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Distorted-wave methods for electron capture are discussed with emphasis on the surface term in
the T matrix and on the properties of the associated integral equations. The surface term is general-
ly nonvanishing if the distorted waves are sufficiently accurate to include parts of the considered
physical process. Two examples are considered in detail. If distorted waves of the strong-potential
Born-approximation (SPB) type are employed the surface term supplies the first-Born-
approximation part of the T matrix. The surface term is shown to vanish in the continuum-
distorted-wave (CDW) method. The integral kernel is in either case free of the dangerous discon-
nected terms discussed by Greider and Dodd but the CDW theory is peculiar in the sense that its
first-order approximation (CDW1) excludes a specific on-shell portion of the double-scattering term
that is closely connected with the classical Thomas process. The latter is described by the second-
order term in the CDW series. The distorted-wave Born approximation with SPB waves is shown to
be free of divergences. In the limit of asymmetric collisions the DWB suggests a modification of the
SPB approximation to avoid the divergence problem recently identified by Dewangan and Eichler.
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1. INTRODUCTION

In 1964, Cheshire! proposed the continuum-distorted-
wave (CDW) method in the impact-parameter picture to
calculate electron capture in a high-energy electron-
capture collision between a bare nucleus and a one-
electron atom,

PZP++T(ZT_1)+(IS)—>P(ZP-”+(nlm)+TZT+ , (1

where Z; (Zp) denotes the charge of the target (projec-
tile) nucleus. Since then, the first-order CDW approxima-
tion (CDW1) has proven to be fairly successful in describ-
ing experimental total cross sections over a wide range of
collision velocities (v) and target-projectile combinations.?
The CDW1 approximation has received particular atten-
tion because it is simple enough to provide the T-matrix
element in analytical form for arbitrary hydrogenic final
states.>

Recent investigations have displayed, however, several
unsatisfactory features of the CDWI1 approximation.
Among these are a “dip” in the differential capture cross
section at the critical angle 6 for Thomas double scatter-
ing* and an order-of-magnitude overestimate of the cap-
ture cross section into Rydberg states® with large angular
momenta. Based on a quantum-mechanical treatment it
has recently been suggested®’ that the CDW1 approxima-
tion is not a consistent first-order approximation within
the framework of the distorted-wave theory by virtue of
leaving out an additional hitherto unrecognized surface
term.

In this paper we analyze the general distorted-wave
method for electron capture and find an equivalence be-
tween the distorted-wave contribution to the T matrix in
the quantal treatment and the surface term appearing in
the time-dependent f-matrix approach in the impact-
parameter picture. Two examples are discussed in detail.
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In the first example we use distorted waves of the strong-
potential Born (SPB) type®® as in Refs. 6 and 7. It is
shown that the surface term in the impact-parameter
treatment in this case provides the B1 (first Born) part of
the transition amplitude, in agreement with the fact that
the B1 part of the T matrix in the quantal treatment’ also
is provided by the distortion. It is found that the
distorted-wave Born (DWB) series corresponding to SPB
waves in initial and final channels has good convergence
properties since the corresponding integral kernel is a
“switch generator” which excludes the appearance of sub-
series of disconnected diagrams. The first-order term in
this series, i.e., the DWB approximation, is free of diver-
gent terms. This is contrasted with the recently identified
divergence in the SPB approximation, and a properly
modified SPB approximation is derived from the DWB in
the limit of asymmetric collisions. In the second example
we discuss the CDW method. The surface term is seen to
vanish in the impact-parameter form of the CDW ap-
proach and we demonstrate explicitly that the correspond-
ing distorted-wave contribution in the quantal treatment
vanishes because of asymptotic orthogonality of the CDW
waves. In harmony with recent work by Crothers and
McCann'®!! it is found that the second-order term of the
ordinary Born series (the double scattering term) is not
adequately represented by the first-order term in the
CDW series. The dip in the differential CDW1 cross sec-
tion at the critical angle 87 for Thomas double scattering
is traced to the lack of the second-order term in the resi-
dual interactions.'?

II. DISTORTED-WAVE THEORY
FOR REARRANGEMENT

A. Quantum-mechanical formulation

Following standard argumentation® we ignore the inter-
nuclear potential and write the total Hamiltonian as

2959 ©1986 The American Physical Society



2960 JOACHIM BURGDORFER AND KNUD TAULBJERG 33

H=H0+VT+VP, (2)

where H| is the kinetic energy operator of the three-body
system and Vp (V7) is the interaction between the
transferred electron and the projectile (target) nucleus. In
order to apply standard results from scattering theory it is
assumed that Coulomb interaction potentials are ap-
propriately screened. This implies that special care must
be exerted with limiting procedures to avoid inconsisten-
cies if properties of the Coulomb field are eventually ex-
ploited in the evaluation of matrix elements.’

The total Hamiltonian can be decomposed into entrance
(7) and exit (f) channel Hamiltonians

Hi=Hr=Hy+Vr,
Hf=Hp=Ho+ Ve,

(3)

and corresponding channel perturbations
Vi=Vp,
Vf = VT .

4)

The exact ingoing ( + ) and outgoing ( — ) scattering states
are defined as solutions of the wave equation (¢ =i or f)

¥ =07 | o), (5)
where Q7 is the Mgller operator
QF=14+GHXE)V, (6)

acting on a channel state of energy E, |®.)= |K,,d.,)
where K, represents the channel wave number and ¢, ,
represents the internal state with binding energy €,. The
full Green’s operator in Eq. (6) is given by

GYE)=(E—-H+in)™!, @)

where =07,

The T matrix is given in either of two forms which are
equivalent on the energy shell. For simplicity we concen-
trate on the post form

Ty=(®,|V:|¥F), (8)

Using well-known operator identities Eq. (8) may be ex-
pressed in various equivalent forms. For later conveni-
ence we note that

Ty= lim in{(®;|¥{) 9
n—0t

on the energy shell.

The distorted-wave method is based on a partitioning of
the channel perturbations into distortions U and residual
interactions W,

V.=U+W, . (10)

In general, the decomposition is different in the two chan-
nels and U and W are not required to be local or Hermi-
tian. The distorted waves taking into account the channel
distortions are given by

|XF)=wi|®.), (11)

where w7 are the distorted-wave Mgller operators

(‘)ci’_zl'*'gci U, (12)
and
gt=[E—(H . +U)xin]™". (13)

The T matrix on the energy shell can then be expressed in
the following exact form:'

Ty={XF | W} |¥)+T2, (14)
where
TH=(X7 |Vi—-W}|®;) . (15)

Using the relation V;— W}z (Hp+ Uy )T—~H,~ one finds®
that the following relation is valid on the energy shell:

TH= lim (in{X7 |®;)). (16)
n—0*

This term clearly vanishes if X7 is asymptotically orthog-
onal to ®;, ie, if (X7 |®;) is bounded. According to
Eq. (9) Tf} represents the rearrangement induced by the
distortion in the final channel. We should like to mention
at this point that it is desirable to represent the exact
scattering state as accurately as practically possible by the
distorted wave since a perturbation treatment of the resi-
dual interaction is then more likely to be valid. In other
words, it is very attractive to define distorted waves in the
final channel which are asymptotically nonorthogonal to
the initial state in such a way that the distortion part Tf}
is nonvanishing. Note that this approach is uncommon in
previous applications of distorted-wave theory. The ex-
ample discussed in Sec. IIT A is to our knowledge the first
practical example of distorted waves which accommodate
the rearrangement in question.

Equations (15) and (16) contain a remarkable extension
of the well-known post-prior equivalence of the first Born
approximation: If the distortion in the final channel is
chosen so that it does not connect to the initial state
(T§=0) the following equality holds on the energy shell,

X7 | W) =(XF | Vi|®;) . (17)
An application of Eq. (17) will be discussed in Sec. III B.

B. Impact-parameter formulation

In the time-dependent formulation'® an exact scattering
state is sought as a solution to the time-dependent
Schrodinger equation

2
at

subject to the boundary condition
| Y1) — | ;1)) fort— — o ,

where | #;(¢)) is an eigenstate of the time-independent ini-
tial channel Hamiltonian H;. [Here and throughout this
section it is understood that all states are appropriately
Galilei-transformed to the inertial frame implied by Eq.
(18).] The exact transition amplitude is given by

ap= lim ($7(1) |4 (1)) , 19

—H (1)

r

|9()=0 (18)
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where |$(¢)) is an eigenstate of the time-independent
Hamiltonian H belonging to the final channel. In place
of Eq. (19) the exact amplitude may also be calculated
from a t-matrix expression obtained by integration of the
time derivative of the matrix element, i.e.,

ap=—i f_:odt(tbf(t)[H—~Hf’¢,~+(t)) (20)

since the surface term (¢ (¢) | ¢;*(z)) vanishes in the limit
t— — oo for bound initial and final states.

Distorted waves are defined as solutions to the time-
dependent Schrodinger equation corresponding to distort-
ed channel Hamiltonians. In the final channel we have

l‘...__

= —H;=U0)

r

|X7(1)=0 21)

subject to the boundary condition
le(f))-—-» | ¢f(t)> fort— o .

Then the z-matrix expression for the transition amplitude
becomes

ap=—i [T dtXF 0| WigiF ) +af, (22)

where Wy=H —H;—U; and the surface term a}) is
given by

aﬁ:l—ljrilm X7 (D] ¢:(0) (23)

and clearly represents the transition amplitude due to dis-
tortion in the final channel.

Applying the f-matrix expression to the transition am-
plitude in Eq. (23) and noting that (X7 () | ¢(¢)) vanishes
in the limit t— + «, we find

af=—i [T dr(XF | Vi—W[|$:)) . (24)

The form (22) is accordingly entirely equivalent to the
quantal expression (14). In either case the total transition
amplitude appears as a sum of two terms, one due to the
distortion and the other due to the residual part of the
channel interaction.

C. Distorted-wave series

Since the method of integral equations and series ex-
pansions generally involves off-energy-shell extensions
and since our treatment of the distortion part of the T
matrix is valid only on the energy shell, it is essential to
restrict series expansions to the residual part of the T ma-
trix. We therefore write the post form of the T matrix as

Ty=TH+(®,|T*|®,;), (25)

where, according to Egs. (5), (11), and (14) the operator
TR is defined as

TR=(wp)'Wia} . (26)

A standard iteration of the exact Mgller operator ;" in
terms of the corresponding distorted-wave operator w;"
then generates the following integral equation as first not-
ed by Greider and Dodd:*

TR=(o7)'W}ot +TRK , 27)

where the integral kernel KX is given by
K= G,'+ W,w,*' (28)

and G;*=(E —H;+in)~" is the Green’s operator in the
initial channel. It is interesting to note that the form of K
is independent of the choice of distortion in the final
channel.

A general assessment of the convergence properties of
Eq. (27) is not feasible at present. However, it is crucial
that the kernel (28) connects all particles of the problem
since the Neumann series solution to Eq. (27) otherwise
will contain subseries of terms that correspond to a situa-
tion where one of the three particles propagates freely
[Fig. 1(a)]. As shown by Aaron et al.!* such subseries are
usually divergent. We shall see in the next section that a
class of modern theories for electron capture uses a truly
connected kernel. In the present case the statement that
disconnected diagrams are absent is more restrictive than
in the general three-body scattering case'* since we have
omitted one of the three interactions, the internuclear po-
tential, from the onset. The kernel can contain only con-
nected diagrams involving electron-nucleus interactions
[Fig. 1(b)] whereas a general three-body diagram may be
connected by an internuclear interaction but might be
disconnected otherwise [Fig. 1(c)].

In the absence of disconnected diagrams the source
term in Eq. (27),

TR = (X7 |W}IXit), (29)

represents a consistent first-order theory and a single
iteration of Eq. (27),

TR = (XF | Wi G W, | X}F) (30)

is a measure of the error introduced by the first-order ap-
proximation. Expanding the Green’s operator in a com-
plete set of eigenstates for the target Hamiltonian such
that

0} Gr=3 |XF WE —E,+in)~N®, | 31)

it is seen that Eq. (30) involves off-shell generalizations of
the first-order approximation (29).

III. EXAMPLES

The undistorted channel states and the exact scattering
states represent two extremes. The initial or final channel

o1t o

FIG. 1. (a) Example for a disconnected diagram; (b) connect-
ed diagram involving only electron-nucleus interactions; (c) dia-
gram connected by an internuclear interaction while disconnect-
ed when only electron-nucleus interactions are taken into ac-
count.
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state is generally available as a product of a free wave,
which describes the motion of the free nucleus relative to
the center of mass of the composite system, and a bound
state which represents the internal structure of the initial
or final state. The multichannel scattering states are, on
the other hand, not available in exact form. The distorted
waves may represent a suitable compromise. They may
account for an important part of the channel interaction
and nevertheless be computable in practice. The essential
point is that the residual part of the channel interaction is
reduced sufficiently to allow a perturbation treatment.

The application®’ of the SPB states in distorted-wave
theory is discussed in the first example. These states are
sophisticated enough to account for a significant part of
the capture amplitude. The price to pay for this is that
the matrix elements of the residual interaction between
distorted waves are very difficult to evaluate. The simpler
CDW’s are discussed in the second example. The matrix
elements are then much easier to evaluate. The price for
this is that a first-order treatment is not necessarily suffi-
cient.

A. Strong-potential distorted waves

The approximate scattering state applied in the post

form of the SPB approximation'® is given by

[ XFSPB)Y —f | ) =(1+GFVp) | ®;) (32)

where Gp =[E —(Ho+Vp)+in]~! is the projectile
Green’s operator. The underlying physical picture in Eq.
(32) is as follows. The electronic part of ®; is a bound
state, localized in a narrow region around the target nu-
cleus. This bound state may be viewed as a wave packet
incident on the projectile nucleus. The electronic part of
the SPB state in Eq. (32) is essentially the corresponding
packet of elastically scattered waves. The only difference
is that while each momentum component of a wave pack-
et in potential scattering theory scatters under conserva-
tion of its own kinetic energy, the SPB wave in Eq. (32)
conserves the total energy of the initial state in such a way
that individual momentum components in (32) generally
scatter off the energy shell.

Since off-energy-shell potential scattering is not more
difficult than on-shell scattering, it is clear that the SPB
wave is computable in practice. In fact, the SPB wave is
optimal within the single channel limitation of potential
scattering since it accounts exactly for the scattering of
the target-centered wave packet in the projectile field.

The SPB wave in Eq. (32) clearly represents a particu-
larly important distortion of the initial state in the strong
projectile limit, Zp >>Zy. A corresponding strong target
distortion of the final state is represented by

IXJT(SPB))zw;[(I)f)=(1+GfVT)’q)f> ’ (33)

where G; =[E —(Hy+V5)—in]~! is the target Green’s
operator.

The SPB states (32) and (33) are generated by the dis-
tortions

Ui= VP_VTG(T Vp (34)

and
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Uf= VT'— VPG(S- VT > (35)

where G5 =(E —Hy+in)~! is the free Green’s operator.
The residual interactions are accordingly equivalent to the
double-scattering operator,

W, =W[=W=VG§Vp . (36)

The proof of Egs. (34) and (35) was implicitly given in
Ref. 7. In Appendix A we demonstrate explicitly that the
distortions U in Egs. (34) and (35) generate the SPB waves
of Eqgs. (32) and (33).

1. The surface term

Using Egs. (33) and (36) it is readily shown that the sur-
face term T} in the post form of the distorted-wave T
matrix given by Eq. (14) may be expressed as’

TO={¢;|Vp|¢:;)=TF 37

which is the first Born (Brinkman-Kramers) approxima-
tion for the electron capture T matrix. Similarly it may
be shown that the surface term (24) of the impact-
parameter formulation also is identical to the first Born
capture amplitude.

While the first Born approximation under suitable con-
ditions is a valuable approximation for excitation and ion-
ization processes it is now generally appreciated!® that the
B1 approximation for capture is hardly justified. It is
therefore very satisfactory that the SPB distorted waves
already contain this term in zeroth order in such a way
that only the multiple scattering part of the T matrix has
to be treated by perturbation or iteration.

2. The distorted-wave Born series

Using the distorted-wave Mgller operators belonging to
the SPB waves as defined in Eqgs. (32) and (33) and the ex-
plicit form (36) of the corresponding residual interaction,
the integral equation (27) becomes

TR=(1+ VG WG Ve(1+ VG )+TRK , (38)
where

Adding the surface term (37) to the matrix element of the
source term on the right-hand side (rhs) of the integral
equation (38) we obtain the symmetric first DWB approx-
imation

TgWB — TB_] + (Xf(SPB) l VTG(-)+- VP |X+(SPB)) . (40)

As noted in Ref. 7 the DWB contains all terms of single
switch character in the ordinary Born series. This is most
easily seen from Eq. (39) where an expansion of the G
and Gj" operators in the first-order term gives rise to a
series of terms all of which are characterized by the fact
that the sequence of operators begins with a sequence of
Vp operators on the right and changes only once to end
with a sequence of V7 operators on the left. The kernel K
in Eq. (39) is, on the other hand, a double switch genera-
tor. This implies that the first iteration of Eq. (38) sup-
plies all terms of triple switch character and that subse-
quent iterations are characterized by their odd number of
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switches. The number of switches may be identified as a
measure of the degree of connectedness of terms in the T
matrix. The terms of the DWB series, generated by itera-
tion of Eq. (38), are therefore progressively more and
more connected. This is expected to be a key feature of a
rapidly converging series since each switch involves an ap-
preciable amount of momentum transfer to counterbal-
ance the relative translation of the two nuclei.

Alston'” has noted that the DWB approximation (40)
also may be expressed as

TPVB=TH +( &, | TrG§Tp | ;)
=TH +( ;| ViGFTp | ;) ,

(41a)
(41b)

where Ty and Tp denote the transition operators
Vi +VyG#Vy and Vp+ VpGF Vp, respectively.

Equation (4la) is particularly interesting because it
shows that the DWB approximation is equivalent to the
Faddeev-Watson approximation!” with a vanishing inter-
nuclear potential. The physical intuition implemented in
the distorted-wave formulation therefore may be used to
improve the general understanding of the underlying
physics of the Faddeev expansion. We employ the DWB
approximation in the following to clarify the conceptual
foundation of the strong-potential Born approximation as
applied to asymmetric collision systems. In particular, we
resolve the divergence problem recently identified by
Dewangan and Eichler.!®

3. The strong-potential Born limit

The familiar SPB expansion of the T operator reorders
the ordinary Born series according to powers of the weak-
er potential. The strong target SPB expansion reads

The first two terms on the rhs of Eq. (42) are both of first
order in the weak potential Vp and these are commonly
known as the SPB approximation,

TP = (@, | (1+VrGH)Vp | ;) . 43)

Equation (42) is also obtained by iteration of the integral
equation (27) of the distorted-wave formulation of Sec.
IIC by ignoring the distortion in the initial channel but
retaining the SPB distortion in the final channel, i.e.,

wit=1, of=o7, (44)
such that the integral kernel becomes K =Gt V. Since
K=G#Vp=G§Vp+Gi§VrGiVp=Ky+K,, (45

it is seen that the kernel K contains the disconnected part
Ky=GF Vp. This implies that the SPB expansion in Eq.
(42) may contain divergent subseries!* of disconnected
terms. Formally, however, we may resum these critical
subseries. As an example, the subseries of terms that re-
sults from the K, part only may be summed to give

ViGiVe 3 (GFVp)'=ViGF VpGHVp . (46)

n=1

This equation provides the sequence of single switch
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terms which are of second or higher order in the weak po-
tential Vp. The contribution may therefore be expected to
be small in the weak-potential limit, provided that the
operator series converges. As shown by Aaron et al.'’
this is, however, not generally the case. The SPB expan-
sion is therefore not quite justified. This does not neces-
sarily mean that the first SPB approximation to the T-
matrix element is wrong. In fact, in the following we
shall present two alternative derivations which lead to the
SPB approximation in a more satisfactory way. First, we
identify the SPB approximation as the source term of an
integral equation with a connected kernel. Secondly, we
consider the well-behaved DWB approximation in the
limit of asymmetric collisions and derive a slightly modi-
fied version of the SPB approximation.

To show that the SPB approximation belongs to an in-
tegral equation with a connected kernel we start from the
prior instead of the post form of the exact T operator.
Then, Eq. (27) is replaced by

TR=(0f ) W0 +KTR 47)
with
K =(w7)' WG} . (48)

In the prior form there is generally a contribution to the
T-matrix element from the distortion in the initial chan-
nel similar to the distortion part given by Egs. (15) and
(16). In the specific case of a strong target potential [Eq.
(44)] there is no distortion in the initial channel and we
obtain

TR = (07 ) Vp=Vp+ VG Vp=TSB (49)
for the source term in Eq. (47) and
K =V;GFVpGF (50)

for the integral kernel. Since this kernel is a double
switch generator it may be expected that the pertaining
series solution has satisfactory convergence properties.
The price to pay for the absence of disconnected terms is
that the series solution is no longer ordered according to
powers of the weaker potential, neither is it completely or-
dered according to the number of switches. The second-
order term is, for example, given by

TR =V G VpGF Ve +ViGi VeGi VG Vp , (51)

i.e., a sum of single and triple switch terms. Note that the
first term on the rhs of Eq. (51) is identical to the rhs of
Eq. (46). As we shall argue in the following it is impor-
tant to include the part of this term that corresponds to
intermediate propagation in the initial bound state of the
electron, i.e., the contribution from intermediate elastic
scattering.

The distorted-wave expansion of Eq. (38) is, in contrast
to the strong-potential expansion of Eq. (42), a consistent
series expansion with a connected integral kernel. Noting
that the troublesome series in Eq. (46) precisely provides
those terms of the first DWB approximation which were
left out in the SPB approximation it is tempting to seek a
justification of the SPB approximation within the more
general DWB approximation. This involves a consistent



2964

approach to the asymmetric limit, Zp <<Z7. Comparing
Eq. (43) with Eq. (41b) it is seen that the SPB approxima-
tion is obtained from the DWB approximation if the
operator Tp is replaced by Vp. This is the first Born ap-
proximation for the T operator of the weak field. To dis-
cuss the validity of this approximation it is useful to ex-
J

(PH(K /)| Vr | P1(K))(Pr(K) | Tp | D] (K;))
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pand the DWB expression Eq. (41b) in a complete set of
target channel states, | ®7(K)), where, for later conveni-
ence, the wave vector K of relative nuclear motion is
given explicitly. Specifying, by superscript on the channel
state, the nucleus to which the electron is attached, we ob-
tain

TOVB=TH + 3 [dK
n

It is accordingly seen that the SPB is a valid approxima-
tion to the DWB if and only if the first Born approxima-
tion for scattering into arbitrary target states is valid in
magnitude as well as phase.

The Born approximation is generally accepted to be
valid for target excitation and ionization so long as
Zp << Zy. The situation is different for elastic scattering,
n =i. The Born approximation for elastic scattering is
often considered to be a high-velocity approximation,
valid for v >>Zp, i.e, in the region where the target SPB
normally is considered to apply, but this is only true so
far as the magnitude of the T matrix is concerned. The
phase of the T matrix is in fact poorly represented at
small momentum transfer for the type of potentials that
are of interest in atomic physics.!” The SPB approxima-
tion is accordingly only a valid approximation to the
DWB approximation in the limit of asymmetric collisions
Zp << Zy if it is modified properly to account correctly
for propagation in the initial state n =i.

A correct treatment of the limit Zp <<Zp of the DWB
approximation solves the problem spotted by Dewangan
and Eichler'® concerning the singular contribution from
intermediate scattering in the initial electron state in the
ordinary SPB approximation for bare Coulomb potentials.
These authors noted that

(®I(K) | Vp | ®T(K)) « |[K—K; | 2 (53)

for n =i and that the divergence at small momentum
transfer of this term in the SPB form of Eq. (52) coalesces
with the corresponding initial ground-state pole in the
Green’s function to produce a nonintegrable singularitil

E—-E, (K)+in

(52)

[

In the following we show that a DWB treatment yields a
finite contribution from intermediate propagation in the
initial state. First we note that

Tp(E)=Vp+Vp(E —Hp+in)"'Vp (54)

is a three-body operator since the Hamiltonian Hp con-
tains the kinetic energy operator corresponding to the free
motion of the target nucleus with respect to the center of
mass of the projectile-electron system. Considering the
relevant matrix element Tp(E) in Eq. (52),

I=(®](K)| Tp(E)| ®T(K;)) (55)

it is, however, not difficult to perform the integral over
this coordinate to obtain

I=[d’p§(p+v)6;(p+v+K;—K)tp(p,p+K; —Kse) ,
(56)

where ¢ is the initial electron state in momentum repre-
sentation and ¢p is the electron-projectile two-body T ma-
trix in momentum representation at the energy

e=3p’+€—5(v+p). (57)

Here, ¢; is the binding energy of the initial electron state
and v is the impact velocity. Since € certainly is smaller
than %—pz it is clear that the two-body scattering in Eq.
(56) takes place off the energy shell. The tp matrix in Eq.
(56) is accordingly well defined?® also for the unscreened
Coulomb case.

We may evaluate Eq. (56) at high velocities v >>Z in
the near-energy-shell approximation® to obtain

T=— L %P (KK, |/8¢)"" exp[2i argT'(1+ivp)]
2m? | K—K;|?
x [d’p $i(p+v)i(p+v+K—K;)g(plg(|p+K;—K|), (58)
[
where v, =Zp/v and the off-energy-shell factor g(p) is  peaking approximation to be proportional to the integral
given by —242iv
[ @PRE—K+ip~ (| K=K, )77 (60)
2ivp

I'(1—ivplexp(—vpm/2), (59)

The integral in Eq. (58) is seen to be a smooth function of
K in the vicinity of K;. Upon inserting Eq. (58) into Eq.
(52) the critical contribution from forward angles K ~K;
in the integral over K may therefore be estimated in a

If the Coulomb phase factor | K—K; | is neglected,
the integral is logarithmically singular as noted by
Dewangan and Eichler.!® It is finite when the Coulomb
phase factor is properly retained.*

Let us emphasize that the problem with the intermedi-
ate state propagation is particularly dramatic but certainly
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not peculiar to the Coulomb case since the Born approxi-
mation is generally invalid in the calculation of the phase
of the elastic scattering amplitude for realistically
screened atomic potentials as already mentioned above.
Also it should be noted that a contribution from the
ground-state pole is physically reasonable as it is certainly
present in an exact representation of the capture T matrix.
In other words, the pole contribution is not spurious. It
must be evaluated, however, with sufficient care as indi-
cated above. Whether the modified contribution from the
initial state pole is actually negligible as implied in previ-
ous evaluations?""?? remains to be tested.

The impact-parameter version of the ordinary SPB ap-
proximation is naturally also divergent'® due to the im-
proper treatment of the intermediate propagation in the
initial electron state. It is easily seen that the singularity
may be removed by including the elastic scattering in the
initial state similar to the present treatment in the full
quantal picture. Alternatively, it may be sufficient to in-
clude, for example, the eikonal phase of the elastic scatter-
ing in the weak field.

A comparison with the standard treatment of secular
terms in the impact-parameter method is instructive. In
the close-coupling picture, elastic propagation in the vari-
ous channels is determined by the diagonal terms of the
coupling matrix. It is well known®!? that it is essential to
remove these so-called secular terms of the coupling ma-
trix by a phase transformation in order to improve the
convergence of the time integration. In fact, the time in-
J
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tegration does not converge in the case of Coulomb in-
teractions unless this transformation is employed.

B. Continuum distorted waves

The CDW functions' have a simple form in coordinate
space in terms of sets of Jacobi coordinates (ry,Ry) or
(rp,Rp). Here ry is the electron position vector with
respect to the target while Ry determines the position of
the projectile with respect to the center of mass of the tar-
get atom. The set (rp,Rp) is defined similarly. The coor-
dinate representation of the CDW functions is then

X+ W e Ry)=N(vp) Filivp,1,i(vrp+v-rp))

X ®;(r7,Ry) (61a)
and
X7 'PWep,Rp)=N*(vp) \Fi(—ivy,1,—i(orr+v-rr))
X ®s(1p,Rp) , (61b)

where N (vpr) denotes the normalization factor for a
Coulomb wave and vp r =Zp 7 /v.

The CDW waves in the impact-parameter version are
also given by Eqgs. (61), but with a prescribed internuclear
trajectory, Rr=Rp=R(t). The CDW partitioning of the
channel interaction is only available in implicit form.
Considering the final channel the residual interaction is
given by

WX PWtp,Rp)=—N*(vp)(2m) > expliK - Rp)[ Ve, 1Fi(—ivy, 1, —i (orr+v-rr)][Ve,ds(rp)] . (62)

The residual interaction in the initial channel is given by a
similar expression.

1. The surface term

It is clear from Eq. (23) that the surface term of the
continuum distorted-wave amplitude for electron capture
vanishes in the impact-parameter formulation because
X E}CD W)(r,t) remains well localized around the parent nu-
cleus such that the overlap vanishes asymptotically. This
suggests that the distortion part of the quantal T matrix
also must vanish. That this is actually the case is demon-
strated explicitly in Appendix B. Parenthetically we note
that the surface term may be finite for direct excitation.

An immediate consequence of the asymptotic ortho-
gonality of the CDW waves is the strict equivalence of the
peaked impulse approximation (PIA) and the so-called
method I proposed by Cheshire.! It has been known for a
long time that the two approximations give identical nu-
merical results for hydrogenic systems.? The identity (17)
provides a simple and general proof. Applied to the
CDW case the left- and right-hand sides of Eq. (17) may
be identified with the prior form of the T matrix in
Cheshire’s method I and in the PIA, respectively.

2. The continuum distorted-wave series

The CDW series expansion is obtained from the general
formulation of Sec. II C if both channels are considered to

I

be distorted in the CDW sense. It is seen that the pertain-
ing integral kernel, as given by Eq. (28), is free of discon-
nected terms. This property follows directly from the fact
that a single residual interaction W; [Eq. (50)] affects all
internal coordinates simultaneously. The CDW series is
obtained by the usual iteration procedure from the in-
tegral equation (27) in T® which in the CDW case
represents the complete T operator since the surface term
vanishes. The fact that the kernel of the integral equation
connects all degrees of freedom of the system suggests
that the CDW Born series has acceptable convergence
properties. But it does not guarantee that the series is well
represented by its first term. The latter requires in addi-
tion that the distorted waves are good approximations to
the exact scattering states. The CDW waves are obtain-
able from the SPB waves if off-energy-shell effects are ig-
nored as in the impulse approximation and if a peaking
approximation is applied to eliminate the integration over
the electron momentum distribution in the considered
channel.!® This would suggest that the CDW waves are
reasonable high-velocity approximations and that the
first-order approximation for the 7T-matrix element

Tg,_DWl — (Xf_‘(CDW) , W}' IX“—\\-(CDW)> , (63)

where W, IXf_(CDW’) is given by Eq. (62), is valid at suf-
ficiently high velocities. As we shall discuss in detail in
the following section, however, this is not correct.
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Higher-order terms of the CDW series must be included
even at high velocities. Including terms to second order in
the CDW Born series one obtains

TgDWZ =T5_DW1 +3 (Xf—(CDW) | W; | X;HCDW))
n
X(E —Eq+in)~"!

Xy | Wi | X CPW)) | (64)

where the summation extends over a complete set of ini-
tial channel states.

3. The CDW in the Thomas peak region

It is widely accepted that capture at asymptotically
high velocities is intimately connected with the double-
scattering mechanism proposed by Thomas.”* In this
classical process electron capture is described as a se-
quence of two binary collisions: a quasifree electron is
first scattered off the projectile through an angle of 60°
with respect to the projectile velocity v and then scattered
through 60° off the target in such a way as to leave the
electron with almost zero velocity in the rest frame of the
projectile. Quantum mechanically the Thomas process is
represented by the B2 (second Born) term, or more pre-
cisely, by that part of the second Born term that corre-
sponds to propagation in energy-conserving intermediate
states.”* A unique signature of the double scattering con-
tribution is the Thomas peak in the differential capture
cross section o(6) at a projectile scattering angle
0r=V3m,/Mp (Mp is projectile mass, m, is electron
mass). Rivarola and Miraglia® have shown that the
CDWI1 approximation for ground-state to ground-state
transfer displays a narrow dip precisely at the Thomas an-
gle. McGuire et al.?* found a similar dip in the differen-
tial B2 cross section at the Thomas angle if only off-the-
energy-shell intermediate propagation was included. This
indicates that the CDW1 approximation lacks a contribu-
J

<XF(CDW) | W}GS’Wi !Xi-}—(CDW)>
=2m~ [d’k [ d’qd H &)V (q+IINy
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tion that corresponds to classical Thomas scattering. In
an approximate CDW?2 calculation for 1s—1s capture
Crothers and McCann!® have demonstrated that the dip at
the Thomas angle disappears when the second-order term
in (64) is included. Very recently, Crothers!! has achieved
a major breakthrough by proving the equivalence of the
CDW2 and second Born amplitudes at asymptotically
high velocities for transitions between hydrogenic states
1s—nlm. In the following we examine the behavior of
the second-order contribution to the CDW ¢ matrix from
a somewhat different point of view. We investigate the
second part of the CDW amplitude [Eq. (64)] for arbi-
trary initial and final states in the limited kinematic re-
gion that corresponds to the classical Thomas scattering
and show that the classical Thomas contribution indeed is
contained in this term. Since the large momentum
transfer between the two nuclei in the classical Thomas
mechanism is mediated by an electron which, independent
of the internal momentum distribution of the initial and
final states, propagates with high momentum between the
two collisions we therefore approximate the second-order
part of the CDW2 amplitude as

<Xf—(CDW)| W}GJW; ‘XPMCDW))
=fd3pfd3P<XF(CDW)I W;|(Dp,P>(E_Ep,P+i7’)—1

X<(Dp,l’i W; lX;HCDW)) s (65)

where |®,p) is a free-particle state of energy E,p.
Referring explicitly to the target set of Jacobi coordinates
the complete set of intermediate states is given by

(rr,Rp | @, p)=02m) expli(prr+P-Rp)] . (66)

We have evaluated the second-order term in Eq. (65) to
first order in vp and v where vp=Zp /v and vr=2Zr/v.
The evaluation proceeds in close analogy to that of the
second Born term.” Details are given in Appendix C.
The result is

X[€—+K*—+(q+k)?+v-(k—K)+K-(q+k)+in]'N;Vp(k—K)$;(q) , (67

where ¢; is the internal binding energy of the initial state,
K is the momentum transfer, K=K,;—K;, and
—J=K+v.

This agrees with the double-scattering term?® in the B2
approximation except for presence of the vertex renormal-
ization factors N, ¢ in the integral with

q-(k—K)

Ni= (v+ |[k—K—v|)v— |k—K—v| +ie) (682)
and
k-(gq+1J)
Ne= . 68b
I~ w+|q+T+v|)w—|q+T+v| —i€) (68b)

These factors contain poles representing elastic scatter-
ing at the “active” nucleus of a free electron with velocity

|
(xv) and zero momentum spread. These poles will play
an important role when the dominant capture mechanism
is a sequence of two elastic binary collisions and when the
internal momentum distribution of the initial and final
state is negligible. This is precisely the situation corre-
sponding to “classical” Thomas scattering at asymptoti-
cally high velocities.

We will now investigate the behavior of the renormali-
zation factors in (68) near the Thomas angle. At high col-
lision velocities the internal momenta q and k are small
compared to v. Near the pole of the free-particle propa-
gator in (67) at K| = —+vand K, =(V3/2), the denom-
inators in (68) can be expanded to first order in k and q as

N;=q(K—-k)/Jk (69a)
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and
Ne=k-J+q)/k-q

to show that the product of these two factors approaches
unity in this region. The matrix element

(Xf—(CDW) | W}Go+ W, IX‘,+(CDW)>

(69b)

therefore becomes equal to the double-scattering term of
the B2 amplitude at the Thomas peak. In other words,
the term left out in the CDW1 approximation contains
that portion of the on-shell Thomas double-scattering
term in the Born series for which the internal momentum
distribution is negligible. In this sense, the CDW1 ap-
proximation is incomplete with respect to the B2 approxi-
mation. This result is in complete accord with previous
findings by Crothers.!®!! A correct description of the
double-scattering term therefore requires the second-order
CDW approximation.

IV. CONCLUSIONS

Two questions generally arise in connection with
distorted-wave theories for three-body rearrangement
scattering. The first concerns the possible rearrangement
induced by the distortion itself. The second question con-
cerns the convergence properties of the resulting
distorted-wave Born series. In this connection we may
identify two extreme types of distortions. We refer to
them as substantial and marginal, respectively.

A substantial distortion induces a significant physical
part of the transition amplitude for rearrangement on its
own such that the remaining part of the T matrix is better
suited for a perturbation treatment and it provides a per-
turbation expansion in the residual interaction with an in-
tegral kernel which connects the different arrangement
channels. The other extreme is the marginal distortion
which does not satisfy any of these conditions.

We have shown in the present work that the DWB
theory with SPB distortion in both channels satisfies all
requirements for a substantial distortion and is therefore
expected to have good convergence properties. While
from a mathematical point of view a connected kernel is a
necessary (but not sufficient) condition for the perturba-
tion series to converge it is physically very plausible that
the switches between target and projectile interactions, as
generated by the DWB integral kernel, provide a sensible
order parameter for a perturbation series at high energies.

The situation is less promising if the SPB distortion is
applied only in one of the two channels. The SPB series
ordered in powers of the weak potential does not possess a
connected kernel but the distortion induces rearrange-
ment. A different series with the full SPB approximation
as first-order term but with the same integral kernel as in
the complete DWB series is an example of a perturbation
series with a connected kernel. The price to pay is that
the series is no longer ordered in powers of the weak po-
tential and, in addition, that the distortion itself does not
contribute to the transition amplitude. In either case it is
important to reorder terms to obtain certain satisfactory
features of a substantial distortion. A study of these two
different limiting cases of the full DWB theory provides
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also a method to remove the nonintegrable singularity in
the ordinary SPB approximation recently discussed by
Eichler and Dewangan by defining a consistent limit of
the DWB approximation in the asymmetric case
Zp<<Zy (or Zy <<Zp).

The channel distortion applied in the CDW method is
not significant enough to induce rearrangement on its
own. It is accordingly not qualified as a substantial dis-
tortion, but it does lead to a series expansion with a con-
nected kernel. While there are no obvious difficulties with
the formal convergence properties of the CDW series, the
question is to what extent the connectedness is set up by
nonphysical forces which would have to be compensated
for by higher-order terms. That this is a problem in the
CDW method is documented by the pathological behavior
of the first CDW approximation in the Thomas peak re-
gion.
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APPENDIX A

In this appendix we consider the distorted-wave formu-
lation with the partitioning

Vi=Vp=U+W,;, (A1)

where the distortion potential U; and the residual poten-
tial W; are given by

U=Vp—VrGiVp (A2)

and

W,=VrGiVp . (A3)

Using a standard resolvent-operator identity it is seen that
the corresponding distorted-wave Green’s operator, de-
fined in Eq. (13), satisfies the integral equation

gi+=GI;+ +g,'+ VTG(T . (A4)

Applying this identity in the distorted-wave Mgller opera-
tor w;" defined in Eq. (12) it is readily found that

This expression is identical to the operator which gen-
erates the SPB scattering states in the strong projectile
case [see Eq. (32)]. A similar relation is readily derived
for the final channel.

APPENDIX B

It is shown that the CDW waves (61) are asymptotically
orthogonal to the undistorted waves with respect to the
rearran%ed channel, i.e., that overlap matrix elements such
as (X7 CDW) | @, ) are bounded. This in turn implies that
the distortion part of the distorted-wave T matrix [Egs.



2968 JOACHIM BURGDORFER AND KNUD TAULBJERG 33

(14) and (15)] vanishes in the CDW case.

First we establish a simple relation between the overlap
matrix element and the corresponding prior form of the T
matrix in the PIA (Ref. 26) [equivalent to the continuum
intermediate state (CIS) approximation®'],

THA = (X7'P%) | Vp | @) . (B1)

The relation is derived by performing a Fourier analysis
of the electron coordinate dependence (rp) in X7 (rp,Rp).
Upon switching to Jacobi coordinates (rr,Rz) and per-
forming the integrations over Ry we obtain the identity
2
X7 W@,y =——5—T——T, (B2)
P K24 (Zp/ng?

where K is the momentum transfer K=K;—K;, and ny
]

is the principal quantum number of the hydrogenlike final
state.

The overlap matrix element (B2) is certainly bounded
since TP is not known to possess singularities on the en-
ergy shell. This may be directly verified using explicit ex-
pressions® for TP1A,

APPENDIX C

In this appendix we reduce the approximate second-
order part of the CDW2 given in Eq. (65) to the six-
dimensional integral in Eq. (67). Considering the matrix
elements in the integrand on the rhs of Eq. (65) we may
introduce Coulomb continuum functions in momentum
space ¢ (k) to obtain, with a=Mp(My+m,)~! and
B=M,(M,+m,)"",

(@pp| Wi | Xi V) =(K;—P)-[p —a(K; —P)]§;(p—a(K; —P))§ * (K, —~P—v) (€D

and

(X7PV |\ W} ®,p)=(p+aP—K;)(BK;—P) }(BK;—P)

The momentum-space Coulomb wave functions have been evaluated by Guth and Mullin.?8

J¥p+aP—Kp+v). (C2)

At high velocities it is suffi-

cient to include the leading terms in powers of v=Z /k as given by Bethe and Salpeter® [Eq. (9.13)], i.e.,

¢ E(k)=2m)>3 {8 (k—k)+ 2V, (k—K)[(k —k tin)k +K)]7'} , (C3)

where V() is the Fourier transform of the Coulomb potential. Since x&(x)

=0, the first term on the rhs of (C3) does

not contribute in Egs. (C1) and (C2). Then we find, for vp=Zp /v <<,

(K,—P)'[p—a(K,*-P)]

Vp(K; —P)g;(p—a(K; —P)) (C4)

W. | x+(COW)y _ (=372
(@pp| Wi |Xi ) =(2m) BT K PV X
and, correspondingly, for vy =Z7 /v <<1,

(BK;—P

v— |K;,—P—v | +i€)

(p+aP Kf)

(X7 PW | W] | @, p)=(2m) 732

7 [ praP—K, +v| o | praP—K, +v] e

Vrlp+aP— Kf)d)f(BKf

(C3)

Inserting (C4) and (C5) in Eq. (65) now leads, after a change of variables

q=p—a(K;—P), k=BK;—P

and an expansion in (m, /M), to Eq. (67).
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