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%'e propose a direct iterative-variational scheme to solve the large sets of coupled integro-

differential equations that arise in a variety of atomic and molecular scattering problems. The

method, which is similar to direct configuration-interaction schemes of quantum chemistry, is ap-

plied within the linear algebraic (LA} prescription and involves the construction of an orthonormal

basis from successive applications of the general LA matrix, labeled by channels and mesh points, to

an initial guess for the solution vector. The solution vector is expanded in this basis, and the linear

coefficients determined by a variational scheme. Since the basis is orthonormal, the procedure is

guaranteed to converge within n iterations, where n is the order of the matrix. For all cases treated,

the convergence is much more rapid. In addition, since a direct method is employed, only the poten-

tial, Green s function, and solution vector need be stored. This formulation drastically reduces the

central storage requirements of the LA method as well as improves the solution times since the in-

tegrals involved can be constructed from recursion relations. %e apply the method to elastic scatter-

ing of electrons by N2 and LiH as wdl as inelastic collisions from H2

I. INTRODUCTION

During the past five years we have developed an ap-

proach to electron-molecule scattering based on the con-

version of the coupled integro-differential equations to a

set of linear algebraic equations which can be solved by
standard matrix inversion" methods. ' The theory has

the advantage of numerical stability, the possibility of us-

ing high-order Gauss quadratures, and the ability to uti-

lize the vector architecture of the newer computers, such

as the Cray and Cyber 205. In all of the applications the

matrix has been formed and stored in central memory or
placed on disk. When the matrix has become too large for
the available memory, a partitioning into smaller subma-

trices has enabled the solution of the algebraic equations

to be performed by direct L- U factorization using a gen-
eralization of Gaussian elimination to matrix subblocks.
Although these approaches are quite general, they have
the disadvantage of having to form and alter the matrix
many times during the forward elimination procedure.
This is particularly tedious when the matrix cannot be
stored in central memory and must be read and written to
disk numerous times in the course of the forward solution.
In addition, the amount of work to be performed is pro-
portional to the size of the matrix to the third power ( n ').
All of these factors prompted us to explore other ap-
proaches which are less demanding of memory and CPU
operations.

The approach we have developed has much in common
with the Lanczos ' and direct configuration interaction
methods ' which have been so successful in quantum
chemistry and are related to other iterative-variational
schemes. " ' The idea is quite simple: iterative forma-
tion of a vector space to expand the solution of the equa-
tion. The convergence of the method depends on the
technique used to generate the iterates. However, for a
matrix of order n, we are guaranteed that the iteration

will converge to the correct solution after at most n itera-
tions, provided we can maintain numerical linear indepen-
dence of the iterates. In order for the method to be prac-
tical, convergence must be more rapid since the number of
multiplications will exceed that of the direct L- U factori-
zation if too many iterations are required. The coeffi-
cients of the basis vectors are determined by substituting
the expansion into the original equation and projecting
onto the vectors. This is equivalent to a least-squares
solution using the iterates as the linear variational func-
tions. The method works quite well and, while specifical-
ly applied to several cases of electron scattering from mol-
ecules, should be of value to many other areas of atomic
and molecular physics. In the next section, we discuss the
basic principles behind the technique and derive the most
important equations and algorithims. We follow this by a
section on applications of the method to electron scatter-
ing from N2, LiH, and H2+.

II. GENERAL FORMULATION

A. Linear algebraic equations

Many of the formalisms describing the scattering of an
electron by an atom or molecule reduce to a set of cou-
pled, radial second-order integro-differential equations of
the form

L.q, (R)= g I W.p(R ~R')q~(R )dR,
P=l

where

dL = I (I,+ l)R-'+—k'.
dR

W p(R i

R')= V p(R)5(R R')+It p(R i
R') —. (2b)
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The solution g,(R) represents the radial scattering wave

function in a given channel a for a particular linearly in-

dependent solution ao. In deriving Eq. (1), we have in-
voked the close-coupling approximation by which the ex-
pansion is truncated at a finite number of channels n,
The orbital angular momentum (energy) of the scattered
electron in channel a is given by i~ (k~). We have deli-
berately left the definition of the channel index a general
so as to encompass many different scattering cases. For
example, for electronic excitation in molecules, the index

would contain a reference to the target-state quantum
numbers as well as to the orbital angular momentum and
symmetry of the associated scattering function. We have
divided the "potential" 8' into a local and nonlocal part.
The local term usually represents the static or direct cou-
pling, while the nonlocal part may contain contributions
from exchange and polarization-correlation effects.

The standard prescription we have employed in the
past' to solve Eq. (1}is to convert it to a set of coupled
integral equations of the form

y, (R)=y'.(R)5...+ y+ f,
"6'.(R

~

R') f,
"

W.p(R'
~
R")Qp,(R")dR'dR" .

P=1
(3)

where

L~QN(R) =0,
QN(0) =0,
L~G~(R i

R') =5(R —R') .

(4a)

(4» where

i =(a —l)n~+j .

vector of length No elements. In other words, we define

(f);,=1(,(j),

In this formulation, 6 is the free-particle Green's func-
tion and is given as a product of a regular (Bessel) and ir-
regular (Neumann} function for the open channels. In
some cases, we have found that the generalized R matrix

gN&(R
~
a), given by

For this treatment, we have assumed that the number of
radial mesh points n~ is the same for each channel. As
we have shown, this restriction can be relaxed to allow a
different mesh for each scattering channel. In fact, for
converging single-center expansions about the molecular
nuclei such a scheme is necessary in order to reduce the
LA equations to a manageable size. The following
iterative-variational prescriptions are amenable to this
more general treatment; however, for pedagogical reasons,
we shall employ a single radial mesh.

In the past, we have solved Eq. (7} by standard L U-
factorization techniques. Since such prescriptions can
take full advantage of the vector architecture of the new
generation of computers, we have witnessed large savings
of times, sometimes as much as a factor of 15 over the
scalar mode. Such gains in efficiency have made the LA
approach viable for a large class of scattering problems.
Despite these advantages, we have found several draw-
backs to the current approach. First, in order to take the
fullest advantage of the L-U prescription, we must keep
the full matrix M in central memory. Since typical
electron-molecule scattering problems at the static-
exchange level require M to be of the order of 500 to
several thousand, the storage requirements can tax even
the largest computers. %e have circumvented this prob-
lem to some extent by employing partitioning schemes'
for M. While effective in reducing the requirements for
central memory, these procedures rely on regular or
solid-state disks, which reduce the efficiency of the LU-
factorization. In addition, for matrices of such large or-
ders, the solution times are not insignificant. Therefore,
prescriptions that reduce the memory requirements as
well as improve the solution time are most desirable.

5iI'p,
(R }= g g p(R

~

a)
P BR

is more appropriate. This function satisfies an integral
equation of the same form as Eq. (3) and yields the stan-
dard R matrix at R =a.

We transform Eq. (3) to a set of linear algebraic (LA)
equations by introducing a discrete quadrature of n~
points for the integrals and functions. With some slight
rearrangement, we obtain the following set of LA equa-
tions: '

gM; iijp~, ,(j)=f (i)5
Pi

where

M~; pj
——5' 5~p

—8'~; pj,
n

W; iij 6~(i ~j )V p——(j)w + g 6 (i
~

k)E ii(k
~
j)wkw

k=1

B. Iterative-variational schemes

The problems mentioned in the previous section can be
largely overcome by invoking various iterative-variationalwhere M is a matrix of order No n, nz and f (f ) is ——a

and w; is a quadrature weight. The order (No n, nz) of-—
the LA equations is the product of the number of radial
mesh points (n~) and the number of channels (n, ). We
generally choose a Gauss-Legendre quadrature since this
insures an economy of points with a high degree of accu-
racy. Other schemes, such as the trapezoidal and
Simpson's-rule schemes, have also been explored as well
as various Newton-Cotes prescriptions. '

We may express Eq. (5) in a compact matrix form as

Mf=f (7)
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schemes. These prescriptions are at the heart of the direct
configuration interaction (CI} methods of quantum chem-

istry, although they have their antecedents in the Lanc-
zos ' and conjugate-gradient methods. ' %'e divide this
section into two parts. In the first part, we consider the
solution of a general set of LA equations given by Eq. (7}.
While this derivation will illustrate the basic concepts
behind the iterative-variational prescription, it does not
present the most efficient formulation for a scattering
problem. The formulation in the first part requires a
matrix-vector multiplication and thus does not relieve the
large storage requirements discussed earlier. In the
second part, we show how the equation can be recast in
order to reduce the storage to the Green's function, the
potential, and the solution array. This reformulation not
only reduces the needed memory but also makes a great
gain in computational time.

1. General matrix

We seek to solve the following LA system represented

by the matrix equation

(8)

where M is a matrix of order Xo and X (b) is a vector
with No elements. The vector X represents a single solu-
tion {g,(i) i

a=1, . . . , n, ; i =1, . . . , n~I. We must

solve Eq. (8) n, times to generate the complete set of
linearly independent solutions. We propose to effect the
solution to Eq. (8) through an iterative-variational
prescription. We generate a set of m ( & No) orthonormal
(linearly independent) vectors {a; i

i =1, . . . , m ) by suc-
cessive applications of the matrix M to an initial guess for
the solution vector X. The orthonormality of the vectors
are guaranteed by employing the Gram-Schmidt tech-
nique. A.t a particular iteration m for a given set of vec-
tors {a; i

i =1, . . . , m j, we expand the solution in terms
of a linear combination of the generated basis. We then
invoke a variational prescription to determine the un-
known linear expansion coefficients. The procedure is re-
peated until successive solutions agree to within a given
tolerance. Owing to the fact that the basis we construct is
orthonormal, we are guaranteed a solution in Xo itera-
tions since the generated vectors will completely span the
space. For practical applications we obtain convergence
in far fewer than No iterations. This is a distinct advan-

tage of the method over other iterative prescriptions such
as the Gauss-Seidel, which has no guaranteed convergence
limit.

We first present a description of the iterative and varia-
tional parts separately and then demonstrate how they can
be combined into an effective method. We start the itera-
tive procedure with an initial guess

(a
I pj }=g ak, pk,

where k is a sum over the elements of vectors a; and p;.
We now construct a new vector by applying the matrix to
a1 as

p2 ——Mai .

We generate a normalized vector orthogonal to ai by in-
voking the Gram-Schmidt scheme

a&=p2 —(ai i p2}ai

a2 ——az/Oz .

This process is repeated until convergence is reached. For
a general iteration m, we have

P =Ma
ns —1

a'-=p- X(a-j i p-}a»
j=1

a~ =a~/Om

This procedure produces a set of linearly independent,
orthonormal vectors Ia; i

i =1, . . . , m ) such that

(a; i p~ ) =5;~ for ij & m .

At a given iteration m, we perform a variational calcu-
lation in order to determine the best form of the vector
solution in terms of the basis described in the previous
paragraph. We consider a trial solution of the form

X~ = g Q(a(

We seek to vary the linear coefficients a; so as to obtain
the "best" representation in terms of the basis. Several
prescriptions are available to perform this task; all lead to
the same result. The simplest scheme is based on the
Galerkin approach, which considers the following expres-
sion:

F=(x'. iM ix' ) —(x' is&. (12)

If X' were a solution to Eq. (8), then F would be zero.
Following the Galerkin scheme, we substitute Eq. (11)
into Eq. (12) and demand that

F= X~i X~J(ai IM laj}—g~;(a; ib)=0. (13)

+1 by

ai pl/Oi

where 0;=(a;
i
a;). '~ We have used the (

i
) notation

to represent a scalar product,

We may choose g to be any reasonable representation of
the final solution. However, the better the initial guess
the faster the convergence. In electron scattering prob-
lems, we typically begin with the Born solution although
other guesses based on simple model potentials may prove
more efficacious. We then generate a normalized vector g A,jaj b; for all i, ——

j=l
(14)

A necessary and sufficient condition for this equation to
be satisfied for all of the linearly independent coefficients
ai IS
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2. Direct form

We now return to Eq. (5) in a slightly modified form
where we explicitly depict the wave function as

(i)=p (l)5 + g 8' ~(i ~j)g~ (j) .
Pi

(15)

where A,J ——(ag ~M
~

a/)=(ag ~PJ+i) and b; =(ag
~

b).
Thus, the linear coefficients aj that solve Eq. (14) will

guarantee that Eq. (13) is satisfied. A similar set of LA
equations can be derived from a least-squares formulation.
In this case, we can show that Eq. (14) guarantees a
minimum in the square of the error e=MX' —b. We
note that Eq. (14) is of the order of the number of itera
tions, not of the original system of LA equations. We
solve Eq. (14) for the linear coefficients by standard tech-

niques.
At any iteration m, we therefore have a set of orthonor-

mal vectors I a;
~

i = 1, . . . , m j generated by the iterative

process described above, and a set of linear coefficients

Ia;
~

i =1, . . . , m J of the expansion of the solution vec-

tor in terms of the iterative basis. From these two sets, we

construct the solution vector X by Eq. (11) and in turn

calculate the error vector e~=MX~ —b. If this error
vie:tor is within some tolerance, we terminate the pro-
cedure and declare X the solution; if not, we perform

another iteration. Rather than using the error vector as a
criterion, we usually employ a measure of the relative er-

ror given by the ratio of the maximum value of e to the
maximum value of X . One last important point is in

order. The standard L-U factorization prescription re-

quii'es Np operations while the iterative-variational
scheme needs only mNoi, where m is the number of itera-
tions. As long as m «No, the new procedure requires far
less computational time than the I.-U scheme. For ma-

trices of the order of 500—1000 associated with scattering
problems, we typically find m to be between 10 and 20,
thus providing a substantial savings in computational
time.

As pointed out before, this prescription illustrates the
main features of the iterative-variational approach. How-

ever, since a matrix-vector multiplication is needed at
each iteration and since such an operation is most effi-
cient when the full matrix can be stored in central
memory, the procedure does not lend itself straightfor-
wardly to very large systems. In addition, more efficient
procedures for manipulating the matrix can be devised as
will be seen in the next section.

W(i IJ)=G'(i )I)V(J)~&

where

G'(i ~j ) =R (i)I(j), i &j

=R (j)I(i), i &j

(19a)

(19b)

(19c)

and R(I) is the regular (irregular) solution to the free-

particle Hamiltonian, we may write Eq. (16) as

X"(i)=I (i ) g R (j )ur, V (j )X
" '(j)

j(&i)

+ R(i) g I(j)wJV(j)X" '(j) . (20)
j(&i)

We define two partial sums as

&;= QR(j)w, V(j)X" '(j),
J 4l

&;= g I(j)w; Vj()X" '(j) .
j( &i)

(21a)

(21b)

where X" (X" ') is a vector of length No n——,nz, and W'

is a matrix of order No. Thus, just as described in the
previous section, the iterates may be generated by a
matrix-vector multiplication. The number of storage lo-
cations and multiplications to accomplish this is propor-
tional to Xo. The iterates are used to construct an ortho-

normal basis IX"
~

n =1, . . . , m ] in which the solution
vector is expanded [Eq. (11)]. The linear coefficients of
this expansion are then determined by a variational
prescription [Eq. (13)]. We recall that we must repeat the
full iterative procedure for each linearly independent solu-
tion ao. At this juncture we appear to have reconstructed
the method of the previous section in a slightly different
form.

Provided the number of iterates can be kept smaller
than No, the method can be quite powerful. In actual ap-
plications, the matrix must be stored in central memory or
read from disk in reasonably large blocks to vectorize Eq.
(16) efficiently. When the matrix must be read from disk
many times the input-output operations can be large and
dominate the calculation. In the direct CI methods,
which have been developed to extract eigenvalues and
eigenvectors of very large (10 ) matrices, the matrix is not
stored but calculated as needed for each iteration. An in-
teresting question arises as to whether a similar approach
can be used in the scattering problem. For purposes of
this demonstration, we consider single-channel (n, =l)
scattering. If we specialize the kernel to

(i)= g W ii(i ~ j)X~, (j),
p,j

(16)

The iterative-variational prescription proceeds much as in

the previous section except that the iterates are generated
from W rather than the full matrix M as

These sums may be computed by recursion as

i+R (i)w; V(i)X" '(i),

8;=8; i+I (i)w; V(i)X" (i) .

(22a)

(22b)

where the caret denotes a normalized vector

QX$,(j)Xp (j)wan=5„„.
P,j

Equation (18) can be written in supermatrix form as

y1l ~y Pt —1 (18)

We must use the recursion relation downward in Eq. (22b)
since the irregular solution grows quite large at small ra-
dial distances. The siniilarity of Eqs. (22) to the funda-
mental approach used in the noniterative integral equation
methods developed much earlier' is striking. Howev-
er, the noniterative methods only contain forward summa-
tions. This corresponds to a solution of the integral equa-
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tions with different boundary conditions than those of the
scattering problem. Since the irregular solution of the un-

perturbed problem and the unknown wave function ap-
pear in these summations, we cannot use recursion in the
backward direction and must numerically stabilize the
outward integration process by performing I.- U decompo-
sition of the solution matrix. This corresponds to a
reselection of the initial conditions of the integration. Un-
fortunately, the stabilization process is an n, procedure,
where n, is the number of coupled channels. In our
iteration-variation approach, the backward recurrence
may be performed directly since a known vector appears
under the summation sign. Thus each iteration of our
process is equivalent to the noniterative integral equation
method ioithout stabilization. This is quite efficient and
in addition does not require the matrix to be formed and
stored. Only the unperturbed regular and irregular solu-
tions, the potential matrix, the iterates, and the small set
of matrix equations are stored in central memory. Thus
the entire process can be formulated within the central
memory, and input-output times are drastically reduced.
Unfortunately, the re:ursion process does not readily yield
to vcetor optimization, and the gain in speed on the Cray
or Cyber 205 is not comparable to the matrix multiplica-
tion. However, the gain obtained for the small number of
iterations (rn ~~No) more than compensates for this
drawback.

Before turning to some specific examples, we offer a
few further remarks Si.nce in the multichannel version of
Eq. (22) the partial sums contain channel labels, we must
be a little more careful with the recursion. As long as the
integration mesh is the same for every channel there is no
difficulty. If the mesh is not the same, we must place one
or more conditional (IF} statements in the recursion loop.
Since this slows down the calculation, the authors would
caution others of this approach without a thorough inves-

tigation of their particular problem.

C. Born series

where f is a vector of order No labeled by a specific

linearly independent solution uo. The second correction is
formed by reintroducing P' into Eq. (15) as

yII yO + gryI (23b)

Before leaving this se:tion, we remark on the relation-

ship between the Born series over a finite radial range and

the iterative-variational scheme proposed in Sec. IIB2.
The Born series is also constructed by successive substitu-
tions of approximate solutions into the general integral
equation form (3). Since we consider a finite range for the
potential, we shall employ Eq. (15) rather than (3) in order
to demonstrate the procedure. In addition, we have em-

ployed a discrete quadrature for the integral. The zeroth-
order Born approximation is just the plane-wave solution

, and the first-order correction is found by substitut-
CXCKO&

ing the free-wave solution for the exact solution in Eq.
(15):

@i yO + prOyO

or

(23c)

We note that the higher-order corrections in the Born
series can be constructed from successive applications of
the matrix W to the initial guess f~, just as in the

iterative-variational scheme. The application of the
orthonormality condition and the variational prescription
does not alter this basic formulation —only the relative
weights given to the successive iterates. However, we
shall demonstrate in the next section that the plane-wave
solution is a rather poor starting point for the iterative-
variational scheme.

iII. RSSULTS AND DISCUSSION

In this section, we demonstrate the efficacy of the
iterative-variational approach for a wide class of
electron-molecule collision problems. We consider elastic
scattering from both homonuclear and polar systems as
well as inelastic excitation in H2+. We consider scattering
only from the direct or static potential; however, the for-
malism can be easily generalized to incorporate nonlocal
terms. While confining our attention to electron-molecule
scattering, we wish to emphasize the applicability of this
technique to many other scattering cases including elec-
tronic and atomic collisions.

A. Ng

We treat 2X elastic scattering of electrons from the ni-

trogen mol~ufe N2 in the static approximation within the
LA iterative-variational scheme. We use a single-center
expansion of ten channels (n, =10), which includes angu-
lar momentum up to /=18, and a mesh of 50 points

(nz ——50}. We distribute these points according to a
Gauss-Legendre quadrature as follows: ten from
R =0.0ao to 0.7ao, 20 from 0.7ao to 1.5ao, 10 from
1.5ao to 2.5ao, and 10 from 2.5ao to 10.0ao (10, 20, 10,
10; 0.0—0.7, 0.7—1.5, 1.5—2.5, 2.5—10.0}. We utilize the
near-Hartree-Fock target wave function of Cade, Sales,
and Wahl ' and include in the determination of the static
potential all allowed values of 1.

In Figs. 1—3, we present the dependence of several
channel wave functions gIi, (R) on the radial distance R

for several iterations for the first linearly independent
solution 10 ——0 at k =0.1 Ry. We consider the first
(I =0), second (I =2), and fifth (I =8) channels and also
display the first ( ———), second (0), fourth ( —- —-),
fifth (6), sixth ()&), and final converged ( ) itera-
tions. We shall for clarity inaintain this labeling of the
iterates throughout this and the next section. We note
that in all three cases the initial guess of the plane-wave
solution Pii is rather poor. The method slowly corrects

for this deficiency in the next few iterations and then sud-

denly makes a large departure on the third substitution.
After this large correction, the procedure then approaches
the converged result fairly smoothly. The interesting and
important point to observe is that, even though the initial
guess is poor, the method is self-corrective and eventually
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FIG. 1. Radial solution as a function of iteration for e-N2 'X scattering at k'=0. 1 R in thing a = . y in t e static approximation for lowest

c anne ( =0) for the first linearly independent solution. Nomenclature for iterates: 1 ( ———) 2 (o) 4
15 converged result ( ).
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FIG. 2. S. Same as Fig. 1 except for the second channel (1 =2).
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I
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4.0
l
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FIG. 3. Same as Fig. I except for the fifth channel (I =8).

adjusts and converges to the correct result. We present a
summary of the convergence as a function of iteration in
Table I. We have found similar trends for Nz for energies
from k~=0.01 to 1.0 Ry with convergence occurring in
about the same number of iterations.

B. LiH

We further demonstrate the iterative-variational tech-
nique by treating electron scattering from the strongly po-
lar system LiH (D =6.0 debye) in the static approxima-
tion. We have performed the calculations with the fol-
lowing parameters: n, =6, nz ——55, mesh (15, 20, 10, 10;

TABLE I. Convergence trend for static X~ e-N2 scattering
at k =0.10 Ry and a tolerance in the maximum error of 10

0.0—0.5, 0.5—2.5, 2.5—10.0, 10.0—15.0), and a Gauss-
Legendre quadrature in each region. %e employed the
target LiH wave function of Cade and Huo and treated
the X scattering symmetry. The labeling scheme for the
iterates is the same as for N2 except that the crosses
represent the seventh rather than the sixth iteration. We
list in Table II a summary of the convergence pattern.

In Figs. 4—6, we present several channel solutions

[g/i, (R)] as a function of the radial variable R for various

iterations i for the first linearly independent solution
(lo ——0) at a scattering energy of 0.10 Ry. We note again
that the initial plane-wave guess is rather poor, in fact be-
ing in error by over an order of magnitude for the first
channel (I =0). Since the outer radial region is dominated
by dipole coupling while the inner part is influenced by
the nuclear singularities at R =0.38ao and 2.64ao, the
iterative solutions must adjust to both regimes. %e note

Independent solution (lo)

0
2

6
8

10
12
14
16
18

Number of iterations

16
16
14
13
11
9
5

3
3
3

Independent solution I,'lo)

0
1

2
3

5

Number of iterations

18
18
17
17
17
17

TABLE II. Convergence trend for static X e-LiH scattering
at k =0.10 Ry and a tolerance of 10
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FIG. 4. Radial solution as a function of iteration for e-LiH 2X scattering at k~=0. 1 Ry in the static approximation for the lowest

channel (l =0) and first linearly independent solution. Nomenclature for iterates: 1 ( ———), 2 (O), 4 ( —- —-), 5 (6), 7 (X), and 17

converged result ( ).
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m&
ug) CI 3

C)

I

I

0.0
I

4.0 8.0
R(a, )

I

10.0
I

12.0 24.0 16.0

FIG. 5. Same as Fig. 4 except for the second channel (I =1).
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14.0 16.0

FIG. 6. Same as Fig. 4 except for the fifth channel (I =4).

that the convergence in the inner, nuclear-dominated re-
gion is faster. Once a good result is obtained in this zone,
the solution then systematically improves in the outer, di-
pole region. We once again observe the versatility of the
procedure to compensate for a poor initial guess and home
in on a solution, which has very different radial behavior
in two rather distinct coupling regimes. Such trends also
hold at other energies and other symmetries for this sys-
tem.

In order to provide a more dramatic illustration of the
ability of our approach to obtain the correct solution
given a poor initial guess, we have plotted some three-
dimensional color graphs of the electron density in Figs. 7
and 8. The plots, which were done for the first and
second linearly independent solutions, show how the solu-
tion to the scattering equation changes with iteration
number for an energy of 0.10 Ry. The figures were made
using the program camera developed by M. Prueitt of Los
Alamos National Laboratory In each of. the frames of
the figures, the size of the box enclosing the electron den-
sity is the same. This was done to give the viewer a sense
of the scale over which the wave function is changing
with iteration. It is quite apparent that some violent
changes occur in the initial phases of the iteration before
the solution settles down to its converged value. This
behavior has been seen in other systems such as Nz and at
other energies. In all of the cases studied, it was possible
to obtain highly accurate solutions provided enough itera-
tions were used.

In this section, we apply the iterative-variational
method to inelastic scattering of electrons by Hz+. We in-

voke a two-state (icrs, lo„)close-coupling formulation
with three partial waves in each state (n, =6) and consider
only direct or static coupling. We use a mesh of 50 points
(nz —50) distributed over four subregions (10, 20, 10, 15;
0.0—0.5, 0.5—1.5, 1.5—3.0, 3.0—10.0). In Tables III and
IV, we present selected R-matrix elements as a function of
the independent solution (IS) and the iteration (IT) for 0.9
and 2.0 Ry, respectively. The channels are labeled by the
state (s) and the orbital angular momentum (I, ) of the in-

cident electron. The state labels are s =1 (2) for Icrs

(la„).The R matrix is defined by the following conven-

tion:

a'aof,(a)= gA'
~=a

'

where a is the matching radius and a is given by (s, l, ).
For the Hz+ calculations, we have selected a to be 10aQ.
The R matrix is in turn related to the reactance matrix
(E) and to the cross section.

%e notice that the 8-matrix elements displayed in
Tables III and IV exhibit similar behavior as a function of
iteration as the wave functions for elastic scattering. At
an early iteration, we observe a large jump in SF followed

by a smooth convergence to the correct result. These
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FIG. 7. First hnearly independent solution for e+ I.iH X scattering at an energy of 0.1 Ry as a
function of the number of iterates.

FIG. 8. Same as Fig. 7 for second linearly independent solution.
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TABLE III. R-matrix elements as a function of iteration (IT) and independent solution (IS) for
e-H2+ 'Xg scattering in the 2CC (1m~, lo„)approximation for an energy of 0.9 Ry. Channels are desig-
nated by {s,l, ), where s labels the electronic state and l, the orbital angular momentum mthin s. Num-

bers in parentheses give powers of 10 [(—1)= 10 '].

IS {1,0)
Channel labels (s, l, }

(1,2) (2,1) (2,5)

0
1

2
3

5

8
12

3.757( —1)
—2.077( —2)

5.427{—2)
1,192( —1)
1.023( —1)
1.041( —1)
1.050( —1}
1.050{—1)

0.000(0)
3.897( —1)

—1.00S( —1)
8.348( —2}

—6.072( —2)
—5.997( —2)
—6.049( —2)
—6.049( —2)

0.000(0)
1.662( —1)

—1.213(—2)
—5.374( —2)
—7.284{—2)
—7.625( —2)
—7.582( —2)
—7.584( —2)

0.000(0)
9.474( —7)
6,578{—6)

—4.418( —6}
1.314(—5)
8.678( —6)

—1.196{—5)
—1.228( —5)

0
1

2
3
6

12

0.000{0)
2.664( —1)

—9.138(—2)
—7.790( —2)
—7.558( —2}
—7.584( —2)

0.000(0)
7.509( —1)
6.252( —1)
5.190(—1}
5.336( —1)
5.339{—1)

—1.253(0)
4.227( —1)
8.625( —1)
9.876( —1)
9.650( —1)
9.652( —1)

0.000{0)
1,873( —4)
5.731(—4)
5.228( —4)
6.883( —4}
6;955( —4)

cases for Hz+ once again demonstrate the power of the
iterative-variational approach to recover properly from a
poor initial guess and the probable enhancement to con-
vergence afforded by a better first solution.

IV. SUMMARY

%e have developed a direct iterative-variational
prescription for salving large sets of linear algebraic equa-

tions associated with a wide variety of scattering prob-
lems. The method has several advantages over the stan-
dard L- U factorization procedure. First, the method re-
quires mND operations, where m is the number of itera-
tions, as opposetl to No for the L- U factorization. Since
m is much less than No, the method yields substantial
savings in computational time for large matrices. Second,
only a s~all number of arrays need be stared at any time,

TABLE IV. R-matrix elements as a function of iteration and independent solution for e-Hq
scattering at 2.0 Ry in the 2CC approximation. Nomenclature as in Table III. Numbers in parentheses
give powers of 10 [(—1)= 10 '].

(s, l, )

0
1

2
3
4
6
8

12

0
1

2
3

6
8

12

1.352(0)
5.389( —1)
5.633( —1)
6.413{—1)
6.658( —1}
6.645( —1)
6.647( —1)
6.647( —1)

0.000(0)
1.916(—1)
1.173{—2)
6.870( —2)
8.116(—2)
8.359( —23
8.366( —2)
8.366( —2)

0.000(0)
—4.091(—1)
—4.577( —2)
—7.891(—2)
—7.436{—2)
—7.737( —2)
—7.705( —2)
—7.70S( —2)

0.000(0)
—1.744( —1)
—2.289( —1)
—1.899( —1)
—1.827{—1)
—1.853( —1)
—1.854( —1)
—1.854{—1)

0.000(0)
—1.478( —1)

4.466( —2)
9.565( —2)
9.331{—2)
8.360( —2}
8.366( —2)
8.366( —2)

—1.202(0)
—3.009( —1)
—1.475( —1 }
—1.105(—1)
—1.177(—1)
—1.157{—1 3

—1.159(—1)
—1.159(—1)

0.000(0)
—6.004( —6}

2.651(—4)
4.782( —5 }
2.288( —4)
1.742{—5)
6.312(—5)
6.402( —5 }

0.00(0)
9.155( —4}
1.203( —3)
1.727{—3)
2.441( —3)
2.437( —3)
2.361(—3)
2.360( —3 }
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thus drastically reducing the central memory require-
ments. The efficacy of the method has been demonstrated
for several types of electron-molecule collisions.
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