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Potential scattering of electrons in a strong laser field is reconsidered. The laser beam is described

by a quantized single-mode plane-wave field with a finite number of quanta in the mode. The
scattering amplitude is expanded in powers of the potential, and t'he first two Born terms are con-
sidered. It is shown that in the limit of an infinite number of field quanta, the Kroll-Watson ap-
proximation is recovered. Additional insight is gained into the validity of this low-frequency

theorem, The approach rests on the introduction of electron-dressed quantized-field states. Rela-
tions to earlier work are indicated.

I. INTRODUCTION

Electron scattering in a strong laser field has been in-
vestigated by many authors as one of the main mecha-
nisms in laser heating of plasmas. Moreover, the process
is of general interest for a deeper understanding of laser-
matter interaction. Several reviews have appeared on this
subject in recent years. ' Much theoretical work has also
been devoted to this problem in view of the experiments
by Weingartshofer et al. on induced and inverse brems-
strahlung. From the fundamental point of view particular
interest has been devoted to the low-frequency behavior of
these scattering phenomena starting with the work of
Kroll and Watson. According to these authors, a simple
relation can be found in the low-frequency domain be-
tween laser-assisted scattering and the corresponding cross
sections of the elastic process. The domain of validity of
this low-frequency theorem is also of some practical in-
terest and has been checked for particular scattering po-
tentials by Shakeshaft. It is the purpose of the present
paper to gain some further insight into the physical mean-
ing and range of validity of the Kroll-Watson theorem.

For simplicity we consider nonresonant potential
scattering of electrons in a monochromatic plane-wave
field. The potential is taken to have finite range and we
expand the transition matrix into a Born series in U. The
radiation field is treated in dipole approximation, which is
permitted for all standard laser frequencies. First, we
present an elementary derivation of the Kroll-Watson for-
mula following the procedure of Choudhury. 5 Here, the
laser source is treated as a classical external field. Then
we consider electron scattering in a quantized single-mode
field. It is assumed that the number of field quanta is
finite in the initial and final state. For the description of
the scattering process, "electron-dressed" field states are
introduced following a method of Bergou and Varro. 6

These coupled electron-field states have many features in
common with coherent states but they are orthogonal and
complete and turn out to be very convenient for the
description of laser assisted phenoinena. By letting the

number of quanta in the field mode go to infinity, we re-
cover the Kroll-Watson result together with some addi-
tional information.

From the structure of the consecutive terms of the
Born-series expansion of the transition matrix we can
draw the following main conclusions. (i) If the density of
photons in the radiation mode is macroscopic, which may
be considered as a quantized version of a laser field, then
we can recover the Kroll-Watson type of result: the cross
section of a scattering process accompanied by the emis-
sion or absorption of n photons can be described by the
cross section of elastic scattering multiplied by a charac-
teristic Bessel function factor which modifies the angular
distribution of the elastic process. At the same time the
particle momenta and energies have to be renormalized in
a specific manner. (ii) This result can now be regarded as
the leading term of an expansion in terms of inverse
powers of the initial photon number n; in the field mode.
The next correction is of the order of n; from which
follows that for macroscopic intensities of the field the
Kroll-Watson formula cannot be significantly improved.
(iii) It should be noted, however, that the elastic cross sec-
tions involved have to be taken between renormalized elec-
tron momenta, with the general renormalization prescrip-
tion given below. Only in the low-frequency limit does
this prescription reduce to the result of Kroll and Watson
and, therefore, to the usual elastic cross section.

In passing, we note that it is also interesting to investi-
gate the other extreme within the same scheme. Here, the
number of photons in the field mode is taken to be small.
Then we have to include a macroscopic number of modes
into our considerations in order to obtain a finite result.
In the special case of single-photon processes, we can thus
reproduce the formulas for spontaneous bremsstrahlung
and for the one-quantum inverse process.

II. ELEMENTARY THEORY

For the purpose of later references we present here an
elementary treatment of electron scattering in an external
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A( t) =3pe cos(tot) .

The Schrodinger equation for a particle in this field

iA'B, f=(2m) '[ iR—V (e—/c)A(t)] g

(2.1)

(2.2)
]

radiation field and we derive those formulas required for
our discussions in the subsequent sections. A more
rigorous analysis of the semiclassical theory can be found
in the work of Mittleman and Leone et al.

We describe the laser field by a classical monochromat-
ic wave in dipole-approximation, for which the vector po-
tential is given by

has solutions of the form

fp —V—'
exp((imari) 'IEp 't —p[x —x,(t)]j), (2.3)

where x, (t)= —(pc/co)csin(tot) is the solution of the
classical Lorentz equation of motion. p =(eAp/mc ) is
the intensity parameter and the time-dependent contribu-
tion of the A term has been dropped since it yields an
overall phase shift that cancels in our calculations. From
the set of modified plane-wave solutions (2.3) with

E~ '=p /2m we can immediately write down the retard-
ed Green's function

6'+'(x', x;t', t) =8(t' —t)(2iriri) f d~p expI(iR) '[E~& '(t' —t) —p(x' —x—x,(t')+x, (t)] j . (2.4)

Tgt" (iR) '——f d xPp Ugp——g T, „"', (2.5}

with

We expand the transition matrix element of electron
scattering in the field (2.1) in powers of the potential U
and write Ty; ——Ty; +T~ + . Choosing two states

and gz , for the ingoing and outgoing particle, respec-
I Py

tively, we obtain for the first Born term

T„"'= 2@iV —'U(Q)J„(pQ e)5(E/~ ' E' —nkco—),
(2.6)

where U(Q) is the Fourier transform of the scattering po-
tential as a function of the momentum transfer
Q=p/ —p;. The J„are Bessel functions of integer order
with n & 0 for induced absorption and n &0 for emission.
Moreover, we have p=}uc/irtcp and, consequently, p ~ Q ~

is
dimensionless.

For the second Born term we get with the Green's func-
tion (2.4)

Tg '=(iA) ' f d x f d xgz (x', t')U(x')6'+'(x', x;t', t)U(x)f~ (x,t)=Q T„' ', (2.7)

with

T„' '= 2@iV —' g (2irirt) f d p'U(p/ —p') U(p' —p;)

Jn —k(p(pf p 'e)Jk(p(p pi 'e)
(p) (p)X Ey E nfm— —

E' E,"' kr +—tq— (2.8)

In (2.8) we evaluate the sum over k by the following approximation. On account of Graf s addition theorem for Bessel
functions we may write

J„k(x)Jk(y) =(2n )
' f dgexp(ikq&)J„(ip) I [x +y exp(iq)][x +y exp( iq)]— (2.9)

where ic =(x +y +2xy coop)'~ . We now assume that
the integral (2.9) is dominated by contributions from
—e&q&&e, where

~

k
~

'&e&0, since for large values of
y the integrand is rapidly oscillating. We therefore make
the approximations co~=1 and sing=@ and extend the
range of integration to infinity. Then (2.9) yields

J„k(x)Jk(y)=J„(x+y)6(k ny (x +y) ') . (2.10)—

k ff =n (p' —p ) e(Q e)

Equation (2.8} will, therefore, read

T„' '= —2n.iV '(2M)

X ~ p (o)E' —E; —k,gficu+i q

XJ„(pQ e)gE,"'—E"'—n~) .

(2.11}

(2.12)

Essentially, we have made a crude application of the
method of stationary phase in going from (2.9) to (2.10)
and the validity of this procedure is not so obvious, but
has its justification through the results of the more
rigorous work of Mittleman and Leone et al. On ac-
count of (2.10) we can replace the photon number k by its
effective value in the denominator of (2.8),

E' —E; —k,g Ac@=E'—E;(0) (2.13}

and, similarly, to write for the arguments of the 5 func-
tions in (2.6) and (2.8)

Now we use (2.11) to rewrite the denominator of (2.12) in
the form
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Ef —E; —n Lo =Ef—E;,(0) (0) (2.14) The energy eigenvalues belonging to the states (3.5) and
(3.6) are evaluated to be

by defining renormalized particle momenta and energies
through the relations E—:Ep„——(p /2m)+iris'(n + —,

' —cd�), (3.7)

p„=p n—%come(Q e) ', E„=p„/2m . (2.15)

The same renorrnalization can be carried out for ail
higher-order Born terms. Consequently, the transition
matrix element T„ for the nth-order nonlinear process
may be written as

T„=T,i(E„,Q)J„(pQ e), (2.16}

III. PARTICLE-DRESSED FIELD STATES

For the description of electron scattering in a quantized
single-mode radiation field in the dipole approximation, it
is convenient to use particle-dressed field states in the
form introduced by Bergou and Varro. These states,
which may also be considered as generalized coherent
states of the radiation field, form a complete and orthogo-
nal set, and the photon distribution of these states is deter-
mined by the momenta of the particles embedded in the
field. We shall present here only so much information on
these states as is required for the description of potential
scattering to be discussed below. For more details on
these states we refer the reader to the work of Bergou and
Varro.

We consider the Schrodinger equation for a particle in a
quantized radiation field

ill, Q=HQ, H =H, +Hf+Ht,
where H, =p /2m is the Hamiltonian of the free elec-
tron, Hf =%co(a a + —,

'
) the Hamiltonian of the free field

mode, and the interaction term reads

(3.1)

where T,i is the matrix element of the corresponding elas-

tic process at energy E„. The relation (2.16) is the essence
of the Kroll-Watson approximation.

and on account of the properties of
l p), l

n ), and D
P

these states form a complete orthonormal set. A more
general form of coherent (3.5} and (3.6) has been intro-
duced by Rosenberg. '

IV. POTENTIAL SCATTERING

Potential scattering of electrons in a quantized radia-
tion field has been investigated before in a series of papers
by Kelsey and Rosenberg&i and by Rosenberg. ' These
authors use for their analysis the methods of formal
scattering theory, and they represent the radiation field by
number states for which depletion is neglected. The latter
approximation, however, requires from the outset a large
number of quanta in the field mode and, therefore, the fi-
nal results of the calculations of these authors turn out to
be identical with those of the quasiclassical theory.
Kelsey and Rosenberg" explicitly refer to this equivalence
in the last paragraph of Sec. III of their paper. In our ap-
proach, this requirement of a large number of quanta in
the field mode is not necessary, except for the semiclassi-
cal limit. In another paper by Rosenberg, ' mentioned
earlier, the same scattering problem is reinvestigated by
introducing generalized coherent states, however some-
what different approximations are made for the evalua-
tion of the T-matrix elements to be discussed below.

As in the elementary treatment in Sec. II, we expand
the transition matrix element in powers of the scattering
potential U, and we consider the first and second Born
term. If during the scattering process the number of
quanta in the field mode changes by n ~0, then the ma-

trix element in first Born approximation reads

T„'"=(if&) ' I dt exp[(if&) '(Ef"' E; )t]—
Ht ———(e/mc) A p+ (e /2mc ) A (3.2) &&(pf l

U lp;)(n; n lD" —D
l
n;),

Here we write for the vector potential of the field in the
dipole approximation and for linear polarization,

A=as(a +a), a=c(2M/coV)'~ (3.3)

In the following, we shall neglect contributions from the
A part of the interaction since, as in our semiclassical
treatment in Sec. II, this will have no consequences.

In the Schmdinger picture, the Hamiltonian (3.1) is
time independent and we can look for stationary states of
the form

P=y exp( iEt/A), —

where the solutions y are found to be given by

(3.4)

(3.5)

Here,
l p) is a momentum eigenstate of the electron, and

l
n ) is a number state of the field oscillator. D denotes

a unitary displacement operator, which is defined by

D =exp[cT~(a —a)], cr~ =(ealmcfico)p e . (3.6)

(4.1)

where the ingoing and outgoing particles have been
described by states of the form (3.4), (3.5), (3.6), and (3.7).
n; and nf n; —n ar——e the numbers of field quanta in the
initial and final states, respectively. The energies in the
initial and final states of the particle-field system are
given by

E"'f=(p f2/2)m(+n; n)fico, E, =(p;—/2m)+n;fico . (4.2)

Here we have neglected the zero-point energy fico/2 and
the particle-dependent corrections a;~ and ofkcu, since
o. is usually small for nonrelativistic electrons, in particu-
lar in the limit V~ ~.

Carrying out the integration and introducing the
Fourier-transform U(Q} of the scattering potential, we
obtain from (4.1)

T„"'=—2miU(Q)( ; nn
l

D
l n; )6(Ef"' E; )—, —

(4.3)
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where we have taken into account the multiplication rule
of the D operator, D',D,=D,D, =D~, . In (4.3)

the matrix element of D =D can be expressed in

terms of Laguerre polynomials in the following form

account of g„.~

n') (n'
~

=I and the unitarity of the D's.
Thus we get

T~ = —2&l d p E' —E ' —k,fffico+i g
(nf ~D

~
n; ) = [[min(n;, nf)]!/[max(n;, nf)]!)'~

)& exp(crf; /2 }crfI.";„(„„)(of; )', (4.4)
X (nf

~
D~

~
n; )5(Ef'"' E;—) . (4.11)

and in the limit n;~ 00, with ( n;/V) =const=p», we ob-
tain for this finite photon density in the radiation mode

(n; n)D —
) n;) =J „(2crf;n ) . (4.5)

2cr/tnt = —pg'e .1/2 (4.6)

Hence, we recover from (4.3} and (4.5) the result of our
semiclassical calculation (2.6).

Our result (4.3) for the T-matrix element in Born ap-
proximation is essentially identical with formula (2.24) of
Rosenberg, ' except that this author uses a more general
composition of radiation field modes and he does not con-
sider the quasiclassical limit yielding our formulas (4.5}
and (4.6).

Next, we evaluate the second-order Born term for the
same transitions. This yields the matrix element

T„"'=(ii)t)-' f dt' f dt(gf(t')
~

UG'+'(t', t)U
~
g;(t)),

(4.7)

where the retarded Green's function G'+'(t', t) can be
easily obtained from the states (3.4) and (3.5) to be

G'+'(t', t)=8(t' t)g f d p—'exp[(if&) 'E~ „(t'—t)]

&(
/

p') (p'
/
D, ! n') (n'

/

D', .

However, in this limit we may identify Suan;/V with the
energy density aPAO/8rrc in our classical wave (2.1), and
so we obtain from the definitions of p, p, a, and o,

(n'!O',D [n;)=(n.; —k ~D, ~n;) . (4.12)

(ii) D,
~
n; ) is some kind of general coherent quan-

i p'

turn state of the quantized-field mode which develops
from the number state

~
n; ) upon application of the uni-

tary operator D~. Conse, quently, (4.12) represents the
i p

probability amplitude for finding (n; —k) photons in the
state D, ~n;). Therefore, our task reduces to the

i p
problem of finding those k values for which the probabili-
ty [ (n; —k

~

D, [ n; ) (
is significant.

(iii) In view of this, we shall investigate the statistical
properties of a general state D

~

n ) of this type. Since
D~ has the displacement properties D'aD =a+cr and
D'a D =a +cr, we obtain for the mean photon number
in such a state'

In order to obtain an estimate for k,tt, we have to
investigate in (4.9) the expression

(nf ~

D' D,
~

n') (n'
~

D',D
~
n; ) .

This expression is the product of two terms of similar
structure. We shall therefore consider the matrix element
(n'

~
D~,D~

~
n; ) in some detail. The other one will yield

p I

analogous results with an appropriate change of variables.
In our analysis of the above matrix element we observe
the following facts:

(i) Because of the properties of the D operator and with
our definition for k =n; n', th—is matrix element can be
written as

(n)=(n fD'ataD [n)
=(n

~

(at+o)(a+cr)
~

n ) =n+cr
(4.8)

If we insert (4.8) into (4.7), and carry out the integration
with respect to time, we obtain

and for the mean-square deviation, we get

((n —(n ) )')= (n') —(n )'T'"= —2m'g f d' ' 5(E'"' E)—U( —')U( ' —;)

(4.13)

X(nf ~D* D,
~

n')(n'~D', D
~

n; ) .

(4.9)

=(n ~D'(a+a) D
~
n) (n+cr —)

=2cr (n+ —,
'

) . (4.14)

Let us write out the denominator in (4.9) explicitly,

E ~ „—E; =E'+nfl —E ' —n; Rcu

=E'—E ' —kkco, (4.10)

where k =n; —n' is the number of virtually absorbed
(k &0) or emitted (k &0) quanta in the intermediate
states. If it is possible to replace k, as in the elementary
treatment, by an appropriately chosen fixed k,ff, then the
denominator of (4.9) becomes independent of n', and the
summation in the numerator can be easily carried out on

According to the definitions of a and o in (3.3) and (3.6),
we obtain a —V ' and therefore in the limit of large n

and large V with a finite photon density p~h ——n/V, we
conclude from (4.13) and (4.14) in this limit:

(a) In the state D
~
n ) the mean photon number (n )

becomes n, and, therefore, in this limit our representation
of particle-dresstxl field states will merge in the number-
state representation chosen by Kelsey and Rosenberg"
and Rosenberg. ' In our single-mode approximation this
becomes particularly apparent from the representation
(4.4) for the matrix elements (nf ID~. I nr) and their~ft
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Hilb-type asymptotic form (4.5) to which we again refer

to in (5.7).
(b) The root-mean-square deviation ((n ) —(n) )'~

=En becomes (2n)'~ a-p~hr and (hn/(n ) ) approaches

to zero.
(iv) By applying these results to (4.12), we infer that

only those k values will yield significant contributions to
the magnitude of this matrix element for which the devia-

tion of n; —k from n; is not significantly more than the

root-mean-square deviation. Consequently, we can write

k,ff =C (2n; )
'

(crp —cr; ), (4.15)

where C is a constant of proportionality. The meaning
and order of magnitude estimate of the other matrix ele-

ment in (4.9) can be analyzed in a similar way. If we

write nf n; ———n, then we see that only those values of k

will yield a significant contribution to the order of magni-

tude of this matrix element for which the deviation

of n; —k from n; n —is of the order of
[2(n; —n}]' (af —a~ ). Therefore, we can write down

the relation

n k,rr—=C[2(n n)]'—( facrp )—, (4.16)

where C has to be the same constant of proportionality as

in (4.15), since we should choose a universally defined

measure for the deviation from the mean value of the

photon number. In fact the relations (4.15} and (4.16)
determine the width of two virtual photon distributions

which have their maximum overlap at k,rt. This overlap

is essentially responsible for the accuracy of the Kroll-
Watson approximation.

If we consider sufficiently large photon numbers n; in

the initial state of the field mode (which is well justified
for a laser), then we may neglect in (4.16) the depletion n

In that case, (4.15) and (4.16) furnish two simple equa-

tions for the evaluation of C and k,fr. We obtain by
means of (3.6)

k,rr=n(p' —p;) e(Q &) (4.17)

which is identical to our result (2.11) of the elementary

theory. For the universal constant C, we evaluate the ex-

pression

C=n(2n;) '~ (of —o;) (4.18)

If we consider the limit n; ~ oo, V-+ ao with

( n;/V) =const p~h, then we get an account of (4.6),

C =n 2'"(pQ.~)-' . (4.19)

In the same limit, however, the order of nonlinearity of a
laser-induced scattering process is measured by J„(pQ e)
of (2.16). It is well known that Bessel functions will yield
maximum contributions if

~

n
~

(
~ pQ e

~

and we there-
fore conclude that

~

C
~

=1. This lends some additional

support to our arguments that k,f~ is determined by the
widths of the virtual photon distributions in the inter-
mediate states of (4.9).

In the aforementioned work of Rosenberg' a Green's
function is derived, formula (2.23}, which essentially
agrees with our Green's function (4.8), except that we only
consider a single-mode radiation field. Rosenberg then

considers a low-frequency approximation yielding his for-
mulas (3.2), (3.3), (3.5), and (3.7) which, however, in his

following investigations do not yield our generalized re-

normalization conditions (4.15) and (4.16) even in the
single-mode case. Consequently, we also derive a dif-
ferent renormalized low-frequency T-matrix element (5.6)
which will be discussed below.

k,rr n(p' ———p; )eI Q.e+ [(1+n /n; )' 1](pf——p') el

(5.1)

If
~

n/n;
~
(1, the second term in the denominator of

(5.1) will represent a small correction to the first term

Q e. For low radiation frequencies co, we may, therefore,
write on account of (4.16) and (4.18), (pf —p') e=yQ e,
where y is a parameter of the order of unity. By only re-

taining linear terms in (n/n;), we may thus replace (5.1)

by

k, rr =n (p' —p;) e[Q e(1+yn/2n;)] (5.2)

If this approximation is taken to be sufficiently accurate,
then we are able to demonstrate that the Kroll-Watson
scheme can be carried through even for moderate values
of the photon number n; in the initial field state. In ac-
cordance with (5.2), we can define new renormalized mo-
menta by

p„=p nficome[Q e(1+—yn/2n; )] (5.3)

and thus we can put the denominator of (4.11) into the
form E' E; as in (2.13}.—However, for the energy con-
servation relation we would get instead of (2.14),

Ef E; =Ef' ' E' —nlco(l+—yn/2—n; ) (5.4)

which does not agree with the arguments of the 5 func-
tions in (4.3) and (4.11). Consequently, the renormaliza-
tion procedure has to be slightly modified. To this end,
we rewrite (5.4) such as to have on the left-hand side the
correct argument of the 5 functions of (4.3) and (4.11).
Then we make the expansion

5(Ef'" E,'" na—)—
=5(Ef E; ) nhco[1 —(1—+—yn/2n;) ']

x 5'(Ef —E;)+ (5.5)

&. CONCLUDING REMARKS

On account of the results of our treatment of potential
scattering of electrons in a quantized radiation field, the
following conclusions can be drawn concerning the range
of validity of the Kroll-Watson renormalization scheme,
which we have outlined in Sec. II for a classical single-
mode field.

(i) The Kroll-Watson analysis has been carried out here
in a more general frame work of particle-dressed field
states. We were able to relate k,rf to the widths of the
virtual photon distributions in the intermediate states of
(4.9}. For finite initial photon number n; a generalized
expression for k,ri can be derived from (4.15) and (4.16).
This reads
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and we introduce this into the total renormalized transi-
tion amplitude T„, which may be obtained by evaluating
all higher Born terms T„'"', v & 3, by means of our general-
ized renormalization scheme (5.2) and (5.3). If we write

T„= 2m—it„(E;,Q)5(Ef' ' E~'—' nf—ice)

lim [exp( x—/2)(x/n; )"~ 2„'"'(x)]=J„[2(n;x)'~ ]
7l.~ cel

+0 (n; ), (5.7)

with x =oft. By means of (4.6) we thus recover from
(4.3) and (4.11) the Kroll-Watson formula

and use the expansion (5.5), we get

T„= 2n—i [t„(E;,Q)

+n Ace(yn /2n; )(c)t„/BE;)]5(E/ —E; ), (5.6)

dcr„=der, i(E„,Q)J„(pQ.e),
with

E„=p„/2m and p„=p;—niricome(Q e)

(5.8)

where again we have only retained the linear term in

( n /n; ). From (4.3) and (4.11) we conclude that
t„= Td( nf~D . ~n;), where t, i( E~,Q) is the renormal-

ized amplitude of the elastic process. From (5.6), we re-
cover in the limit (n/n;)~0 the Kroll-Watson approxi-
mation and we now see why this approximation works so
well for laser-field intensities. In deriving the relation
(5.6) for a finite photon number n; in the initial state

~
n; ), we were able to go beyond the results obtained by

Ke1sey and Rosenberg. " This can be traced back to the
properties of the generalized coherent states which do not
require in their derivation the neglect of depletion. More-
over, in the work of Rosenberg'o on scattering in a low-
frequency multimode field, described by generalized
coherent states, formulas different from (5.6) have been
derived on account of another approach to the low-
frequency approximation.

(ii) In our investigation of scattering in a quantized ra-
diation field, the nonlinearities of field-induced processes
are characterized by the factors ( (nf ~D~~ ~

nc) )
lil-

stead of the Bessel function terms J„(pQ e) of the semi-
classical theory. The matrix elements (nf

~
D~

~
n; ) can

be expressed in terms of Laguerre polynomials (4.4). This
more general expression has to be considered if there is a
finite number n; of quanta in the initial field state. In the
limit n;~co, V~ao with (n;/V)=pph we can use the
asymptotic relation of Hilb

(iii) In our picture of the scattering problem, we have
evaluated the probability amplitudes for finding
nf n; n———photons in the quantized-field mode, if this
state develops from an initial state

~
n;) during the simul-

taneous scattering of an electron, embedded in the field,
by the potential U with momentum transfer Q. This re-
sult of our quantum-mechanical treatment of the radia-
tion field confirms the intuitive photon picture associated
with calculations based on a classical external field as
described in Sec. II and discussed in the more rigorous
work of Mittleman and Leone et al.

In conclusion we should like to point out that the main
purpose of our paper has been to show how the general-
ized coherent states in the form introduced by Bergou and
Varro~ can be used to conveniently and elegantly treat
scattering processes in strong radiation fields, yielding re-
sults which go beyond those of earlier investigations. We
are aware that our present problem could also be treated
within the framework of formal scattering theory but we
did not intend to follow this line here. Instead, as a first
step we tried to get some more intuitive insight into the
validity of the Kroll-Watson approximation, using the
formalism of particle-dressed field states.
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