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Ratio of positron to electron bremsstrahlung energy loss: An approximate scaling law
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%e have calculated the total energy loss of an incident electron or positron due to the bremsstrah-

lung radiation from various atoms during a scattering. The kinetic energies considered for the in-

cident electrons and positrons were 10, 50, and 500 keV. The calculations were performed with our
relativistic partial-wave multipole-expansion numerical code [H. K. Tseng and R. H. Pratt, Phys.
Rev. A 3, 100 (1971)]. The differences between the radiative energy loss of positrons and electrons
are considerable and cannot be disregarded. %e observe that the ratio of the radiative energy loss
for positrons to that for electrons obeys a simple scaling law, being expressible fairly accurately as a
function only of the quantity Tl /Z, where Tl is the incident-particle kinetic energy and Z is the
atomic number of the scatterer. This scaling law makes it possible to obtain the energy loss for posi-
trons from existing electron bremsstrahlung data. The scaling is exact in the case of the point
Coulomb potential, both in the classical bremsstrahlung formula and the nonrelativistic dipole Som-
merfeld formula, not only for the ratio of total energy losses but also for the separate energy losses
and even for the radiation energy spectrum. In the screened case scaling is significantly broken for
the spectrum and for the total energy loss but remains fairly good for the ratio of the total energy
losses. %e will discuss scaling features of bremsstrahlung radiation energy loss and the behavior for
both high and low energies.

I. INTRODUCTION

In this paper we wish to report a study of the scaling
properties of positron and electron bremsstrahlung energy
loss, considered as a function of the kinetic energy Ti of
the projectile and the charge Z of the scatterer. When a
charged particle traverses an atomic field some of its ki-
netic energy is converted into photon energy of brems-
strahlung radiation. This radiation energy loss is of in-
terest, for example, in high-temperature plasma physics,
where it is a major cause of energy loss from plasmas. A
characterization of this loss is provided by the radiative
stopping power, defined as the mean energy loss per unit
pathlength due to bremsstrahlung radiation. The stop-
ping power is useful, for example, in estimating the frac-
tion of beam energy converted into bremsstrahlung energy
when a beam of particles traverses a thick target. The ra-
diative stopping power for a given elemental target and
type of beam particle can be obtained from the integrated
energy loss cross section 4 d, which in turn is obtained by
integrating the singly differential energy spectrum
k(dtrldk) for bremsstrahlung radiation in the scattering
of a particle from the target over the photon energy spec-
trum:

fine-structure constant. The natural units (i.e., fi
= m, =c=1) are used throughout this paper unless expli-
citly specified otherwise.

Various methods are available to calculate the brems-
strahlung radiation energy spectrum. The present state of
the art is represented by the relativistic partial-wave nu-
merical calculations carried out by Tseng and Pratt. '

Tables of results interpolated from such calculations for
2 & Z & 92, 1 & Ti & 500 keV have been published. Some
data for positron bremsstrahlung utilizing the same type
of calculation are also available. In a recent stopping
power tabulation, these results were used to obtain the ra-
diative stopping power for electrons and positrons. The
differences between the radiative stopping powers of posi-
trons and electrons are considerable and cannot be disre-
garded. Note that the simple Born approximation
without Elwert factor (a Coulomb correction) does not
distinguish electron and positron bremsstrahlung. Refer-
ence 3 provided results only for a few situations (at 10, 50,
and 500 keV for Z=8 and 92). Such numerical cross-
section calculations are expensive and cannot readily be
extended to all the many situations of interest. However,
it was noticed in Ref. 4 that the ratio of the radiative
stopping power for positrons to that for electrons,

Zga3( Ti +Eo) o dk

where k is the photon energy, Tl is the kinetic energy of
beam particle, Z is the atomic number of target element,
Eo is the rest energy of the beatn particle, and a is the

4+d( Ti,Z)
tl( Ti,Z) =

@,,d( Ti,Z)

where + corresponds to the positron (electron) case, obeys
a simple scaling law, being expressible fairly accurately as
a function only of the quantity T i /Z [i.e.,
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=g(T)IZ )].
This scaling feature has encouraged us to make a sys-

tematic study of the scaling properties of bremsstrahlung
cross sections. To some extent, scaling features exist not
only in the ratios of the energy losses but also in the
separate energy loss cross sections and also in the brems-
strahlung spectra themselves. In both the classical and
the nonrelativistic quantum-mechanical dipole approxi-
mations, scaling can be demonstrated analytically as an
exact feature in the point Coulomb potential at all levels

(the spectrum, the energy loss and the positron-to-electron
ratio of energy losses}. In the screened case, the scaling
features are significantly broken at the spectrum level and
the energy-loss level, but remain fairly good for ratio of
the energy loss. The quantitative nature of the function q
(ratio of the energy loss versus T& /Z ) depends on the ap-
proximations used. However, in the limiting cases (both
high energy and low energy), the asymptotic behavior of ri
function calculated from various approximations is simi-
lar.

We begin, in Sec. II, with a description of the method
of calculation of the bremsstrahlung spectrum which we
employ in this work, and with the results obtained in this
way for both Coulomb and screened potential cases. This
is followed by a discussion of scaling features of the spec-
trum. In Sec. III we present our results for the integrated
energy loss for electron and positron bremsstrahlung and
for the ratio of these energy losses. We discuss the scaling
features of these quantities and the causes for variations
in these features. The asymptotic behavior of the energy-
loss ratio ri(T~ /Z ) at both high energy and low energy is
discussed in this section. Finally, an example of applica-
tion of the scaling law is given in Sec. IU.

II. SCALING PROPERTIES
OF RADIATION SPECTRUM OF POSITRON

AND ELECTRON BREMSSTRAHLUNG

The bremsstrahlung spectrum is often tabulated in the
scaled form

cr=(Pf/Z )k do/dk,

where p~ is the velocity of the incident particle in units of
velocity of light, Z is the atomic number of the target
atom, and der/dk is the bremsstrahlung cross-section dif-
ferential in emitted photon energy k (integrated over an-
gles).

For a given type of potential, o is a function of k, T~,
and Z. %ith the point Coulomb potential, analytic ex-
pressions for cr(k, T&,Z) are obtained both in classical and
in nonrelativistic quantum theory. The classical formula
for the point Coulomb potential (CC),~ which was origi-
nally derived by Kramers (though his name is usually as-
sociated with the limiting cases) is

abc(k, T„Z)=(4+a /3}ipH„"(ip)~)„"(ip)

for electron bremsstrahlung and

crc+c(k, T„Z)=e "occ(k,T),Z)

for positron bremsstrahlung, with

2 3
+(k ~ Z)

16m a
3 (e ' —l)(1 —e ')

Xxp
~

F(iv, , iv, ;Xp) ~,cf

with

v, =Za/P =2 '~ a(Z /T, ) '~,

v2 ——Za/P~ ——v~/(1 k!T~—)'~,

Xp = —4vtv2/( vi —vg)
2

(8)

(10)

Tables for numerical evaluation of these formulas have
been given, for instance, by Florescu and Costescu, ex-
tending earlier tabulations.

For neutral atoms where bound electrons screen the
Coulomb nuclear charge, we use numerical approaches.
Our fully relativistic partial-wave multipole independent-
particle approximation code calculates free-free transition
cross sections for electrons or positrons in a self-consistent
Dirac-Slater potential (no Latter tail is used). The calcu-
lations provide our most accurate results for screened po-
tentials ("exact" screened results, ES) compared to other
simpler methods. This code can also be applied to obtain
relativistic predictions in the point Coulomb potential
("exact" Coulomb results, EC), though, often, excessive
computer time is required. Table I gives numerically cal-
culated values of o+,cr and of the ratio a+Icr for the
six combinations of T, and Z treated by Feng et al. and
also for eight additional combinations which we have now
obtained. The ES calculations in the soft photon region
of a spectrum are more difficult than in other regions due
to the involvement of a large number of partial waves. In
the extreme case of the soft photon end point (k=0) we
may use elastic scattering theory and the low-energy
theorem. Also, our code was not designed to handle the
zero-energy outgoing electrons which occur at the hard
photon end point of the spectrum. For these reasons our
tables include values in parentheses which are interpolated
or extrapolated.

Numerical calculations of classical bremsstrahlung in
screened potentials have not been available. Recently, we
have developed a computer code which calculates the clas-
sical bremsstrahlung doubly differential cross sections,
both for the Coulomb potential and for screened poten-
tials. The code calculates numerically the trajectory of
an incident electron (or positron) in a central potential ac-
cording to classical dynamics, then calculates the dipole
radiation emitted on the trajectory, and integrates over all
the trajectories in the incident beam of particles. A
Fourier transform of the time dependence of the radiated
energy gives its spectrum. It is assumed that the loss of
kinetic energy of the incident electron due to the radiation

p = ,
'

v—)k/T( ——2 a(k/T) )(Z /T, )'~,

where H"' and H'" are the Hankel function and its
derivative, respectively.

The Sommerfeld formula for the spectrum according
to nonrelativistic quantum mechanics in dipole approxi-
mation (S) is
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TABLE I. Positron (+ ) and electron ( —) bremsstrahlung spectra and their ratio calculated with the relativistic partial-wave mul-

tipole expansion numerical method, as function of the fraction k/T~ of incident energy radiated. Values in parentheses are interpo-
lated or extrapolated. The last column gives the corresponding results for the integrated radiative energy-loss cross section 4 d. Neg-
ative numbers in parentheses indicate powers of 10.

~1
(keV} k/T) ——D 0.2 0.4

(P~j/Z 2} kdcr +/d-k (mb}
0.6 0.8 0.9 1.0

10 (+)
(—)

(+ )/( —)

9.59
10.45
0.918

(7.74)
(8.55}
0.905

5.76
6.66
0.865

3.91
5.10
0.767

2.15
3.71
0.580

1.17
2.97
0.394

0
(2.13)
0

4.26
5.28
0.807

2 500

10

(+)
(—)

(+ )/( —)

(+)
(—)

(+ )/( —)

14.0
14.0
1.00

7.33
8.39
0.874

(7.26)
(7.16)
0.986

(5.46)
(7.91)
0.690

4.23
4.34
0.975

(3.74)
7.03
0.532

2.79
2.91
0.959

2.24
6.14
D.365

1.56
1.68
0,929

0.789
5.45
0, 145

0.953
1.08
0.882

0.237
5.22
4.54(—2)

0
(0.454)
0

0
(5.08)
0

5.11
5.19
0.985

2.75
5.80
0.474

50 (+)
(—)

(+ )/(-)

9.86
1D.5
0.939

7.20
(8.25}
0.873

4.94
6.43
0.768

3.14
5.01
0.627

1.48
3.86
0,383

0.652
3.33
0.196

0
(2.80)
0

3,89
5.44
0.715

(+)
(—)

(+ )/( —)

12.2
12.6
0.968

6.95
(7-31)
0.951

4.38
(4.74)
0.924

2.6S
3.04
0.882

1.39
1.86
0.747

0.776
1.29
0.602

0
(0.644)
0

4.81
5.27
0.913

13 10 (+)
(—)

(+ )/( —)

6.33
7.SO

D.S12

(4.97)
(7.39)
0.673

3.10
6.77
0.458

1.45

6.21
0.233

0.352
5.79
6.08(—2)

7.34(—2)

5.62
1.31{—2)

0
(5.46)
0

2.26
5.72
0.395

(+)
(—)

{+)/( —)

11.8
12.3
0.959

(6.67)
(7.35)
0.907

4.15
4.93
0.842

2.52
3.29
0.766

1.25
2.03
0.616

0.646
1.47
0.439

0
(0.931}
0

4.58
5.42
0.845

10 (+)
(—)

{+)/(-)

4.49
6.08
0.738

(3.02}
(6.08)
0.497

1.45
5.S9
0.246

0.454
5.67
8.01(—2)

5.38(—2)
5.48
9.82(—3)

5.53(—3}
5.40
1.02{—3)

0
(5.33)
0

1.25
5.03
0.249

(+)
(—)

{+)/( —)

10.7
11.6
0.922

(6.20)
(7.60)
0.816

3.67
5.31
0.691

2.09
3.74
0.559

0.874
2.54
0.344

0.441
2.04
0.216

0
(1.60)
0

4.08
5.83
0.700

47 10 (+)
(—)

(+ )/( —)

3.06
4.81
0.636

(1.92)
(4.92)
0.390

0.778
5.00
0.156

0.187
5.02
3.73{—2)

1.35(—2}
4.99
2.71(—3)

9.19(—4)
4.97
1.85(—4)

0
(4.96)
0

0.761
4.32
0.176

47 500 (+)
(—)

(+ )/{-)

9.72
11.4
0.853

(5.82)
(7.S4)
0.742

3.21
5.73
0.560

1.70
4.24
0.401

D.575
3.10
0.185

0.163
2.64
6.17(—2)

0
{2.25)
0

3.63
6.28
0.578

10 (+)
(—)

(+ )/( —)

1.54
3.04
0.507

(0.757)
(3.36)
0.225

0.274
3.63
7.55(—2)

4.48(—2)
3.84
1.17(—2)

1.79(—3)
3.99
4.49( —4)

7.13(—5)
4.04
1.76( —5)

0
(4.07)
0

0.306
3.21
9.53( —2)

50 (+)
(—)

(+ )/{—)

4.25
6.67
0.637

2.42
(6.49)
0.373

0.847
6.18
0.137

0.167
5.91
2.83(—2)

8.33(—3)
5.72
1.46(—3)

3.37( —4)
5.64
5.98(—5)

0
(5.56)
0

0.978
S.50
0.17S

(+)
(—)

(+ )/( —}

7.87
11.7
0.672

4.44
(8.56)
0.519

2.34
6.56
0.357

1.01
5.16
0.196

0.208
4.35
4.78(—2)

2.89(—2}
3.99
7.24( —3)

0
(3.55)
0

2.65
7.33
0.362
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is negligible and does not affect the orbit. Retardation ef-
fects are also neglected.

One can observe from Eqs. (4}—(10) that in the
Coulomb case, for a fixed value of klTi, both the classi-
cal and the nonrelativistic quantum-rn. echanical dipole
bremsstrahlung cross section are dependent on T, /Z
only. In a screened potential, generally, the spectrum de-
pends not only on Ti IZ but also on further properties of
the given potential and T~. For example, consider a po-
tential described as V= (Z—e lr)g (A,r), where g (A,r) is a
screening function and A, is a screening parameter, with
g(0) = 1. From classical electromagnetic theory5 the
photon-energy spectrum during a bremsstrahlung scatter-
1ng 1S

( dk
~

=a f —V, g(A.r) e' dt (12)

r =r(T&,b, t) . (13}

Introducing new variables

a I/2
p= —,A=Ah, r= t, e= T, , —a =Za,

b3/2 t (14)

4 ~

where dk is the Fourier transform of the second time
derivative of the dipole moment of the scattering system
and b is the impact parameter. In the central potential
which we consider

d tr 1617 fdk 3
(11)

Eq. (11)can be rewritten as

2

tea f f —V~
—g(Ap) exp(ikb'/'~/a'/')dr db . (15}

Since b =ae!Ti and db=(alTi)de,

der 16m aa +~ +~
dk 3T)

1' 2
1—V —g(Ap) exp(ikae r/T~ )dr de, (16)

or
2

32m a +~ +~ 1o= —
V@

—g expi ae v T& dv e,
J

(17)

with p=p(A, e, r); i.e.,

cr =o(ka/Ti/, A) =o(p, AZ/T~ ) .

We see that in this case the classical bremsstrahlung cross
section is a function of two parameters jtt and ZA, /T&,
rather than the single parameter p, of the point Coulomb
case. The radiation spectrum does not scale with Ti/Z,
unless either the dependence of the cross section on the
second parameter is weak or A, is directly proportional to
Z. One could better satisfy such requirements by consid-
ering a more restricted range of elements (for instance,
omitting the low-Z cases).

In Fig. 1 we compare the scaling features of the classi-
cal bremsstrahlung spectrum from the point Coulomb po-
tential with the classical results in the screened case, for
the choice of energy-loss ratio k/Ti ——0.2 as an example.
The solid line refers to the point Coulomb case, where the
spectrum for given value of k/T, (=0.2 in this example)
is determined only by Ti/Z, while in the screened case
(shown by the data points marked with symbols) the spec-
trum depends not only on T&/Z but also on Z. %e see
the data points are spread out and can not be fitted by a
single smooth curve. In the region where Ti/Z is large
the screened results are close to the point Coulomb results,
since screcaxing effects are relatively small for high-energy
incident electrons.

The scaling feature of the classical Coulomb brems-
strahlung shown above also applies to the positron case

(500) + 0)

v(()

N
8

6—
(50)

(50) C) tr), (lo)

(lo) + D(5)

&& ((0) X ( I )

t:) (lo)

v (O. i)

Z

v 2

X I3
29

+ 47

I

!O lO

T~ / Z ( Me V )

IO

FIG. 1. Scaling of the classical bremsstrahlung spectrum in
the point Coulomb case compared with the screened case for the
energy-loss ratio k/T~ ——0.2. The solid line refers to the point
Coulomb case, indicating an exact scaling of the spectrum with
T~/Z~. The discrete points marked with symbols refer to the
screened case, shoveling the dependence of the spectrum on both
T&/Z and Z. Numbers in parentheses indicate the incident ki-
netic energy in keV.
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since the spectrum for positrons differs from that for elec-
trons only by the factor given in Eq. (5). We show in Fig.
2, for the case of Al at 10 keV, a comparison of the posi-
tron and electron spectra according to the classical
method, the Sommerfeld formula, and the partial-wave
calculation, using the Dirac-Slater self-consistent potential
for the screened case. The difference between electron
and positron bremsstrahlung spectra can be characterized
by theratio of the cross sections R(k, Ti,Z}=o+/a . In
the classical case for the point Coulomb potential this ra-
tio is

Rc ——e

Za k

2Pi

(19)

(20}

Rc ——1 at the soft photon end point (k/Ti ——0) and goes
to a finite value when k/Ti -+1; the finite value is zero in
the limit of low incident energies and approaches 1 (i.e., a
constant ratio across the spectrum) as Ti/Z becomes
large. The Sommerfeld result for the ratio of the cross
sections is

Rs ——exp[ —2n(vi —vi)] .

Like Rc, Rs ——1 at the soft photon end point (where

vi ——vi), but for all incident energies Rs ——0 at the tip of
the spectrum where k/Ti —+1 and v2~ao. To see the
difference between Rc and Rs more clearly we rewrite p
and v2 —vi in terms of pi and p2..

,' Z—a(P'i P—P/Pi ~

vz —v& ——Za(1/Pi —1/Pi ) .

(22)

(23)

(v2 —vi)/p =2(Pi/Pz)/(1+P2/Pi) + 1, (24)

since Pi &Pi. So, for all k/T, , Rs is always smaller than

~C
For a screened potential both positron and electron

cross sections are reduced significantly in the soft photon
region (there is no longer a logarithmic divergence of the
energy spectrum in the neutral atom case). The positron
cross section is lower than the electron cross section, so
that R ~ 1 even at the soft photon end point where R= 1

if there is no screening. We will discuss further in Sec. III
the consequences of these features for the energy losses
and the ratio of energy losses.

III. SCALING PROPERTIES OF THE ENERGY LOSS
AND THE RATIO OF ENERGY LOSSES

The energy-loss cross section defined by Eq. (1) can be
rewritten in terms of the scaled cross section
o'(k/Ti) =(Pi/Z )k(der/dk) as

(Ti,Z)= -3
q J cr+ (k/Ti)d(—k/Ti) .

a pl(T1+@0}

(25)

In the nonrelativistic case

r)r+-(Tr, Z)=
r f rr+ (K/Tr)d(E-/Tr) . (26)

10

b
8

0-
0

I

0.2
l

0.4

CC

0.6 0.8 1.0

k/T,

FIG. 2. Comparison of electron and positron bremsstrahlung
spectra for Al at 10 keV. CC, classical with Coulomb potential;
CS, classical method with Dirac-Slater potential; S,
Sommerfeld"s method; ES, exact quantum-mechanical partial-
wave method with Dirac-Slater potential; EC, exact quantum-
mechanical partial-wave method with Coulomb potential; the
+ and —signs represent positron and electron cases, respec-

tively.

The ratio is

0' T) 8 T)
i)( Ti,Z) =

1 rr (k/T, )d (k/T, )
(27)

In the classical Coulomb formula the cross section de-
pends on a single variable p which combines k/Ti and
Ti/Z [Eqs. (4)—(6)]. In the Sommerfeld formula the
cross section depends on the two variables v~ and v2,
which can be represented by k/T, and Ti/Z [Eqs.
(7)—(9)]. In both cases the integration over the spectrum
(i.e., the total energy loss) results in a function of the sin-
gle parameter T, /Z . (%thile the nonrelativistic cross
section cr depends only on tee variables v& and v2, the cor-
responding relativistic a depends on three variables, and
consequently the energy loss is a function of two variables.
However, in Born approximation the cross section simpli-
fies to two variables, the energy loss to one variable. )

In the screened case, generally, exact scaling is broken
for the energy loss due to the additional parameters which
have been introduced by the screened potential. Figure 3
shows the energy-loss cross sections of positron and elec-
tron classical bremsstrahlung in the Dirac-Slater poten-
tial, as well as the ratios of the cross sections. The values
of @~+~, 4Taz, and the ratios r1=4~+g@m~ for various
combinations of Ti and Z are plotted versus Ti /Z . We
see that indeed the screened energy-loss cross sections do
not exactly scale. However, the ratio of the energy-loss
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2 i i v
z 0

v
v 2

+x v
l8 ~C0 ~O
29 v

+ 47
CPo 79

92 o+O: +

o
,/ x

+4 ~ g
x q~

Cl ~
J'

CIO

+I
~ 0

+~i 1 1 l

IQ IQ IQ

IO—

8-
D

T, /Z (Mev)

—
I 0

—0.8

Il—0.4

-0.2

FIG. 3. Energy-loss cross sections of electron and positron
bremsstrahlung from neutral atoms and the ratio of the losses

[Eq. {27)] calculated from the classical numerical method, as
functions of Ti/Z . Symbols appear in pairs for a given value
of T~/Z2. The upper points are for electrons and the lower
points are for positrons. The ratios of the two energy losses are
marked with small circles and are fitted by a smooth curve.

cross sections does show much better scaling. The ratio
rI(Ti, Z) satisfies scaling to a greater extent than the
separate energy losses.

Figure 4 shows the ratios of energy losses from the rela-
tivistic partial-wave calculations of the losses, which are
given in the last column of Table I. As we see, these data

points are close to a single curve, which was obtained by a
least-squares fit. The actual shape of the ratio curve rl
versus T& IZ varies according to the method with which
the spectrum is calculated. To see this, in Fig. 5 we show
comparisons of the ratio of positron to electron brems-
strahlung energy-loss cross sections calculated from the
classical Coulomb formula (CC), our classical screened
numerical calculation (CS), and from the Sommerfeld for-
mula (S), with results from our relativistic partial-wave
calculations (EC for the Coulombic case and a fitted ES
for the screened case). Deviations from scaling in the CS,
EC, and ES cases are neglected. The difference between
the classical results (CC) and the Sommerfeld results (S) is
due to quantum-mechanical effects, while the difference
between the Sommerfeld results and the exact screened re-
sults (ES) reflects screening effects, higher multipoles, re-
tardation, and relativity.

In Fig. 5 all curves approach 1 (i.e., equal radiation
from electrons and positrons) for large T~/Z (large in-
cident energy and/or low Z) and approach zero (i.e., rela-
tively little radiation from positrons) when T&/Z goes to
zero (small incident energy and/or high Z). For classical
Coulomb and Sommerfeld formulas, as one can see from
the asymptotic behavior of the energy-loss ratio, which we
will discuss later, these two limits are exact. Considering
the spectra of the radiation, one sees from Table I that the
positron cross section, while comparable to the electron
cross section for soft photon emission k/Ti~O, drops
rapidly as k/Ti increases when T, /Z is small, resulting
in a small value in this case for the ratio of the energy
losses. For large T&/Z, the positron cross section differs

I.O

I.O— 0.8

I
D

8
x

29
+ 47

1- 06

~ 0.5—D

0.2

0
IO IO IO

T~ /Z (MeV)

I

IO IO

T~ i Z (MeV)

FIG. 4. Ratio 4+~/4, ~ of positron and electron integrated
energy-loss cross sections from neutral atoms as a function of
T~/Z, calculated from the relativistic partial-wave multipole
expansion.

FIG. 5. Comparison of ratios of positron-to-electron integrat-
ed energy-loss cross sections calculated from the classical
Coulomb formula (CC}, classical screened numerical method
(CS}, Sommerfeld s formula with nonrelativistic kinematics (S},
and the relativistic partial-wave expansion method for isolated
neutral atoms (ES}. The asterisk indicates a single data point we
have obtained for totally ionized aluminum for T&

——10 keV
with the relativistic partial-wave multipo1e expansion.



3008 KIN, PRATT, SELTZER, AND BERGER 33

significantly from the electron cross section only at the
hard photon end of the spectrum, so that the ratio of the

energy losses is close to 1.
In the classical Coulomb case, the asymptotic behaviors

of the curve can be found analytically. Florescu and Cos-
tescu7 have given large and small p, expansion of Eq. (4).
The expansion for small p, is

16a 2
occ—— (I+np}ln +O(p ) ~

3 'YP

and the expansion for large p, is

&cc= &/2 [I+diP +dip
1&rn3 -2/3 —4/3

g3/2

(28)

d p
—2+O (~

—s/3)] (29)

where di ——0.217747, dq ———0.0131214, y=e =1.7807,
and C is the Euler constant. Using Eqs. (5), (28), and (29)
we may derive asymptatic analytic forms of the curve
4~+4~ versus Ti /Z for classical bremsstrahlung. Far
Ti/Z ~oo,

@+
2 4

—1 —, nvi —, n—vi ln—
4,

and for Ti/Z2~0,

(30)

-Ci ——2 / d i +0 (1/vi/ )

where

g3/2
C& —— Oc+c P P

8~~ 0

3 e-'I'i@a„" rp a„"rp p. (32)

The numerical value of Ci is about 0.57. Equations (30)
and (31) are in good agreement with our numerical evalua-
tions.

In screened potentials the situation is more complicat-
ed. Screening is important for low-energy incident parti-
cles, while for particles of very high energy, which
penetrate deeply into the atom during the scattering, the
process depends on short distance behavior of the field
and the screening of the field by bound electrons is not
important. According to our numerical calculations, for
classical bremsstrahlung screening changes the spectrum
little (except near the soft photon end point) when Ti/Z
is greater than 10 MeV. For T, /Z between 10 and
10 MeV, screening does change both electron and posi-
tron cross sections but does not change significantly the
ratio of the energy losses. Only when TI /Z is less than
10 MeV does the screened ratio become significantly
different from the Coulomb ratio (about 10% different by
Ti /Z =2 X 10 MeV}. However, in quantum-
mechanical partial-wave calculations the difference occurs
much earlier. (It is in fact difficult to do direct EC calcu-
lations for the soft photon region of spectrum because of
the slow convergence of the numerical procedure, and
therefore we do not give detailed comparisons. ) From the

TABLE II. Fitted values of the ratios, g=4~+/4~, of the
integrated radiative energy-loss cross sections (Table I) for posi-
trons (+ ) and electrons ( —).

Tl /Z
(MeV)

1X10-'
2X10-'
5X10 '
1X 10-'
2X 10-'
5 X�1-'
01X�—s

2X 10-'
5X 10-'
1X10-4
2X 10-4
5 X10-4

0.020
0.035
0.061
0.088
0.121
0.17S
0.22S
0.283
0.370
0.446
0.530
0.644

1X10-'
2X10-'
SX10-'
1X10-'
2X10-'
5 X�1-'

01X�1-'

2X10-'
5X10-'

@rad~C rad

0.727
0.802
0.881
0.923
0.952
0.977
0.988
0.996
1.0

results of Ref. 3 we find that, for Z=8 and Ti ——0.01
MeV (T, /Z =1.6X10 MeV}, the Sommerfeld results
for the spectrum are in very good agreement with EC re-
sults. Therefore, the S curve in Fig. 5 should also
represent the EC curve in the vicinity of this point (i.e.,
Ti/Z =1.6X10 MeV). We notice that the ES curve
at this point is below the S curve by about 10%. The only
direct EC numerical result we obtained for Al, T~ ——10
keV (T, /Z =0.59X10 MeV), shown in Fig. 5 by an
asterisk, is also in agreement with the S results. Thus,
screening in fact does have a significant effect on the
quantum ratio in this region.

As already remarked in Sec. II, the positron-to-electron
ratio of the spectrum from classical bremsstrahlung, Rc,
is always greater than that fram the Sommerfeld formula.
This explains why in Fig. 5 the S curve is below the CC
curve throughout the whole range of T, /Zi. In the
screened case, the greater suppression of the spectrum in
the soft photon region for positrons causes the ES curve
to generally lie below both CC and S curves in Fig. 5.
(Note however that there is a crossover in Fig. 5, and the
hard photon region of the spectrum increases with screen-
ing. ) Within the energy range which we consider in this
work, screening effects on the spectruin become relatively
small and negligible (except in the region close to the soft
photon end point) when the kinetic energy of the incident
particle becomes high. Therefore, in the high-energy re-

gion, the ES curve should merge with its Coulomb coun-
terpart. Note that, for high incident energy, the nonrela-
tivistic dipole (Sommerfeld) calculation is not adequate
and for large Ti/Z generally overestimates both electron
and positron cross sections (see Table II of Ref. 3). It
overestimates the cross section for electrons more than it
does for positrons, resulting in a slower approach of the
ratio to unity.

IV. EXAMPLE OF APPLICATION

Accepting the validity of these approximate scaling
features of the ratios of energy losses, it is possible to ob-
tain the radiative stopping power for positrons for all con-
ditions of interest by first estimating positron-electron ra-
tios using the scaling law, and then applying these ratios
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to the known radiative stopping powers for electrons. '9

The radiative stopping power S„e is defined as the loss of
the kinetic energy of an incident particle due to brems-
strahlung radiation per unit path per unit density of the
target matter. The fitted values of the ratio curve of Fig.
4 for a logarithmic grid in Ti/Z are given in Table II.'
As an illustration, we compare in Fig. 6 the electron radi-
ative stopping power S e with that for positrons, S+q, for
the case of lead (Z=82). (Note that with the assumption
of universal curve, as in Fig. 4, low-energy low-Z data are
being utilized to predict high-energy high-Z data. ) We
also show in Fig. 6 the corresponding results for the
bremsstrahlung efficiency Y'- (the fraction of incident ki-
netic energy converted to bremsstrahlung photons as the
particle slows down to rest), evaluated as

I'+-( Ti ) = f + + dT, (33)
S+-e( T)

S+-(T)+S-+ (T)

where S~i is the collisional stopping power. '"

FIG. 6. Positron and electron differences in lead ( Z= 82), for
the radiative stopping power, in MeV cm~/g, and for the brems-

strahlung efficiency, in percent, as a function of the incident

particle kinetic energy T&. Dashed curves are for positrons and
solid curves for electrons. The + and —signs represent posi-
tron and electron cases, respectively.
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