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The linear-algebraic method for electron-molecule scattering is generalized to treat inelastic col-
lisions involving a set of primary coupled channels. The coupling between these channels is expand-
ed in separable form using a set of Cartesian Gaussian functions. As a consequence of the separable
expansion, we need only to solve a set of uncoupled, homogeneous and inhomogeneous equations in
each channel to obtain the basis in which the final solution is expanded. The separable form of the
coupling allows the physical solution to be obtained with use of the matrix elements of the interac-
tion and the overlap integrals between the solutions and the basis used for the separable expansion.
The method is applied to inelastic scattering from H, He, H,*, and H,. Comparison with exact
solutions of the close-coupling equations indicates that the method is quite accurate, provided that
the basis set used in the separable expansion is flexible enough to span the interaction region.

I. INTRODUCTION

The development of reliable theoretical methods to cal-
culate the excitation cross section of molecular targets has
proven to be a formidable task. In fact, it is only in the
last two or three years that techniques which were used
for elastic scattering have been sufficiently generalized to
account for inelastic transitions.! ™ Previously, one had
to rely on Born, Born-Ochkur-Rudge,®~® or distorted-
wave calculations®!© for the generation of cross-section
information for most molecular systems. In one or two
cases (H,,N,) there were some limited two-state close-
coupling calculations!"!? with which to compare, but the
difficulties of the calculations as well as the experiments
demanded further study. Of the newer more general ap-
proaches, three methods [the linear-algebraic method
(LAM),’ Schwinger variational method, and R matrix
methods?] have already provided inelastic scattering cross
sections, albeit in a limited number of cases. The purpose
of this paper is to provide some further insight into the
application of the LAM to inelastic scattering and to sug-
gest some refinements of the present approach, which we
feel may be necessary for some inelastic transitions. Con-
sequently, the present study was designed to test the
separable-potential approach discussed in a recent paper’
for a number of atomic and molecular systems. Except
for the calculations on the b33} state of H,,'* the au-
thors did not attempt an exhaustive study of any single in-
elastic transition. In fact, all of the cases were deliberate-
ly chosen to mimic as closely as possible calculations
which could be performed by other methods. Even with
the above limitations, it was difficult in certain cases to
compare our results with those in the literature. To do so
in the case of e + H, scattering required us to write a spe-
cialized close-coupling program for two-electron targets.
The results of our calculations not only provide us with
new insights into our own methods but uncovered a num-
ber of difficulties with other results in the literature. The
above discussion only underlines the difficulties and un-
certainties of the inelastic electron-molecule scattering
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problem and the need for a cooperation between research-
ers in this field.

The remaining parts of the paper are devoted to a dis-
cussion of the theory of the linear-algebraic separable-
potential (LASP) approach and its application to e + H,
e+ He, e+ H,", and e 4 H, scattering. All of the cal-
culations involved just two physical states. In the case of
H, and H," both optically allowed and optically forbid-
den transitions were studied. The results of the calcula-
tions and a comparison with other methods appear in the
final section of the paper.

II. THEORY

In the LAM,* as in the R-matrix theory, physical
space is divided into an internal (r <a) and external
(r >a) region. The internal region is characterized by the
presence of strong, nonlocal forces between the incident
and bound electrons. In the outer region the two systems
are more or less separate, and the scattering electron is
subject to the long-range multipole potentials of the
charge distribution of the target. Additionally, the vibra-
tional and rotational degrees of freedom of the target can
become as important as the electrostatic potentials and
cannot be ignored. Since our purpose is to compare our
results with other fixed-nuclei calculations, we have as-
sumed that the nuclei can be considered as frozen during
the scattering event. Inside the R-matrix sphere, the
Schrodinger equation can be written as

(F+Ly—E) |)=SL4 | 0) . (1a)

The Hamiltonian H for the total (N + 1)-electron sys-
tem has the form

H=T,+Hy+V, (1b)

where T, is the kinetic-energy operator of the continuum
electron. Hy is the Hamiltonian for the N-electron target
molecule, and ¥V is the interaction potential between the
scattered electron and the molecule. The total system
wave function ¢ is given by
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c=1

w12, ... N)F.(N +1)

+3daXa(1,2,. .. ,N+1),
a

(1c)

where ¢.(1,2,...,N) is an eigenstate of the target mole-

cule

Hyoéo(1,2,... ,N)=€.6.(1,2,...,N), (1d)

F,(N +1) represents the continuum wave function labeled
by the target state ¢, and A is the antisymmetry operator.
We assume that the continuum functions are orthogonal
to all orbitals @, used to construct the target wave func-
tion ¢.. In order to relax this strong orthogonality con-
straint we introduce fully antisymmetric, (N + 1)-electron
“correlation” functions X, for completeness. These corre-
lation functions may take a more general form and
represent certain compound states omitted from the sum
in the first term. We usually make a partial-wave decom-
position of the target and continuum orbitals and thus
also label the scattering function by the orbital angular
momentum [, and its projection on the internuclear axis
m,.. The Bloch operator .£;, given by

Lr=7 3 |clem)8(r—a) v

e l.,m,

—b [(cl.m, | (le)

is introduced to enforce the proper logarithmic boundary
conditions at r=a.

We place the scattering equation (1) in a more con-
venient form by introducing the projection operators

P=3 |A[¢.(1,2,...,N)F (N +1])
X (A |[¢.(1,2 N)F.(N+D]]| ,
Q=1-P,
such that
[Y)=(P+Q) |¥) .

This allows us to express the Schrodinger equation'’
the pair of coupled equations

(Fpp—EIP |9) +HpQ | )=L4P|¢) , (2a)
(Hoo—E)Q | ) +HgpP |¥)=0, (2b)

where ¥ =5+ .7,. Solving for Q |¥) in (2b) and sub-
stituting into (2a), we obtain

(H pp—E)P | ) +HpglE—Hpp) ' H ppP | ) =0
(3a)
or
(H pp+Ly—EP| ) +UPP | 9)=F,P|¥), (b
where the optical potential U is defined as
UP = pg(E—Hpg) ™' ¥ pp . (30)

In practice, we manipulate Eq. (3) to retain the projection
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operator P only in the term containing the optical poten-
tial. For calculations, P is replaced by the expression

P=3 | A[6.(1,2,...,N)F,(N+1)])
c,a

X {(A[$.(1,2,... ,N)F (N +1D]]| , @)

where we have introduced an additional expansion of the
channel wave functions F, in terms of a complete set of
states F,. By taking components with respect to the open
target states, we obtain a set of coupled, integro-
differential equations

(he+Lpe— 7k | F.)

+32 D | Fo){F, | Ug" | Fg)(Fg|F.)
¢ ap

:jbc|Fc>+2Acq|‘pq>y (Sa)
q9

where

h,=—5V24+ U, (5b)

L=+ 2 [ em)8(r —a) |——b |(I.m. | , (5¢)

d
or
k2 is the energy of target state c, and | @, ) are the bound
orbitals orthogonal to |F,). The Lagrange multipliers
Acq are needed to ensure the orthogonality condition to the
| @, ). All of the diagonal interactions are placed in the
operator h.. The reason for this division is that the diag-
onal static potentials are strong and converge quite slowly
in a basis set. On the other hand, the introduction of the
basis set F, leads to a matrix or separable expansion of
the off-diagonal channel interactions. This has the possi-
bility of rapid convergence in a conventional L? basis set.
Similar observations were made with the exchange!®!’
and polarization parts'>!® of the interaction potential in
elastic scattering. Separable forms were used to give high-
ly accurate cross sections for electron-H, and -N, scatter-
ing as well as precise resonance parameters for electron-
H,* collisions. Equations (5) may be recast as a set of
coupled, integral equations by using the Green’s operator

g =(h.+Lp—3kH™ ",

containing only the diagonal interactions. This gives

|F)+3 3 |Fou){Fq | UE | Fg){Fg|F.)
¢ apf

—El g2 eq

F e m
+3 2 | Falm, [ 5 ‘—ch,c,,,c]a, (6a)
where
Fm (D= [ dQg.(r|a,0)Y,, (@), (6b)
Foo(t)= [ g.(r| 0)Fy(r)dr’ (6c)

Fo(n= [ g.(r| g (r)dr’ . (6d)
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Each of Egs. (6a)—(6d) may be reduced to a set of cou-
pled, radial integral equations by expanding in a set of
spherical harmonics Y,. These equations are converted
to LA form by introducing a quadrature in r space. An
important point about these equations is that they are un-
coupled in the physical channel index c¢. This means that
the dimensionality of the equations that need to be solved
is identical to that of the elastic scattering equations. Of
course, the calculations must be performed for each physi-
cal channel and for all a,q within the channel. However,
the quantities associated with the separable optical poten-
tial, the Bloch operator, and the Lagrange multipliers ap-
pear as simple inhomogeneous terms. Since the computa-
tional procedure reduces the coupled integral equations to
a set of linear-algebraic equations, the presence of a num-
ber of inhomogeneties introduces little additional compli-
cations. The major computational step is the L U factori-
zation of the algebraic matrix, not the back solution for
the right-hand sides.

Projecting Egs. (6a) onto a set of spherical harmonics,
we find

Fclcmc(r)+ 2 EFcalcmc(r)<Fa , U&Ht |Fﬁ><F5}Fc’>
¢’ (#¢)a,B

:EchIcmc(r))‘cq+-;— 2 Ft?lm Irm.(r)
q l.,m.

c 'e’c (4
(4 (4

aFclc,mc, bF
ar - cIC,mcr a .

X

)

Expression (7) gives the standard equation that we must
solve for the continuum channel wave functions Feim,-

However, this equation still depends on two unknown
quantities (F, | F,) and A,. Since neither of these quan-
tities explicitly depends on the angular momentum expan-
sion (/,m,), we may determine them from a direct projec-
tion onto the three-dimensional equation (6a). We derive
two equations. The first is determined by projecting Eq.
(6a) onto the general L? expansion basis { | F,)} while
the second arises from a projection with respect to the
bound orbitals ¢, of the same symmetry as the continuum
function. This latter constraint enforces the strong ortho-
gonality condition assumed throughout the derivation.
We proceed by defining the following vectors and ma-
trices:

Xac‘_‘(Fa ch)’ qu'_—}"cq ’
Nac,ﬂc‘:2<Fatiy)<FylU&Et‘Fﬁ> ’
14

Ny,cq:<Fychq)7 Ny,clcmc=<Fy’F3cmc), ®)

ch,Bc’zz <‘Pq |Fca><Fa | Ut?cRt *Fﬂ> ’
a
Nq,cq’:<‘Pq Ich')) Nq,clcm‘.=<¢q ch(‘)lcmc) .

The set of equations which determines the unknowns X,
and X, are
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X7’0+ 2 ENrc,Bc’Xﬁc'
¢’ (#c) B

1
=2NyeXeet 7 2 Nyetm,
q I.,m

c

(9a)
2 2 NecpeXpe
c(sc') B
=3 NycgXge
pe
1 aFclcmc
+7 2 Nq,cl m —bF, . (9b)
I.,m, e ar ¢ Ja

In Eq. (9b), the first term vanishes due to the assumed
orthogonality (g | F, ) =0.

In order to cast Eq. (9) in standard form, we add a
channel label and an appropriate sum where needed. We
then define a new set of matrices as

6ijsc:c’'+'*Nic,jc” i’jea
Nic'j8¢» i€Eaand jEg

Ajc,jor= ic.jc» 1€q and jEa (10a)
Ni,c’jscc" irqu
Bi,clcmc: icl,m, > (10b)
to get
1 achmc
z Aic,jc'ch'= 7 zBi,cIcmc T ”chIcmc
Je’

(11)

The dimensionality of the matrix A4 is determined by the
number of target states ¢ times the number of basis func-
tions i. The (I,m.) labels play no direct role. They deter-
mine the number of independent solutions of the algebraic
set of equations which are required for the final solution.
Formally, we may write

1 1 aF::’lc-mt.

Xic= 2 2 2 Aic,jc’ j,c'l.m_, _ch’l m ..
bt e or e
lewmec',j a
aFc'l m
1 e’
== Ticctom, |—™=———0bF,. (12)
2 c’,IcZ'm ' ic,c'lm, or c'lom. B

c

Substituting Eq. (12) into Eq. (7) and setting r =a, we
find

aFc‘It.mc,

Fclcmc(a)z E Rymetm. ar

¢t '™
¢ lo,m,

“ch’Ic.mc. l )

a

(13a)

where
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c 'ccc

1 Fo
R , == F 1 ' 408, a
cl.mc’l.m, 2 2 cqlcmc(a) gc,c Ic.mc. Bcc cl.m.l.m ( )
q

- 2 2 Fcalcmc(a )Uggt,&TtF,c’lc.mc,
t aB

(13b)

This completes the formal derivation. Once we have ob-
tained R, it is possible by a simple matching procedure to
extract the scattering information. Alternatively, it is
straightforward to devise numerical procedures which
propagate R from r=a to very large values of the radial
coordinate.”” At these values a matching to free or
coulomb waves is possible. In the outer region this propa-
gation step can be made very efficient when the potentials
are slowly varying as would be the case for multipolar
electrostatic forces.

Before turning to the numerical results, a few com-
ments on the derivation and the physical implications are
in order. In earlier publications we have shown the diffi-
culty of expanding the direct diagonal interaction, which
contains the strong nuclear coupling, in an L? basis. By
moving this term into Green’s function, we hope to avoid
the difficulties of the earlier R- and T-matrix methods.
The residual interaction has both local and nonlocal parts.
There is little doubt that the exchange interactions, which
are short range, can be efficiently expanded in separable
form. Indeed we have demonstrated that it is possible in
elastic scattering to expand both the exchange and optical
potential interactions in a conventional set of L? Carte-
sian Gaussian orbitals.’®2° The reduction of the elastic
scattering problem to a set of coupled, inhomogeneous
algebraic equations using the linear-algebraic method has
proven to be a most efficient technique. These equations
are readily solved on present-day computers but are par-
ticularly suited to the architecture of the new vector
machines such as the Cray Research, Inc. Cray XMP and
Control Data Corporation Cyber 205. By generalizing
these methods to the inelastic problem, we can perform
equivalent calculations with an effort proportional to the
number of channels in the open channel space. The in-
clusion of optical potentials does increase the complexity
of the calculation, but the methodology is still quite effi-
cient. The real question, of course, is the efficacy of the
separable expansion of the off-diagonal interactions. It is
essential to be able to place both the direct and exchange
parts of the off-diagonal terms in separable form. Only in
this way will the problem be reduced to a set of uncou-
pled, elastic scattering equations. The exchange potential
presents no particular difficulty but the direct potential
can contain some rather unpleasant long-range terms,
which converge rather slowly in a conventional L? basis.
This is particularly true for optically allowed transitions
in which dipolelike potentials dominate the coupling ma-
trix. In an earlier publication,’ the authors implemented
and tested these ideas on the three-state 1s-2s-2p close-
coupling equations for e + H atom scattering. This case
was chosen because of the well-known strong dipole cou-
pling and the Rydberg nature of the excited states. We
felt that if this approach were effective for e + H col-
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lisions, then it might also be valid for the molecular case.
The results of that calculation proved it was indeed possi-
ble and practical to use our approach for inelastic elec-
tronic scattering. However, it was necessary to make the
L? basis sets flexible enough to span the large interaction
region. In more practical molecular problems, where one
is limited to Cartesian Gaussians as a basis, convergence
could be a problem. Encourage by our success in the
e + H atom case, we embarked on the more general treat-
ment in this paper. The results of our calculations appear
in the next section.

III. APPLICATIONS

Before describing our various calculations, we first es-
tablish some notational conventions. We shall let the
number of states be given by n, and the number of partial
waves included in each state by n.. Thus, for n,=2 and
n.=4, we have a set of eight coupled integro-differential
equations. We divide the radial variable into two regions
at the point r,. We solve the LA equation in the inner re-
gion (r <r,) by the methods described in the previous sec-
tion by introducing a Gauss-Legendre mesh of n, points.
The local coupled equations in the outer region are solved
to r=r, by an R-matrix propagator method. For the
traditional or “exact” treatment of exchange, we must
also note the number of expansion terms for the bound
(np) and continuum orbitals (n,) explicitly included in the
calculation of the exchange term. Since both atomic cal-
culations involve total .S symmetries and s states, we al-
ways have n,=1.

A. 1s5-2s5 e + H scattering

The 1s-2s close-coupling calculation in e + H scatter-
ing is a natural first choice for our new theory. Many
other calculations of this transition can be found in the
literature, and we had our own earlier results® for compar-
ison. The calculations were performed on the 'S symme-
try state of the composite system. Thus, both the incident
and final channel continuum waves are of s type. Since
our calculational methods require that the continuum
functions be orthogonal to both the 1s and 2s functions,
we added the (1s2), (1s2s), and (2s?) configurations as an
optical potential into the coupling matrix element. This is
easily accomplished using our new separable-potential
techniques and adds no complexity other than an energy
dependence to the coupling potential. The coupling ma-
trix element does not contain any long-range potential but
the rather extensive nature of the 2s state requires a large
R-matrix radius (20a,) to contain the exchange region.
This in turn forces us to use a large basis set to span the
interaction region over the energy range of interest. For
this transition, we examined the cross section from thresh-
old to 4 Ry incident electron energy. Over this range, we
used a basis which built on the Gaussian expansions of the
1s and 2s hydrogen functions given by Huzinaga.?' To
his most extensive basis, we added functions whose ex-
ponents were in a geometric progression of two starting
with his most diffuse exponent of 0.0165 and ending at
0.00006. In addition, some compact exponents were also
included to better span the valence region. This set was
found to produce cross sections to within 10% or less of
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our earlier calculations. At this point in our study we
were only examining our computer codes for gross errors
and no systematic attempt was made to improve these re-
sults. A rather cursory examination of several smaller
basis sets revealed some sensitivity but no dramatic
deterioration of the results was found to occur. A com-
parison of our calculation and exact close coupling® is
found in Table 1.

B. 1s2—1s52s (2S) e + He scattering

Another simple test of the LAM is inelastic e + He
scattering. We performed calculations using the separable
expansion of the coupling interaction and compared our
results with exact close coupling.?? In both cases we ig-
nored the correlation terms and forced orthogonality to
the 1s and 2s He orbitals which were calculated using the
IVO prescription.?? As for hydrogen, the major difficulty
was the extended nature of the excited 2s orbital. Since
we studied overall 2S symmetry of the scattering system,
only s waves were present in our continuum solutions.
Two prescriptions were used to choose the basis sets in the
calculation. The first was identical to that used in the
electron-hydrogen problem. The second started from an
exponent of 0.0001 and added functions in a geometric
progression of 1.5 until an exponent of 4974 was reached.
Both basis sets produced results at low energies to within
15% of the exact close-coupling calculations. At higher
energies the agreement was considerably better. Table II
contains the results of our calculations using the two basis
sets at four energies. The reason for the larger errors at
lower incident energies is somewhat mystifying to us since
the usual trend in the use of separable expansions is in the
opposite direction. Considering the different character of
the two basis sets, the results are even more puzzling.
Perhaps this is a consequence of the extended nature of
the 2s orbital or the diffuse form of the direct potential.
We hope to return to this transition at a later date to
better understand these effects.

C. e+ H,™* scattering

We performed two-state close-coupling calculations on
two transitions in Hy*: lo,-20g and lo,-10,. In both
cases we examined overall 123 symmetry and added into
the coupling matrix those configurations needed to relax
any orthogonality constraints on the scattering functions.

TABLE 1. Comparison of LASP method with exact treat-
ment of exchange for e-H atom scattering in the 'S symmetry
for a 1s-2s close-coupling case. Cross sections (Q) in units of

mad. Parameters: n,=2, n.=1, n,=n,=1, n,=65, r,=rm

=20(10.
0(1s —>25)
k?* (Ry) LASP Exact (Ref. 26)
1.0 0.072 86 0.07232
2.0 0.03138 0.03033
3.0 0.01350 0.01348
4.0 0.00796 0.007 25
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TABLE II. Comparison of the LASP method with the exact
treatment of exchange for e-He scattering in the 2§ symmetry
for a two-state close-coupling prescription (1s?, 1s52s). Cross
sections ( Q) in units of a3. Parameters: n,=2, n.=n,=n,=1,
n, =65, ro=ry, =20a,.

O(1s2—>1s52s)
Exact LASP
k* Ry) (Ref. 26) Basis 1 Basis 2
1.8375 0.034 0.038 0.040
2.2049 0.032 0.027 0.031
2.5724 0.026 0.026 0.025
2.9399 0.023 0.022 0.018

In both calculations a number of basis sets were examined.
All of the basis sets started with the two-center basis used
by Hazi and us in earlier calculations? of the resonances
of ‘Zg symmetry of H,. The basis was augmented by in-
creasing the orbitals on both centers and at the midpoint
of the molecule. Our initial attempts at calculating the
cross section for these transitions was disappointing. The
reasons for this are different for the two transitions. In
both cases the excitation cross sections were small, and we
had difficulty in obtaining high accuracy with small basis
sets. In the former transition, we found it necessary, as in
the 1s-2s hydrogen case, to use a large R-matrix radius
(20a,). The long-range coulomb force helps in reducing
the basis-set size, but it is essential to include both s, p,
and d type functions in the augmented basis for very ac-
curate calculations. The need for such a large basis set is
even more important in the case of 1o, — 1o, excitation.
Here the transition is optically allowed, and a significant

TABLE IIlI. Basis set for e + H,* calculations: experimen-
tal coefficients.

s type, R=11.0a,

82.474, 12.3980, 2.8391, 0.81472, 0.58274,
0.271 84, 0.099483, 0.042726, 0.0165

pz type, R=+1.0a,
1.25348, 0.291528, 0.078 125

dz? type, R=+1.0a,
0.078 899

s type, R=0.0a,

104.8576, 52.5288, 26.2144, 13.1072, 6.5536,
3.2768, 1.6384, 0.8192, 0.4096, 0.2048,
0.1024, 0.0512, 0.0256, 0.0128, 0.0064,
0.0032, 0.0016, 0.0008, 0.0004, 0.0002,
0.0001

pz type, R=0.0a,
Same as above

dz? type, R=0.0a,
0.52, 0.26, 0.128, 0.064, 0.032, 0.016,
0.0053, 0.0018, 0.0005, 0.0002




33 ELECTRONIC EXCITATION OF ATOMS AND MOLECULES . ..

TABLE IV. Comparison of the LASP method with the exact
treatment of exchange for e-H,* collisions in the '2, symmetry
for two two-state close-coupling cases [(log,l0,) and
(1og,204)]. Cross sections in units of a3. Parameters: n,=2,

ne=4, n, =50, rp=r,=10(10,), 2020, ), n,=n, =3 (exact).

k% (Ry) Exact?® LASP
Q(loy,—20,)

0.9 0.4274 0.4293

2.0 0.2070 0.2085
Q(loy—1lo)

1.5 0.0809 0.0762

2.0 0.0763 0.0722

3.0 0.0439 0.0516

4.0 0.0278 0.0314

Close-coupling calculations similar to those in Reference 26.

fraction of the transition probability comes from the
long-range part of the coupling potential. The basis set
used in the best calculation is given in Table III. The re-
sults for the two calculations are given in Table IV.

The calculations show that it is essential to use a large,
single-center basis set to achieve accurate results. The
need to include a significant number of these orbitals for
each angular momentum which contributes substantially
to the cross sections leads to quite large basis sets. Since
our current configuration-interaction programs are limit-
ed to a total of 60 molecular orbitals, we could not expand
the calculations any further. The overall agreement with
the exact close coupling?? is about 5% for the 1o, transi-
tion and 5—15 % for the 20, transition. The 20, transi-
tion suffers from the same difficulty as the 2s transition
in H and He. The large R-matrix radius requires a large
basis set. The lo, transition is optically allowed but the
compact nature of the excited state allows us to span the
interaction region with our basis set quite well. The
overall conclusions of our study suggest that the basic
methodology and computer programs are sound. What is
needed is a better basis set and/or a more flexible
configuration-interaction program. Both of these are ac-
tively being investigated and results will be presented in
forthcoming publications.

D. Excitation of the b 33} of H,

One of the few transitions which has been studied by a
wide variety of theoretical techniques is the b 32 state of
H,48%11-132425 Tpe transition may be described, to
zeroth order, as the excitation of a lo, orbital of the
ground-state configuration to a 1o, orbital, which is trip-
let coupled to the remaining log function. In our calcula-
tions, we generated the lo, orbital using the IVO tech-
nique where the potential was that appropriate to triplet
coupling. The remainder of the basis was generated in the
field of the ground-state target using several primitive
sets. The valence character of the 1o, orbital does not re-
quire a very large R-matrix radius (10ay), and there are
no long-range coupling parts to the interaction potential.
In fact, the coupling matrix is purely due to the exchange

2987

interaction and is quite short ranged. Again as in the pre-
vious tests, we investigated a number of basis sets for the
scattering electron. These ranged from some quite simple
Cartesian Gaussian orbitals to very large extended sets
chosen as in the e + H,™ calculation. Very little sensitivi-
ty was observed in the results, and the bulk of the calcula-
tions were performed using a set given by Lima et al.* in
a recent Schwinger variational calculation of the transi-
tion under discussion. As a first check for this system, we
compared with several earlier two-state close-coupling cal-
culations®'!"1? that enforced the orthogonality constraint
of bound and continuum orbitals but failed to relax this
condition with the introduction of correlation terms
[orthogonalized static exchange (OSE) method]. There-
fore, we omitted the laglaﬁ (laﬁlau) correlation terms
from our calculations of the ZZg (®Z,) total scattering
symmetry. We found fairly good agreement with Chung
and Lin® in all symmetries except the 223. In this sym-
metry, our cross section was almost an order of magni-
tude larger. In order to further test our method, we for-
mulated a completely independent computer program
specifically designed to treat two-electron targets. This
program had the capabilities of solving the close-coupling
equations within the strong orthogonality constraint but
not the flexibility to include correlation terms. We found
excellent agreement between the results of this program
and our more general code, if the correlation terms were
neglected, for all scattering symmetries. Since the 223
symmetry makes a small contribution to the total scatter-
ing, our total integrated cross sections are in fairly good
agreement with Chung and Lin.?

Once the correlation terms are introduced into the two-
state calculation [static exchange plus correlation (SEC)
method], this agreement with the earlier results®®!!12
vanishes. Factor-of-2 disagreements in some symmetries
were observed. New calculations?’ by Lima et al., who
found some problems with their earlier results,* and by

2.25 2.50

I I L 1 1

L

L

0.250.50 0.75 1.00 1.25 1.50 1.75 2.00

T T T T T T T T T T t
10.012.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0 32.0
E(eV)

FIG. 1. Comparison of theoretical calculations of the X '=,-
b33, total excitation cross sections as a function of incident
electron energy for e-H, scattering. , present SEC calcula-
tions; — — —, present OSE; —-—, SEC (Baluja et al., 1985);
—O—, SEC (Lima et al., 1985); X, OSE (Holley et al., 1981).
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Baluja, Noble, and Tf:nnyson24 are in excellent agreement
with our full two-state results.!”> We compare these vari-
ous calculations in Fig. 1. We note the importance at low
energies of including the correlation terms and relaxing
the strong orthogonality constraint. Although the older
experimental results?®?’ are in disagreement with one
another, the latest evidence strongly supports the results
of the theoretical calculations of Refs. 13, 24, and 25.
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