate W of
Eq. (13a). The total rate corresponding to Eq. (32a) is
given by

(,Ef—E,. /4)+ h
lzzlt) gf'dna =f, ,„, d 'arm( ae&t, ,f i

=y~ff(t) (35)

with i)), » 1le, and the collisionally induced spontaneous
decay rate y of Eq. (15a). The detailed balance relation of
Eq. (33a) implies that the considerations concerning the
excitation rate W also apply for the emission rate. There-
fore, we expect the radiator dipole to become important in
the emission process involving a jf——2~j;=0 transition
only in the far wing, where )rt

'
I E; +1)tcok Ef—I

7 d» 1.
Equation (30) does not contain contributions to col-

lisionally induced fiuorescence, where the observed photon
is emitted in subsequent collisions. As is shown in Ap-
pendix C 1, such contributions do not exist in the case of a
spherically symmetric collision environment of the radia-
tor, since the mean induced dipole moment vanishes. As
argued in Sec. II, we expect this to be a good approxima-
tion not only in the heavy-radiator limit but also for arbi-
trary radiators as long as the interaction between radiator
and perturber is very different for the upper and lower
states

I fa) and
I
i ), and consequently the velocity asso-

ciated with the mean induced dipole moment is not signi-
ficantly changed by collision. In the opposite case, when
upper- and lower-state interactions are comparable and
velocity-changing collisions are extremely important, it
has been shown by Lewis and Van Kranendonk ' that
subsequent collisional contributions may become impor-
tant and generally lead to an enhancement of the emission
rate at o)k (Ef E )I——TL'

The single collisional contribution to the collisionally
induced photon emission rate is determined by

1 1r, (~, ,a, t)=
4~~0~ 2~c' e'

X —'Re y f,'«' f ',dr, f'dt, X ,f d'p, f f d'p ps( p)s
a,a', 0

+[(igpl I
d'"(t) Iftrgp2&e ' ' « ftrgpz igpi I

U)(t t» If((3gp4 igp3»

&«fPgp ID,'"(t }
I gp &]'

I

x[&igp3 Id'"(t» lf 'gps&e ' « ftx'gps, igps I
U)(t2 t') If&'gp7 igps»

&& &f&'g p7 I
D "(t')

I igps) ](7,;(t)
3+, —Re g f, «' f,, «1 f,, «pfd'p) f 'f d'piop(pio}

a,P, y,

x & ig p 1 I d,' "(t )
I f

~gpss

& &&f~g pz ig p i I

U ) ( t t 1 )
I fI g p4 ig p 3 && e

«igp3 I
d'"(ti) Ifygps&'« f&gp4fygps I U)(t) t» If&'gps fy gp7»

&&[&fy'gP7 ID'"(t2)
I
tgPs&'« f&'gPs )gPs I

U)(tz t') If~'gP9 (gP)o&&
d

xf~'gp9
I D' "(t')

I
ig pio &e

+ &f8'gPs
I
D' "(tz)

I tgPs&« tgPs fy'gP7
I
&)(tz t')

I igP)o f&'gP9»
I

«f~'gp9
I D,"'(t')

I
tgp)o&'e (36)

Details can be found in Appendix C 3. We have kept only the coupling to cr;;(t), which is assumed to vary slowly on a
time scale of order r, The contribution. , which involves a coupling to ((ff KQ

I
(Tt(t) )), is always negligible in compar-



MASTER-EQUATION APPROACH TO COLLISIONALLY. . . 3097

ison with I ss(tok, a, t). Physically, Eq. (36) describes collisionally induced resonant scattering of the laser photon (co,e)
during single collisions with the radiator initially in its ground state. It properly takes into account the degeneracy of
excited-state manifold

~ fa ) and therefore allows for reorientation effects during the propagation in
~ fa ). This scatter-

ing process is only possible during collisions because the radiator transition
~

i )~
~
fa) is dipole forbidden. The three

terms of Eq. (36) are the generalizations of the terms Fi;i,Fi;;;i,Fi;;~ of Omont et al. , which these authors discuss in

connection with light scattering involving dipole-allowed transitions. These terms should also be compared with the
D'i', D',"',D'i"' terms of Burnett and Cooper. The term I s(cok, e, t} contributes to the broad asymmetric structure of
the spectrum in Fig. 3, in a way similar to I ss(cok, e, t) in Eq. (30) because absorption of the laser photon (co,e) and emis-

sion of the spontaneous photon (cok, ski) are confined to a time interval of order r, . The total rate associated with

1 s(tok, a, t) is given by

k 1
3

I s(t) =
4neohc 2~c~

X Re+ f dQt, g f dt' f dtiN f d pi f f d psp(ps)
N, a',

X &igpi I4"(t) Ifagp2&&tgpi I
d'"(t) ifPgp3&'

&«&fagp2f&gp3 I
Ui(t ti)

I
fa'gp4fP'gpss»

X[&fP'gpss ID'"(ti)
I ig p6&'« fa'gp4 igp6 I Ui(ti t'}

I frgp7, tgps»
I

&« '
&frgp7 I

D'"(t'}
I igps&

+ &fa'gp4 I D' '(t»
I tgp6& « tgp6, fP'gp5

I
Ui(ti, t')

~ tgp„fygp, &&

&« '
&frgp7 I

D'"(t')
I
igps&')at (t} . (37)

I s(cok, e, t}
1 gs(tok, a, t)

Enb—
1

Vc~
~b'

y N

(38)

for t & T, I/y, I/8'. off (t) has thereby been estimated

by Eq. (18b) with px ——0 in W of Eq. (13a). Note that
I s ——0 for t & T. The major differences between these
quantities are therefore the density dependences and the
time during which the radiator can be excited. The form-
er arises from the fact that 1"s(cok,a, t) is brought about by
single collisions, whereas I vs(tok, e, t) is generated in sub-

sequent collisions. The excitation time v, in the numera-
tor of Eq. (38) comes from the confinement of the whole
absorption and emission process of Eq. (36) to the time of
a single collision. As excitation and emission in
I"ss(cok, a, t} occur in subsequent collisions, there is no
such confinement and the excitation time of the radiator

Note that the first term in Eq. (36), which corresponds to
a Fi;i term, does not contribute to Eq. (37).

Because 1 s(cok, a, t) is of second order in the laser field,
it can only be important in comparison with I ss(tok, e, t)
as long as crff ~~1. To estimate their relative importance
we assume that the radiator is excited by a laser pulse of
duration T. Furthermore, all matrix elements of d,"' and

D,'" of Eqs. (30} and (36) are considered to be roughly
equal. Estimating the number of perturbers that contri-
bute to the colhsionally induced quantities in Eqs. (30)
and (36) by (N/V)nb~ [b„ is the Weisskopf radius; see

Eq. (C8)), we obtain

is given by t Equa.tion (38) shows that I s(tok, a, t) is like-

ly to be as important as I ss(tok, a, t) for observation times
t & I/y, . In this case, we have to evaluate I ss(tok, e, t) by
using Eqs. (30), (12), and (19b). For t » 1/y' ',

I"ss(tok, a, t) gives the dominant contribution to the col-
lisionally induced part of the spectrum, which is then
completely determined by Eqs. (32a) and (12) because the
excited radiator manifold is equally populated.

In Eq. (27a) we have neglected interference effects be-
tween Rayleigh scattering and I"s(toq, a, t) (see Appendix
C3 c). As shown in Appendix C these effects are restrict-
ed to the frequency domain of the Rayleigh peak and are
negligible within the BCA. Equation (27a) also neglects
contributions to Rayleigh scattering which involve two
different perturbers. It is shown in Appendix C2 that
such contributions vanish in the thermodynamic limit [see
Eq. (C7")]. In principle, there exist collisional corrections
to coherent Rayleigh scattering that are due to different
perturbers (and scale as the square of the perturber densi-
ty}. However, these contributions are also negligible
within the BCA.

IV. CONCLUSION

Within the BCA we have studied collisionally induced
absorption and emission involving a dipole-forbidden
atomic transition of the radiator. We have restricted our-
selves to the situation in which the motion of the mean in-
duced dipole moment is not significantly infiuenced by
the perturbers, i.e., heavy-radiator limit or negligible
lower-state interaction, and have shown that absorption
from the radiator ground state and emission from the ra-
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diator excited state occur during single collisions and the
corresponding rates obey detailed balance. It is noted that
a contribution from subsequent collisions exists in princi-
ple, since the motion of the radiator through the perturber
ensemble breaks the spherical symmetry. Although this
contribution has not been, as yet, evaluated in detail, from
consideration of similar problems in the theory of spectral
line broadening it is expected to be quite small. Experi-
mentally, such a term, with width the order of y, around
the forbidden line, could be distinguished from radiation
due to higher tnultipoles by its different density depen-
dence. However, if multipole radiation exists, interference
effects will also have to be considered, as pointed out by
Herman. " Certainly, subsequent collisional contributions
to these processes are likely to become important if the
velocity of the mean induced dipole moment is changed
significantly during collisions, as has been pointed out by
Lewis and Van Kanendonk.

We have also investigated the spectrum of the spon-
taneously emitted photon in the frequency range of the
dipole-forbidden transition. It consists mainly of two dif-
ferent contributions, namely, Rayleigh scattering of the
perturbers and spontaneous emission of the observed pho-
ton during collisions. This latter contribution gives rise to
a broad asymmetric structure in the spectrum (typical
width -1/~, ) and vanishes in the absence of collisions.
Collisional corrections to Rayleigh scattering and various
interferences are shown to be negligible, and subsequent
collisional contributions due to breakdown of spherical
symmetry are also assumed to be negligible. In particular,
we have distinguished between two mechanisms by which
a photon can be emitted during collisions.

(I) Subsequent collisional contribution The .radiator is
excited by the laser field during a collision and emits a
photon during a subsequent collision. The excitation pro-
cess is thereby limited by the duration of the laser pulse,
whereas the emission process occurs during the time of a
single collision.

(2) Single collisional contribution The radia. tor is excit-
ed by the laser field and emits a photon during one single
collision. Excitation and emission processes are therefore
confined to the duration of a single collision.

Whereas process (1) is proportional to the square of the
density of the perturbers as long as off(t) «1 (because
both excitation rate and emission rate are proportional to
N), process (2) is proportional only to the perturber densi-
ty. We have shown that for long observation times,
t »1/y„process (1) dominates, whereas in the opposite
limit, i.e., t & 1/y„process (1} is at least as important as
process (2). We stress that our analysis covers both the
quasistatic and impact regimes.

APPENDIX A

In this appendix we outline the derivation of the density
matrix Eqs. (12) for the radiator. Our major approxima-
tion is the BCA.

Starting from Eq. (7a) we expand the propagator
G (t, t') perturbatively in terms of L,' ' and L,' ', i.e.,

G(t, t') =G, (t,t')+, dt, G, (t, t, )I (t, )G, (ti, t')

+ f) f26~ t, f) I f)

XG (ti, t2)I(t2)G (tz, t')+ ' '

(Ala)

with

(A lb)

and the collisional propagator

G, (t, t')=Wexp fdti g, (1—H)VJ(t, )
j=l

(A 1c)

W is thus the time ordering operator. Inserting this ex-
pression into Eq. (7a} we obtain the quantities M„' '(t, t')
of Eq. (11). In the following, we discuss these terms and
simplify them within the BCA.

M,"'(t,t'}=Tr(~) g V, (t)G, (t, t')

X g ~g,g))p(p ) (A2a)

with

G, (t, t')=Wexp f dti g (1—%)VJ(tj)
j=l

(A2b)

and 9t = g. i'. If inelastic collisions are neglected,

, VJ(t) H does not contribute to the couplings, be-
cause VJ(t) is assumed to be off diagonal in electronic
radiator-perturber states. In the BCA the collisional
propagator is approximated by

1. Zeroth-order quantities

In zeroth order of L,' ' and L,'"' the coupling between
the radiator density matrix elements is characterized by
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with

G, (t, t') =8, g G, (t, t')

G~(t, t') =Wexp f dt, (1—% ) VJ(t& )

(A3a)

(A3b)
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=A V, (t)G, (t, t')3f(1 A) V—, (t')ll =0 . (A4a)

Here, I &j indicates that all the time-ordered collisions I
occur before collision j starts. Thus we have used the
identity 3t =3k and moved projection operators from
the left and right between GI(t, t') and gl . Gt(t, t') not-
ing that [pJ„G,(t, t')]=[JIk, Vt]=0 for k~1, and finally
we have used

and Ho a time-ordering operator. This time-ordering
operator 80 orders different collisions, ' whereas W orders
the times within one colhsion. W is important because
VJ(t} usually does not commute with itself at different
times. Equation (A3a} essentially assumes that strong col-
lisions, which cannot be treated in lowest-order perturba-
tion theory, do not overlap in time. Inserting Eq. (A3a)
into (A2a) we find that terms with i &j vanish, i.e.,

A VJ(t)GJ(t, t') g G (t, t')(1 —3P ) V~(t')A'
l&j

=3k VJ(t)GJ(t, t')rJJJ g G (t, t')(1 —3P)V;(t')gJJJ
l&j

(Refs. 13 and 16). We also apply the identity

A Gk(t, t') =IF, (A4b)

with the one perturber collisional propagator

Ui(t, t')=Wexp, «iVi(ti) (ASb)

Thereby we have performed the thermodynamic limit by
replacing 1 —pi~1. ' As Vi(t) is off diagonal in the
electronic radiator-perturber states, which are typically
separated by energies of the order of %co »A'/r„we can
further simplify Eq. (ASa) by adiabatically eliminating
these off-resonant states. For this purpose we insert

Ul(trt')= 1+ f «i V. l(tl }Ul(tl)t )

t=I+, t] Ui t, t] Vi t) (A6)

repeatedly into Eq. (ASa). Whenever Vi(t) acts on an
electronic radiator-perturber state

~ kill & twice, we keep
only the coupling to the degenerate state

~

k'll'l &. So we
f1lid

which can immediately be proved from Eq. (A3b). So Eq.
(A2a) reduces to

M&'&" (t, t') =N Tr, [V, (t)U, (t, t') V, (t')
~
g,g &&p(p, )]

(ASa)

f d™0(I I }II(t } +Trl[ Vl(t}
I gg »p(pl}]crI(t}+N Tri Vl«} f «U;(t t }V;(I') gg p(pl) oI(t')

with the effective collisional propagator

Ui(t, t')=Wexp dtl Vi(tl)

(A7a)

(A7b)

The tetradic matrix elements of the effective collisional interaction are given by

«kilipi, k212p2
~
Vl(t}

~
kil lp2, k2I2p4&&

1
&k, h, p, ~

V(
( x, ~, t)

1
V(

~
x, ~, t) ~

k il'i P2&5„„,5, t, 5p, p,lR Ek +El HIc H( 1)— — k2k2 1212 2»4
1 1

1—&kzlzp4 i
V(

i
xi i, t) V(

I xi I
t}

I k2I2p2&5k l, 5t l'5pl p3Et, +Et HIl H( 1)—— 1 1 1

2 2

(A7c)

M0& ' ——lim XTr&

J]
~
k, k2Eg» = y ) k, m, &&k2in2 ) ( —1)" ' (2K+ I)'I2

ill 1,0l2
Pl l Pn2 —Q—

The collisional decay rate of the Eth multipole of the excited radiator manifold is given by'

where
~
kill & (

~
k2!2 & }and

~

k', I', & (
~

k2I2 &) are two degenerate electronic radiator-perturber states. The motion of the
perturber within a time interval of order 1/co has thereby been neglected, because kT «%co.

If crI(t') is slowly varying on a time scale of order r„we can make the Markov approximation, ' and relation (A7a)
reduces to

f Ct'Molol(t, t')oI(t')~M,"'oI(t) (Aga)

with the time-independent tetradic collision operator

v;(r)+v;(r) f ar (r;(r, r )v;(r ),
gII

g'(pv)r' (A8b)
f—+co 0

In a spherically symmetric collision environment of the radiator, M0 ' is diagona1 in the tetradic radiator states'
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y'x'= —Re {((ffKQ
~

M(') '
~ ffKQ )) ) .

Neglecting inelastic collisions in particular imphes that

(E =0) 0

due to unitarity.

2. First-order quantities

(A10a)

(A10b)

In first order in the atom-laser interactions, there are collisionally induced couplings between the slowly varying radia-
tor density matrix elements ((ffKQ ( crt(t)}},((ii KQ

~
ot(t))) and ((fi K'Q'

~
ot(t))), ((ifK'Q'

~
ot(t))). In particular,

the collisionally induced coupling due to the perturber-laser interaction is determined by

gg(P'()) ) T, r'(z=) g v)(r)G(r( ,\g, 'L,"()') tt g, g)lp(p )
j=l i =1 Ol =1

(A 1 1)

In the BCA we insert Eq. (A3a) into Eq. (Al 1). For the first term we obtain an expression such as

v, G, II G,L.,"',
I(j

(A12a)

where we have suppressed all summations and time arguments for simplicity of notation. If i&j this term vanishes be-
cause of Eq. (A4b) and p;L,"'=0. If i =j, we have

(A12b)

because

r

II~ II G (")L'"( ') = II& 1+ f, d (1 pJ) X v—( ) II Gr(
I+J pxj I+J I'+j

(A12c)

In the first step of Eq. (A12c) we use

IIp„(1—9P ) = IIp„(1—p. )

and in the second step we use pJL,'J'=0 Because L,'.J'(t') is off diagonal in the internal perturber states, the time of in-
terest between the rightmost Vi(t, ) (t&ti)t') and L,'1'(t') is much less than the duration of a collision, i.e.,

~
t, t'

~

=i)t' /(
~
Es+—fico Et

~
) =1/co &&r, —This impl. ies that within the BCA we have gt . UI 1 in Eq. (A12b), so

that the first term in expression (All) reduces to a one-perturber average. Note that II& . Ut~ 1 really means that we

approximate III . Ut' —p 1 [ Ut' is the effective propagator of Eq. (A7b)] during a time of order I/to «r, This is due t.o
the projection operators at the very left and very right of Eq. (A12b) and the fact that Vt is off diagonal in electronic
radiator-perturber states. This approximation therefore neglects terms of order y, /co ( « 1).

Inserting Eq. (A3a) into the second term of expression (Al 1), we notice that it is only nonzero if i =j [because of Eq.
(A4b) and p;L,' '=0]. There cannot be any other collision between VJ and L,'1' because of the short time of interest asso-
ciated with a perturber-dipole excitation. Using Eq. (A4b) then implies that k =j so that the second term of Eq. (Al 1)
reduces to a one-perturber average.

%e therefore find in the thermodynamic limit, i.e., 1 —pj- ~1,

M'io" (t, t') =N Tr, [V, (t) U, (t, t')L,'"(t')
~ g g }}p(p,)]

+XTri Vi(t) f dti U (t, t i)L,"i'(t )U i(t it')iV (t') ig g p(pi) (A13)

For the collisionally induced coupling due to the radiator-laser interaction we find
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M]] ] (t, t'}=L,'"'{t)Tr(~}g
t N

V, (t')+ J,«v~(r )G,(t,r')g() —g(t)v(t ) ']I gg))p(p )
i=1 m=l

+Tr(
j=l

v(t)+ I'dt,
v, (t)G(tt, )x(( gg-)v(t, ) ti gg))p(p. ) I.."(t)

i=1 ng =1

+Tr(r) g Vt(t) J drtG, (rrt)lt, "t(tt)G(t„,t )g'() —d(()v(t )]'I g g))p(p )
j=1 i=l m=1

Because of Eq. (A4b) this expression is only nonzero if i =j. Therefore, we obtain in the thermodynamic limit

(A14a)

MI0]a(t, t') =L,]"](t)N Tr, Vt(t')+ J dttvt(tt)Ut(ttt )Vt, (t')g'g))p(pt)

+NTr] V](t)+ J,dt] V, (t)U, (t,t])V](t, ) g g p(p]) L,' '(t')

+NTr, V, (t) I dt, U, (t, t, )L,'"'(t, )U, (t„t')V, (t') gg p(p])
g

The total first-order coupling is given by

M"'(r, t') =M' t'(t, t')+M'" (t, t') .

(A14b)

(A15)

In the spherically symmetric collision environment of the radiator, neither M] ]t'(t, t') nor MI ]"(t, t') can give rise to a
coupling between ((fi K =2 Q ) ot(t) )), ((ifK =2 Q ~ crt (t) )) and ((ii K =Q =0

~
ot (t) )), ((ffK =Q =0

(
o t (t) )). This

can be seen by considering, e.g., the matrix element

((fi K =2Q
~
MI ]t'(t, t') ~ii K'=Q'=0))

N Tr][((fiK =2q
~

V](t)U](t, t')
~
AK]q] ))

A, q,

K1 p~l pq1

X ((AK]Q]
~
L,"'(t')

~
gg))p(p]) )ii K'=Q'=0))&9= (&~', )']

+ g )gTrt fr & =&g Vt(r) I, «t( (,)tr.)tdtgtgt))
A, q,

K1 sq1 p

Kz, B,qz

X g ((AK]Q] iL,"'(ti)
i BK2Q2))

Q1 Qz

X ((BK2q2
~
U](t],t')V](t') ~gg))p(p]) ~ii K'=Q'=0))

(A16a)

Hence A and B characterize everything except the mul-
tipole indices, which uniquely determine a tetradic
radiator-perturber state. Q, Q],Q2, Q'(q, q],q2) refer to a
space-fixed (perturber-fixed) coordinate system and the
various &$ 's are the rotation matrices, which transform
between these two coordinate systems (for details, see, e.g.,
Appendix C of Ref. 17). Because the collisional interac-
tion is short range, the matrix elements of L,"' do not de-
pend on the perturber center-of-mass motion. A spheri-
cally symmetric collision environment of the radiator then
implies that none of the tetradic matrix elements in Eq.
{A16a) depends on the orientation of the perturber-fixed
coordinate system. Because of p(p])=p(

~ p] ~
) we can

perform the inte ration over the directions of p] in Eq.
(A16a) by using dQP, ——(I/2w) f dO, where 0 denotes

J d& ~9= (Ng', )'q= 8&5xx, 5gg, 5qq, ,

(A16b)

dII (~ ] )g ~ 2 ~X=2
Q1q1 Qzqz Qe

E2 E El
=(—1) 817

Q Q Q

EP EC El

(A16c)

all Euler angles, which uniquely determine the relation be-
tween the space-fixed and laboratory-fixed coordinate sys-
tem. Using the relations
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we immediately see that the first term of Eq. (A16a) van-

ishes because the laser dipole interaction can only give rise
to a multipole Ei ——1 so that 5xtt, ——0. For the second

term of Eq. (A16a) we use formula (85) of Ref. 17 togeth-
er with relation (A16c), yielding a term such as

I(2 K E) Ep 1 E)
g g g g k g ) (A16d)

Q) Q2 *

which is only nonzero if K=1. Thus k is an index
characterizing the polarization of the laser field. This im-

plies that the matrix element of Eq. (AI6a) vanishes.

M',"(t,t'}=MP'~(t, t')+M'," (t, t'}+M'," (t,t'),
M,"'(t,t') =M,'"t'(t, t')+MD""(t, t')+Mo" (t, t') .

(A17)

Mz '~(t, t') and Mo 't'(t, t') contain the perturber-dipole in-
teractions L,'l' and L,'J' only, M'z ' (t, t') and Mo '"(t,t')
are due to the radiator-dipole interactions I.,'"' and I.,'"'
only, and M2 '~ (t, t') and Mo '~ (t, t') contain a perturber
and a radiator-dipole interaction. In the following we dis-
cuss these three types of contributions and reduce them to
one-perturber averages within the BCA.

3. Second-order quantities

The couplings of second order in L,' ',L,'"' (k =R,j)
can be written as

a. I'erturber-dipole —induced couplings

From Eq. (7a) we find

M' ' ((( ) T( ) g'=v (() f 'd(G(( () g L, ''(( )G ((, , (') g L,' '(( )tt', ( l)p(p )

j=1 i=1 k=1 m=1
L

N X

+Tr(, ) g V, (t) j dt, I dt, G, (t, t, ) g L,"(t, )G,(t„t,) g L,'"(t, )G, (t„t')(1—A)

S
x g v, (( )tf (, ,g))p'(p„)

1=1 rn =1
(A18)

Inserting Eq. (A3a) into the first term we have to distin-
guish between different cases depending on whether the
perturber-laser interaction L,"(ti } occurs during the col-
lision VJ(t), i.e.,

~

t t i ~
& r„—or before. In the first case,

i.e.,
~

t t i ~

& ~„we—get terms such as

with expression (A19a). Therefore, it is necessary to have
a perturber tetradic

~
li, l'i }} (

~
li },

~

l'i } are degenerate
internal perturber states} left of L,'=J', which guarantees
a long propagation time. However, because of

I~j I &j

(A19a)

&iIe ti Lc & g g

as ru
~

t t'
~

~ ao, (A20)—

Terms with k&j or i&j vanish because of p;L,"'=0 and
Eq. (A41). In the second case we find quantities such as

(A 191)

which are zero if i and k are not both equal to j, because
of pkL,' '=0 and Eq. (A41). m & l indicates that the left-
most of the indices I tnI can be equal to l. If k =j and
i&j, the time of interest between the rightmost collision
V&(t& ) and LP '(t') is much less than the duration of a col-
lision, so that, as before, gt . Gt 1 and the term also
vanishes due to p;I.,'j'=0. If i =j and k&j, we have

. Gt~l by the same argument, and because of
3t P G L,'"'lf =ANAL, '"'lP =0 this term vanishes, too.
Expression (A191) is therefore only nonzero for i =k =j,
which implies that

~
t) t'

~
=1/co &&—~, and

zt G l. It can contribute further only if the time
between the rightmost collision Vj and the interaction
I.,' =j' is larger than v;, because otherwise we have to deal

expression (A191) does not contribute to MP' (tt, t'). Re-
lation (A20) can be seen by evaluating the matrix ele-
ments. We are therefore left with expression (A19a). The
dominant contribution to this quantity comes from situa-
tions that involve a long intermediate propagation some-
where within the time interval

~
t t'

~
. In ou—r case such

a long propagation can either come from an electronic
radiator-perturber tetradic of the form

~ fI i, il') }} or
~

tl2,flI }}between L,"= ' and L,' = ' or from a perturber
tetradic

~
l), l i }}between GJ and L,' =1' in (A19a). In the

latter case we have
~

t&
t'

~
=1/co &&~, a—nd we can use

relation (A20) so that such terms vanish. We are there-
fore left with contributions to (A19a) involving the inter-
mediate excitation of the tetradic

~

fl„il', }}or
~
il, ,fli }}

which is only possible by the combined action of VJ- and
I.,'J'. Due to the fact that L,' ' is off diagonal in the inter-
nal perturber states, the time between the rightmost Vj
(which has to be right of L,"=J') and L,'"=~' is much less
than the duration of a collision, so that we may, as before,
set gt . Ut 1 and the first term of expression (A18)
reduces to a one-perturber average.
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Inserting Eq. (A3a) into the second term of expression
(AI8) we notice that this term is only nonzero if i =k =j
because of pkL,' '=0 and Eq. (A4b). With the above ar-
guments it is straightforward to reduce also the second

term of Eq. (A18) to a one-perturber average.
So we finally find for the collisionally induced coupling

due to the perturber-laser interaction in the thermo-
dynamic limit (1—pf ~1)

fl
ddt ' (t t ) ')g=Tr tpt(t) fdt, , Ut(t tt)L,"'(tt) 1+ f dttU, (t„tt)V, (tt) L,'"(t') gg))p(p, )

~AtTrt Vt(t) f dt, f d(, U, (tt, )L,"'(t, )U, (t)t, )L,,'"(t, )U, (t„t )V, ('t') gg))p(p, ), (A21)

where we have used Eq. (A6) in the first term of expression (A18). We can further simplify M1zo'R(t, t') by using Eq. (A6)
and adiabatically ehminating the off-resonant radiator-perturber electronic states, as we did in Appendix A l. Noting
that the dominant contribution to M2 'R(t, t') in our case involves the intermediate excitation of the electronic radiator-
perturber tetradic state

I f1 „il', » or
I
il, ,fl 1 », we see that the first term in large parentheses in Eq. (A21) does not con-

tribute as indicated earlier. In the no-lower-state-interaction approximation, neglecting inelastic collisions, we find, e.g.,

((ffK =Q =0
I

M12 ' (t, t') Iii K'=Q'=0»

=X pi p4p P4

X+2«'(ff &=9=() gptgpt Vt(t) . L.""(t)f~gpt(gpt))
.t —i LR+Li

X ((f&gpi igp2 I
Ut(t t')

I fI3g pi*tg p4»

y ] I (j.)—t +L (1)—
g

R+ 1

Vi(t') gp4, gp4 ii K'=Q'=0
I I 1

1 (LR —+L'1 )

(A22a)

where L,' "(t)=L,"'+( t) +L,' " (t) has been decomposed into its positive and negative frequency parts, i.e.,
L,'"-(t) (2: e-'"' and Vi(t) is the 'true" tetradic collisional interaction, which is off diagonal in the electronic radiator-
perturber states. We have neglected the perturber motion on a time scale of order I/co. In general, there are also terms
such as

, dti N Tri Vi (t) Ui (t, ti ) Vi(ti ) . L,'"+(t
i ) Ui (t i, t')

LR +L 1

X Vt(t ). 'L.'" (t')+L."' (t') . L
t(t') g g))P(Pt)

t(2 i LR +L—1
—i LR+Li

(A22b)

Vt(tt)U((tt, t )Vt(t )gg))p(pt)''—t LR+Li
(A22c)

fl
e ef dti f dtiN Tri Vi(t)U1(t, ti ) Vi(ti) L," +(ti) Ui(ti, ti)t' t' ' LR+

X L.'"(tt) . Vt(tt)U((rtt )V((t )g,g))p(pt), ''i LR +L—
1

(A22d)
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which contribute to M'z 'R(t, t ) after the adiabatic elimina-
tion of the off-resonant electronic radiator-perturber
states. It is thereby implicitly understood that the inter-
mediate propagation occors in the tetradic state

~
fli, il'I )). A similar set of terms is obtained from ex-

pressions (A22b) —(A22d) by the replacements
l~ I «—R+L i)] l ~ I «—R+L i) l

with an intermediate propagation in the tetradic state

~
il, ,fl', )). Physically, these terms describe collisional

mixing of the radiator manifolds
~

i ) or
~
fa) before or

(and) after the collisionally induced dipole transition
within the same collision. Similar terms have been stud-
ied by Burnett and Cooper' in connection with dipole-
allowed transitions. However, if we neglect inelastic col-
lisions, terms (A22b) and (A22d) do not contribute to the
couplings between ((ffK =Q =0

~
ol(t})) and

((ii K =Q =0
~
ol(t) )), because they cannot affect the to-

tal population of a radiator manifold due to unitarity. '

In expression (A22c} the collisional mixing of the radiator
manifold occurs before the collisionally induced dipole

transition and the situation is therefore somewhat dif-
ferent. If there is no ground-state interaction, i.e.,

(A23}

then matrix elements with
~
i,i )) to the right vanish. The

matrix elements with
~ ffK=Q=0)) to the right are

negligible, if
iE;+hro Ef —

i
((kT, (A24)

as has been shown by Burnett et al. ' This condition
essentially implies that the center-of-mass motion of the
perturber is not influenced by the effective interaction
Vi(t). However, this does not apply generally for matrix
elements with

~ ffKQ )) and K+0 to the right since mix-
ing within the excited-state manifold occurs even if Eq.
(A24) is satisfied. ' So expression (A22c) is also unimpor-
tant for the couplings between the radiator populations
((ffK =Q =0

~
oi(t) )) and ((ii K =Q =0

~

o1(t) )) .
The coupling due to the perturber —spontaneous-modes

interaction is determined by

N N NI,"'r(t r ) Tr 'T=r(,
) g V (t) f «G (it ) g L*'(t )G('»t') X L*'"') [O[ (U[ II (r(l)jP(Pj—1 I =1 k=1 N2 =1

N t) N

+TIRADTI(R} g VJ(t) f dti f dtZG2(t&t[) g Lg (I[)GG(I[ r&)r
j=1 i=1

N

&& g L,"[([I,) G, ( II, t')
k=1

X X()—9') (V')r[()).[Oi)) ii )L(l))P(P. )

(A25a)

The reduction of this quantity to a one-perturber average is analogous to the steps that lead from Eq. (A18) to Eq. (A21).
So we find within the BCA

t tl
M[z[R(I I ) TI„~Tr, V, (I) f dI, U, (I,I, )L,'"(I, ) 1+ f dI2U[(t[, II)V[(I2) L, (I ) I0j f0j g g P(p[)

( t) f dt t f dit U t ( t t r )L ( t r ) U
r ( t „r,it. "'Itt ) Ut ( tt .t )Vt « )l o I.'I l ))

'rt S ))P( Pl
L

(A25b)

Analogously, for M'2 [R(t,t') we can adiabatically eliminate the off-resonant electronic radiator-perturber states, thereby
noting that the matrix element ((ffK =Q =0

j Mo 'R(t, r')
j ffK =Q =0)) is only nonzero if there is a propagation in

the tetradic state [ fg, ig )) or
~
ig,fg )) during the time between the two interactions L,'"

From Eq. (7a) we find

b. Radiator-dipole —induced couplings

N
tdrr"~(tt ) Lr"r(t) f dt, Tr(, l

,X'=V, (r, ) Ii g,dllp((r ) L, '(t)r'
j=l m =1

r, N
+L,'"'(t) fd, fdr, T („X, , v, '(r, )G(t„,) X (1—d,r)v(t, ) ii, ll

( ) L,'"'(t)'
j=1 l =1 m=1
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yL (t) f dt f dt T
1 ) y Vt(l )G (t, t )L (t )G (t, t )y'tl —gt)vt(t') II gg))p(p )

l= i=1 m=1

+Tr( } g V, (r) I dt, I dt, G, (r, r, )L,'"()r, )G, (t), t, )L,'"'(&2)G, (&2&')

j=l

x g(l —gg)v;(t )I'I g,g))p(p )

i=1 m=1

N

+Tr(, ) g V(t) f dt, f dttG, (trt)L,'"t(tt)G(t„,rt) g(1—%)V(t )ItI gg))p(p ) L,'"'(t'),
j=1 i=1 m=1

(A26a)

because [as in Eq. (A20)]
t t' 2, 2 L~ t L~ t' 1, 1 ~0 88 N t —t ~00 ~ (A26b)

With the arguments of ApIiendix A l it is straightforward to reduce Eq. (A26a) to a one-perturber average. The dom-
inant contribution to M}20 "(t,i') comes from terms with an intermediate "long-time" propagation in the electronic
radiator-perturber tetradic

( f1i,il'i » or
)
ii ),f1I ». Taking this into account and adiabatically eliminating off-resonant

electronic radiator-perturber states by using Eq. (A6) repeatedly we find, e.g.,

((ffK =Q =Oi M',""(r,r')
i
"E=Q =0»

Pl d P4P P4 2Re E = =0 gpl, gP1 Vl t J.,'~'+ t
~,P ()(

' —&(Ls+Lf)
g

+L,'"'+(t),
L V, (t) fag pt, igpt))co —lLg

X(&f~gpf igp2I U'f(«') IfPgp igp &&

gP3 igy4 Vl t', L,'"'
40 —EL'

l+L(R)—(ri)

(A26c)

which is valid under the same conditions as Eq. (A22a).
The couphng due to the radiator —spontaneous-modes interaction is given by

=Tr~DTr(r) Lt"t(t)G, (t t')L, "(t') fo), fO) ri gg))p(p )
rn =1

t 1V'

~T T
i i

Lt"ft) f dt, G(t t, )(l —8')Lt"t(,t, )G(t„t )g(1—,gr)V(t') fo'), fo) iI gg))p(p )
i=1 m=1

N t N
+Tr Tri

1 g Vt(t) f dt, G, (t, t, )(1 9')L'"t(t, )G, (t„—t )Lt",'(t )fO},fO) 'ti gg'))p(p )
j=l rn =1

t tl
+TraAQTr(, } & V (r) f'«, fd&,2G, (&,&,) )( I ~ )Lg"'(&f )G, (ri, &2)( I ~ )&,' '(&2)G, (&2,&')

j=l

x g(1 gr)vi(t )fo), fo))) g—gg))p(p')
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The reduction to a one-perturber average is analogous to expression (A26a). ~e can eliminate off-resonant electronic
radiator-perturb r statM adiabatically, noting that there is Duly a contribution to
((ffK =Q =0

~

M(')2'"(t, t')
~ ff K =Q =0&& if there is an intermediate propagation in the tetradic

~
fg, ig && or

~
ig,fg &&

during the time between the two interactions I.,
c. Mixed couplings

From Eq. (7a) we find

MP""(t,t )

L,'"='(t) jdt T
( 1 y V(t )G (tt )y, 'L."(t') ti gg))p(p )

j=l i=1 m=1

+L,'"'(t) j,dt, j dt T (,) y V(t, )G (t„t, ) yL,"(t,)G (i„i') g (1—dt)V (t )g'gg))p(p„)
j=l i=1 k=1 m=1

+Tr( ) g Vt(t) j dt, G, (t, r, ) gL,"(t, ) ti gg))p(p ) L,'"'(t')
j=l i =1 m=1

J

N N N N

+T
( ) y V(t) jdt jdt G, (t t ) gL,'"(t )G(t„t ) g (1 —dt)V (t ) ti, g))p(p ) L,'"'(t')

j=l i=1 k=1 m =1
L

N

+Tr(r) g Vt(t) j d(, G, (t t, )L,'"'(t, )G(t„t ),XL,'"(t') rt gg))p(p )
j=l i=1 m=1

+Tr(r) g Vi(t) j dti j dtzG ( t )Lt"z'(ti)G(titz), ,
j= 1

N

X X L,"(t,)G,(r„r') g (1 —dt )V, (t') ti g,g))p(p
i=1 k=1 m =1

N

&)(t) f ati f 'ar, G, (r, r, ) yL,"(ti)G,(ti, t2)L,'"'(t2)G, (ti, t')
j=l i=1

)( X (1—dg)V (t') ti g,g))p(p
k —1 m=1

(A28)

The reduction of M~2 'r" (t, t') to a one-perturber average is analogous to the reduction of the terms in Appendix A2.
Again we can adiabatically eliminate off-resonant electronic radiator-perturber states, thereby noting that the dominant
contribution to M'z 'r" (t, t') comes from terms with a long-time intermediate propagation in the tetradic state

~
fl „ilI &&

or
~
il i,fl'i && during the time between the two laser-atom interactions.

It is straightforward to derive an expression for Mo 'r (t, t') from Eq. (7a). The reduction to one-perturber averages is
again analogous to Appendix A 2. Noting that there is only a contribution to
((ffK =Q =0

~
Mo 'r (t t )

~ ffK =Q =0&& if there is an intermediate propagation in the tetradic
~ fg ig && or

~

ig fg &&,

we can adiabatically eliminate off-resonant electronic radiator-perturber states.
The collisionally induced excitation rate W and the collisionally induced spontaneous decay rate y are now determined

by

dt' 2jf+1 E= =0 M~ '~ t, t' +M& ' t, t' +M~ '~ t, t' ii I( = =0 ii K= =0 ol t'

W((ii K =Q =0
~
or(t) && (A29)

and

f ar'((ff K=g =O~ [Mo"&(r r )+M,"'"(r t )+M,")~"(r r )] ~ff K=g =0&&((ffK=g =O~~, (t')&&

y((ff K =g =0
~

or(t)&& . (A30)

~e have assumed that ((ffK =Q =0~ Lrr(t)&& and ((ii K =Q =0~ ar(t)&& are slowly varying on the time scales r, and
riU, D, which define the times of interests in the integrals of Eqs. (A29} and (A30), so that we can take t~ ()() in the in-
tegrals (Markov approximation). ' ' In the no-ground-state-interaction approximation [see Eq. (A23)] and for detunings
that are not too large [see Eq. (A24}), we obtain the quantities $V and y of Eqs. (13a) and (15a}. In the evaluation of y
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we have also used the fact that the correlation time of the spontaneous modes rR~D &&r„so that strong collisions are
unimportant during this time interval, i.e., U, (t, t )~ l. It is straightforward to evaluate all other matrix elements in an
analogous way. So we fmally arrive at the density matrix equations (12).

APPENDIX 8

In this appendix we show that the collisionally induced spontanixius decay rate from the final-state manifold
I
fa) of

the radiator does not depend on whether we use the dipole approximation with an atom —spontaneous-mode interaction
of the form p E, or p. A, .

According to Fermi s golden rule, the collisionally induced spontaneous decay rate due to the radiator collisionally in-
teracting with a single perturber that is initially in the ground state

I g ) is given by

r.,= .
' XXf d'~i f &'I is{p~) I «~l &F I~ IIa& I I0l & I'@Er EF —~k).2jf+1 „„ fg

(81)

The initial and final states
I
Ia) and

I
F) are scattering

states of the radiator-perturber complex that fulfill the ap-

propriate boundary conditions, i.e.,

in the Coulomb gauge. ' Both interaction forms, i.e., Eqs.
(83a) and (83b), are related through a unitary transforma-
tion. For the matrix elements of Eq. (Bl) we find

IIa&= Ifagp2&+
1

. V{ I»I) lfagpz&,
Ey —+ +$P

1
{82a)

I"&= Iig»&+E H . V{lxil)ligpi&,

1&kz I
&F

I
& IIa& I lol & I'

=
I & F

I
{p~+p i) ek i. I

Ia & I

'
2go V

for the interaction operator of Eq. (83a) and

(84a)

A, 7

H =Hg+H(1)+ + V(
I xi I

)
Pr
2M

and xz ——0. They are eigenfunctions of H with eigen-
values

I & k~
I &F

I
~

I
Ia)

I [0I )
I

'
I

PR+p] ck, ~ ro. fi
Ill ~ uk 2' V

(84b)

for the interaction operator of Eq. (83b). Using the rela-
tion"

P2

P&

(82b)
1 Pe+1&[(xi+xi),H] =i' me

(82c)
and taking matrix elements we find

{85)

In the dipole approximation the interaction operator is
given by

1 (F
I (xi+xi) I

Ia)(EI EF)—
l

pz E,(xz) —p—
~ E,(xt) (83a) 1 (F

I (pz+pi) IIa) . (86)

in the p.E, form of the laser-atom interaction and by

[pz.A, (xx)+pi A(xi)]
ill~

(83b)

Ak,.(»= .
2 COk

in the p A, form. We assume in the following that

I
k (x„—x, )

I
«1 for the important contribution to (81)

so that S' does not influence the center-of-mass motion of
the perturber As we a.re considering a dipole-forbidden
transition and the collisional interaction is short range,
this condition is well satisfied. pz and pi in Eq. (83b)
are the internal momenta of radiator and perturber and
m, is the electron mass. The vector potentia1 is given by

A, (x)= g [Ai, z(x)+H. c.],
k, A,

Inserting this equation into (84a) and (84b) and into Eq.
(Bl), thereby using the fact that El —EF——fuuk due to the
5 function, we find that both interaction forms, i.e., Eqs.
(83a) and (83b), yield the same result. In particular, if we
take into account that the transition

I
i )~

I fa) is dipole
forbidden, neglect V( (xi I

) in the denominators of Eqs.
(82a), and consider only terms of first order in V{

I xi I ),
Eq. (Bl) finally gives rise to the collisionaliy induced
spontaneous decay rate of Eq. (15a), i.e., y =Ay, ~. If we
start from this approximate expression instead of Eq.
(81), it is crucial to keep both contributions to the dipole
matrix element in Eq. (15b) in order to obtain identical re-
sults for both interaction forms, i e , Eqs. (83a) a.nd. (83b).
If we keep only the second term of Eq. (15b), which would
correspond to the "resonant" term due to an allowed tran-
sition, for example, we fail to obtain identical results. In
particular, if the implicit sum over all intermediate states
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in the second term of Eq. (15b) were restricted to the elec-
tronic radiator-perturber state

~

kl ), which is energetical-

ly closest to
~ fg ), the results would differ by a factor of

g (t) = g [L,'~'(t)+(1 —3P )LkjiI(t)] .

APPENDIX C

In this appendix we perform the BCA on the various
matrix elements of Eq. (26). For this purpose we expand
the propagator G'(t, t') of Eq. (24c) perturbatively in
terms of Lq~~ and L,'J', i.e.,

G'(t, t') =G, (t, t')+ f,dti G, (t, t, )g (t, )G, (t, , t')

+ f, dt, f, 'dt2G, (t, ti)+(ti)G, (ti, ti)

xg(ti)G, (t2, t')+ (Cl)

Ef+8 —E.—E
g

which can be very significant ( —12 for Ca 'Dz perturbed
by Xe}.

Inserting this expansion into the definition of ~(t, t } in
241, keeping terms up to second order in Lk ' and

L,j', and approximatitlg G, (t, t') of Eq. (A2b) by its BCA
form given in Eq. (A3a), we find the terms M"'(t, t') of
Eq. (25). In the following we reduce these quantities
within the BCA and discuss the various matrix elements
that are important according to Eq. (26).

1. Zeroth-order quantities

Let us first consider the couplings arising from the
zeroth-order approximation with respect to the laser field,
i.e., Mo"(t, t') and M 0(t, t' .}

For the term of first order in Lkf we obtain

N

M,"(it )=Tr(,fy'L'tr(t)G(tt )g(1—g)'I)v(t') ii gg))p(p )
j=l i=1 m=1

Inserting Eq. (A3a) for the collisional propagator, we obtain terms such as

eL,'&,'G, g G, (1—e)V, e,
I(j

(C3a)

where we have used the fact that due to Trz 9P acting on the very left in Eq. (24a) the leftmost collision has to refer to
perturber j. If i &j expression (C3a) reduces to

g((t Lg~gG~9t g Gi(1 —3P ) V;4' =APLg~i'G~9)'(1 —9))') V;8))' =0 (C3b)
I &j

by using Eq. (A4b}. So we find in the thermodynamic limit within the BCA

~0"(t,t')=&Tri[Lki. '(t)Ui(t, t') Vi(t') ~g g))p(pi)] .

For the term second order in Lg we find

(C2')

'(t I )=Tr(
I y 'L'Ir(t)G, (t I') y L"(I') ii g g))p(p )
j=1 i=1 m=1

N

+Tr( I P Lt(it) I ( G(t tttt) tg (1—M )L ( tt)Gtt(tt t') g (I —g)) ( P)titi gg))P(P )

j=l i=1 k=1 m=1

(C4a)

Again we insert Eq. (A3a) for G, (t, t'). The first term is only nonzero if i =j because of p;Lk'i'p; =0, Eq. (A4b), and the
fact that the leftmost collision refers to perturber j due to Tr+ AF at the very left. As the time of interest is small, i.e.,

~

t t'
)
= 1 /co «r„—because the spontaneous photon of interest is off resonant with respect to all perturber transitions,

we may again put ff t . Gi~ 1 and the first term of Eq. (C4a) reduces to a one-perturber average. Due to Tra A at the
very left, the leftmost collision of the second term in Eq. (C4a) also has to refer to perturber j. Using again the same
type of arguments as for the first term, it is straightforward to show that it is only nonzero within the BCA if k =j,
which implies that all perturber indices have to refer to perturber j. So we find, in the thermodynamic limit,
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~o"(t t')=NTri[L~i. (t)Ui{t t')L~~(t')
I g g &&S {pi)]

+ttTt, Lt't(t) J,dttU, (tt, ),Ltt'(t t)U, (t„t')Vt(t )g'gllp(pt)

The first two terms in Eq (.26) involve matrix elements of the form

(&nnSC=Q=0~ +", i(t, t ) ~if' =2Q'))

(C4b)

((nn E =Q =0 ~,+"~"(t,t') ~fi E'=2Q')) (C5)

due to Trodi. Thus n indicates an arbitrary radiator state. It has been shown in Appendix A2 [see Eq. (A16a)] that ma-
trix elements of this form vanish identically in the case of a spherically symmetric collision environment of the radiator.

Let us now consider the matrix element of the fifth term in Eq. (26). In the absence of collisions, this term vanishes
because

L,kg' t Lkg' t' g,g 0,0 ~0 as co t —t' ~00 (C6a)

Taking into account that the dominant contribution to Eq. (C4b) involves a long-time propagation in the electronic
radiator-perturber tetradic state

~
fl„il i )) or

~

t'li fl i )), we can adiabatically eliminate off-resonant electronic radiator-
perturber states by using Eq. (A6). Then we find

Tr (& 1, 1
(
M '{t, t ')

~
0,0 &&

~
ig, ig &) =0,

, g f dt'Trit«1, 1)-&'0"(t t')
~

00&& (ff&Q&&&&ff ItQ
~

crt(t')&&~l ss(k e t) .
(2m)' c' xg '

{C6b)

(C6c)

2. First-order quantities

According to Eq. (26) the important contribution to M(t, t') of first order in L,'J' is

X X.t', "(t,t')=Tr(, } g L(J)(t)G, (t, t') gL,"'(t') g g,g p(p )
j= 1 i =1 m=1

S
g

+T „,y L'tt( ) f, dG, (, , ) y L.'"( )G.(, ') X (( —~)V ( ') ti g,g))p(Pj=l i=1 k=1 m=1

If i&j in the first term of Eq. (C7) then L,'" has to be next to a collisional propagator 6;. This is due to the fact that
the time of interest associated with a perturber-dipole excitation is of order I/co &gr, and the perturber has to be deexcit-
ed again because of Tr(z) at the very left. Equation (A4b) and p;L;"'=0 then imply that the first term vanishes. If i =j
then the short time of interest associated with a perturber-dipole excitation implies that only a collision between per-
turber j and the radiator is possible during the time interval (t, t ). So the first term of Eq. (C7) reduces to a one-
perturber average.

The second term of Eq. (C7) is nonzero only if i =j, by the same argument as used above. If i =j, the short time of
interest associated with a perturber-dipole excitation and Eq. (A4b) implies that all perturber indices have to be equal toj. So we find for Eq. (C7) within the BCA the expression

M, '~(t, t')=NTri Lki'(t) 1+ f,dtiUi(t, ti)Vi(ti) L,"'(t') gg p(pi)

+NTr, Lkiti„'{t) f dt, U, (t, t, )L,'"(t, )U, (t„t')V, (t') g,g p(p, ) (C7')

where we have used Eq. (A6) in the first term of Eq. (C7).
The first term of Eq. (C7') vanishes in the thermodynamic
limit because

Q3p p e ' '
p pp~o as V—+00 C"7"

for k&k, (we are not interested in coherent effects in the
forward direction). The dominant contribution to the
second and third terms involves an intermediate propaga-
tion in the tetradic state

~

fl„il', )) or
~
il, ,fl', )) and

..k
&

"{t, t') vanishes in the absence of collisions. From Eq.
(26) we see that the contribution to I k i of the terms pro-
portional toti "{t, t') invo:lves a long intermediate propa-
gation before time t, which is not restricted by ~„just as
in the case of Rayleigh scattering [compare with Eq.
(C12)]. These contributions can therefore be important
only in the same frequency domain where Rayleigh
scattering is significant. Furthermore, they involve
two averages over perturber coordinates [the second



3110 G. ALBER AND J. COOPER 33

average comes from the coupling between

((n, ,n, ( ((1,0] r(t')}}, ((n, ,n, [ ((0,1] r(t') }} and

((i,i
~

ot(t") }}],whereas Rayleigh scattering involves
only one average over the perturber coordinates. If we as-
sume that the matrix elements within these averages are
roughly the same for Rayleigh scattering and the contri-
butions due to the third and fourth terms in Eq. (26), we
can obtain an upper bound for the relative importance of
both types of contributions. According to Eq. (28) N/Ntt
(Ntt is the number of radiators in volume V; in our case
Xz ——1) perturbers contribute to Rayleigh scattering, i.e.,
Tri~X/Na, whereas only those perturbers can contri-
bute to the terms proportional to Mj"(t, t') in Eq. (26)
that are within a sphere of radius b„around a radiator,
i.e., Tri —p(N/V)n. b„[bceasue both Mi"(t, t') and

((ni, ni
~
((1,0j X(t')}},((n, ,n',

I
((0,1~ X(t')}} vanish in

the absence of collisions]. b is the Weisskopf (strong-
collision) radius„which is approximately related to the
duration of a collision r, and a typical (impact) collision
rate y, by

3y, r, = nb

It is therefore assumed that the collisional interaction is
short range and only nonzero for

~
xx —xi

~

&b . From
these simple considerations we find within the BCA, the
ratio between the contributions to the spectrum due to the
third and fourth terms in Eq. (26) and pure Rayleigh
scattering

n—b
y Ill

N/Ntt
(C7ltl)

indicating that Rayleigh scattering is definitely dominant.
The effects of radiators associated with different volumes
V, of course, add incoherently.

3. Second-order quantities

For the important contribution to ~(t, t'), which is
second order in I.,'J', we obtain

L„'t„'(t) f dt, f dt, G, (t, t, ) g L,"(ti)G,(t~, t&)
j=l i=1

x g L,"(r,)G, (t„t ) g L "'(t ) ii'g, g )'p(p )
k=1

N

+Tr( ) g Lk~g~(t) f dti f 'dt2G, (t, ti) g L,"(ti)G,(ti, tz)
j=l

x g () N)L't (t )G.(tt) ZL,'—'(t ) ,II g g))p((t )

k=1 /=1 m=1

S
+Tr(~} g Lg(t) fdti f, dt2G,, (t, ti) g (1—&)Lk'i'. «i)Gg(ti t2)

j=l i=1

x g L.' '(t )G.(tt )gL."(t )I,I'gg))p(p ')
k=1 l=l m =1

E2

+Tr( ) g LkJI'„(t) f dt, f dt, f driG, (t, t, ) g L,"'(ti)G, (ti, t&) g L.,'"'(t2)G, (t2, t3)
j=l i=1 k=1

N Ã

x g (( —gg)L'"(t, )G,(tt )y (( —a, ') (P') tii ((lr))P P
1=1 n=1 m=1

El f2 tV

+Tr(~) g LkJI„'(t) f, dt, f dt, f, dt, G, (t, t, ) gL,"'(t, )G, (t„t,) g (1—%)L«(t2)G, (t, ,t, )

j=l i=1 i=1
X

X g L,'"(t, )G, (t, t )g (( —M)V( , )'iitg g))P(P
l=1 n=1 m=1

E~ .V
+Tr(~) g Lk(g(t) f dt, f dt, f dt, G, (t, t, ) g (1—%)Lk'&(t, )G,(t„t,) g L,'"'(t, )G,(t„t,)

j=l i=1 k=1

X gL,"(t,)G, (t„t )g () —gt IV (t )ii 'g g))P.(P'
/=1 n=l m=1

(C9)



MASTER-EQUATION APPROACH TO COLLISIONALLY. . .

We perform the BCA by inserting EtI. (Agn) into Eq.
(C9). In Eq. (24a) we only need TrsM2 (t, t'), which im-

plies that within the BCA the leftmost collision has to
refer to perturber j. According to our resonance condi-
tions (9) and (20) the dominant contribution to Eq. (C9)
comes from long-time terms, which involve an intermedi-
ate propagation in the electronic radiator-perturber tetrad-
ic state

i
k i j I i j,k'i [ I i j )) during the time interval ( ti, t2).

k& and k
&

thereby indicate two degenerate radiator states,
and I I, j, [I'~ j are two N-perturber (internal) states with
the same total energy. Depending on the type of propaga-
tion during the time intervals between the first and second
and between the third and fourth perturber-dipole interac-
tions, we can distinguish among three types of contribu-
tions to Eq. (C9).

(a) Collisionally induced photon emission due to single
collisions is characterized by all the terms in Eq. (C9)
which involve an intermediate propagation in the
radiator-perturber tetradic

i f I I i j,i I I i j )) or

i
i Ili j,f Il'i j )) during the times between the first and

second and between the third and fourth perturber-dipole
interactions. Such intermediate propagations are only
possible by the combined action of a perturber dipole and
a collisional interaction referring to the same perturber.
Therefore, a L~g (or L,'J') must always be next to a VJ.
There is no possibility for other collisions occurring in be-
tween, because the off-resonant excitation and deexcita-

tion occur during a short time of order I/co«~, . This
implies, e.g., for the first term in Eq. (C9),

eL,'j'(I —p, )V, G, g G,G,L„"'.. W
i (I(j

=eL,'g(1 —p, ) V, G, eL,'"

if i&j Th. us we need Eq. (A4b) and the fact that within
the BCA the index j cannot appear again anywhere to the
right of L,'". Using this argument repeatedly implies that
all the perturber indices in Eq. (C9) have to be equal toj.
So the particular part of MP(t, t') that gives rise to col-
lisionally induced photon emission due to single collisions,
i.e., Ms(t, t'), reduces to a one-perturber average. As
Mz(t, t') is of second order in the laser fields, we only
need to consider its coupling to ((i,i

i
fTt(t') )), because its

coupling to ((ff KQ i
ot(t') )) is always negligible in com-

parison with MP(t, t'), which is of zeroth order in the
laser field. A straightforward (but tedious) evaluation of
the matrix elements shows that it is only possible to have
ki ——k'i i an——d I

~

——I i ——g. Adiabatically eliminating off-
resonant electronic. radiator-perturber states and taking
into account condition (A23) we find in the thermo-
dynamic limit

COp tf dt'Tra((1, 1 its(t, t') i0,0)) ii,i))((i,i iot(t'))) Is(tot„a, t)(2n)' c' o (Cl 1)

with I s(tot„a, t) given in Eq. (36).
(b) Rayleigh scattering is characterized by all the terms in Eq. (C9) that do not involve an intermediate propagation in

the radiator-perturber tetradic
i f I I i j,i I I'i j )) or

i
i I I, j,f I I'i j )) during the times between the first and second and be-

tween the third and fourth perturber-dipole interactions. This implies that these propagation times are of the order
I/co «r, so that we may, as before, put 6,~1 during these two time intervals. However, the collisional propagator
G, (t, , t2), which is associated with the "long" intermediate propagation in the radiator-perturber tetradic

i ki, I I, j,k i I I', j )), is fully taken into account. A long propagation during the time interval ( t, , t2) is now possible only
if i =j and k =I, which immediately implies that i =j=k =I due to the projection operators involved. A straightfor-
ward evaluation of the matrix elements shows that we must have If ——I i

——g. Adiabatically eliminating off-resonant elec-
tronic radiator-perturber states in G, (t, , tz), which is replaced by its BCA form (A3a), we find in the thermodynamic
limit for the particular part of M2 '(t, t') that describes Rayleigh scattering, i.e., M~ (t, t'),

dt' l l &g t t' 00 oI I.
"

2Re f dt'e " N f 1 pi f . f d p4p(p&) iDtf i

—i(k —k )xi(t)

I

x(p ie ' '
ip &p(p )

x g8o f d'pd'p'«pg, pg i U,'(t t')
I
p'g p'g» (p')ol('»

j~&
(C12)
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with Dtt given by Eq. (28').
The last factor in Eq. (C12} characterizes the influence of all other perturbers j&1 on the Rayleigh scattering line

shape and all collisions j&1 occur before collision l. Its effect can easily be demonstrated by neglecting the phase fac-

tors e ' ', which corresponds to neglecting Doppler broadening. In Eq. (24a) we only need TrtcM+(t, t'), which
implies that

f "p~&&ffI: =& =oI &&gpl g p'l
I
Ui(t t') Igp3 gp3&& Iff&=Q=o&&=1 (C13)

due to unitarity (if inelastic collisions are neglected).
Thereby we have also used the fact that Uf(t, t') is diago-
nal in the radiator multipoles of Eq. (A9) in the case of a
spherically symmetric collision environment. Using rela-
tions (26) and (27) of Ref. 14 we see that the last term of
Eq. (C12} essentially introduces a factor
ex) [—y' = '(co —cok)(t —t')] into Eq. (C12}.
y' = '(co —cot, ) is thereby a coiiisional decay rate of the
total population of the radiator manifold under considera-
tion, which depends on the frequency difference co —cok.
In the impact regime we have y' = '(co —cok)~0 as

I
cok —co

I
&,~0 as we are neglecting inelastic collisions

from the radiator manifolds
I fa& and

I
i &. Taking this

into account, Eq. (C12) finally reduces to the Rayleigh
scattering contribution given by Eq. (28) in the classical
path straight-line trajectory approximation. From Eq.
(28) it is clear that the time interval t t' is a—t most the
inverse of the Doppler width, so, since the decay of the in-
termediate state is at most y, (which is an inelastic decay
rate and certainly much less than the Doppler width),

neglect of this decay is justified.
(c) Interference contributions are obtained from Eq. (C9)

if there is a propagation in the radiator-perturber tetradic
state

I f{i&I,i{i'&I » or
I i {ill,f{lz)» during the time

between the first and second but not between the third and
fourth perturber-dipole interactions or vice versa. These
terms describe interferences between Rayleigh scattering
and collisionally induced photon emission due to single
collisions. As in Rayleigh scattering, the propagation
time tI —t2 is not restricted to ~„because there is only a
collision at one end of the interval (t&, tz). These contri-
butions can therefore be important only in the frequency
domain of Rayleigh scattering. N/Ntt perturbers contri-
bute to Rayleigh scattering, whereas the only perturbers
that contribute to the interferences are those within a
sphere of radius b around a radiator, i.e., (N/V)mb (see
also Appendix C2). The interference contributions are
therefore less, by at least a factor of order
Ntt [(N/V)nb~]/N &&1 in comparison with Rayleigh
scattering, and are therefore negligible.
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