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Extensive variational. calculations on the S ground state of the lithium atom are reported. %ith
use of a 352-term Hylleraas-type expansion, the nonrelativistic ground-state energy of 5 Lit is
determined to be —7.478058 a.u. , which lies approximately 3 cm above empirical estimates of the
nonrelativistic ground-state energy. This variational upper bound to the ground-state energy is the
lowest to our knowledge reported to date in the literature. A number of expectation values, includ-

ing the individual energy terms, the Fermi-contact interaction, the electron density at the nucleus,
and the moments (rP), n =1—3, and (r;J ), n =1,2, are also evaluated. The general rates of con-
vergence of the calculation are discussed. The role played by the two doublet spin eigenfunctions is
examined, and the importance of including both of these functions for the accurate calculation of
the Fermi-contact interaction is discussed.

I. INTRODUCTION

The purpose of this paper is to present the results of ex-
tensive variational calculations on the S ground state of
Li1. The lithium atom has been the focus of extensive
computational studies, particularly at the post-Hartree-
Fock level. ' ' Despite these considerable efforts, the ac-
curacy obtained for the 2S ground state of Li, and other
three-electron systems, is poor in comparison with the re-
sults obtained by Pekeris and co-workers for two-electron
systems. '3 's For helium, the nonrelativistic ground-state
energy is known to be bounded below by 1 part in 109,'7

and a recent calculation has reported an upper bound con-
verged to 1 part in 10'3.'s The best currently available re-
sult for the nonrelativistic ground-state energy, ENR, of
the lithium atom is several orders of magnitude less accu-
rate than results available for two-electron systems. The
most accurate calculations of ENR for 2S Li are the 100-
term Hylleraas wave function of Larsson, the 92-term
Hylleraas wave function of Ho, ' and the 170-term
configuration-interaction Hylleraas wave function of Pi-
pin and Woznicki. "

The present investigation was undertaken with several
goals in mind. In a series of recent papers' we have
investigated the assessment of local accuracy and attempt-
ed to improve the accuracy of various expectation values

using nonlinear programming modifications of the stan-
dard variational method. Extension of this work to fairly
accurate wave functions requires accessibihty to accurate
reference wave functions, for which a variety of expecta-
tions are also available. This study provides such values
for the lithium atom.

The present study was also undertaken to explore the
general rates of convergence, both for the energy and for
several different expectation values. Some attention
has focused on the careful convergence study made by
Larsson for the Fermi-contact term. The present investi-
gation provides some clarification on the convergence of
the Fermi-contact term, and amplifies on Bunge's com-
rnents.

Also of interest is the possibility of obtaining indirect
assessment of the quantum electrodynamic contributions
to the ground-state energy. Such an assessment requires
very accurate values for the experimental ionization po-
tentials, coupled with accurate calculations of the nonrela-
tivistic ground-state energy, and of the relativistic and
mass polarization contributions. The analysis of quantum
electrodynamic effects for Lit are limited by the lack of
accurate calculations for ENR. An error of several cm
for ENR is likely to be a significant problem for sorting
out Lamb-shift effects on various transitions. For the
2s&&2-2pizi transition in Li 1, the Lamb shift is estimated
(on the basis of unscreened one-electron shifts) to be 2.1

cm '. To the author's knowledge, no experimental
measurement of the shift of the S ground state has been
reported, perhaps not surprising, since the shift of the 1S
ground state of hydrogen and deuterium has only recently
been measured with high precision. A recent review of
the current status of quantum electrodynamical effects in
few electron systems has been given by Drake. In this
review, Drake draws attention to the need for more accu-
rate results for Lit and other members of the lithium
isoelectronic series.

In addition to the considerations discussed above, the
calculation of accurate wave functions has its own intrin-
sic interest. Accurate wave functions always have poten-
tial usefulness as reference points for more approximate
computational schemes.

II. THEORY

The underlying computation scheme involved in this
study has been presented in several locations in the litera-
ture. 3 ' A brief sketch is provided below. The trial
wave function employed is

where M is the antisymmetrizer and C& the variationally
determined expansion coefficients. The basis functions P„
are of the form
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i j k l m n

Pp( i 2 r3 r23 r13 12) rl Er3 «f3 11 lfe p( +prl Ppr2 Xpr3)

where the exponents i„,j„,k„,l&, rn„, n& are each &0.
The Greek symbols a and P will be employed to designate
orbital exponents in this work; a(1) and P(1) will denote
electron-spin states. In Eq. (1),g denotes the doublet spin
eigenfunctions. There are two such functions:

X=a(1)P(2)a(3)—P(1)a(2)a(3) (3a)

or

X =2a(1)tz(2)P(3) —P(1)a(2)a(3)—a( 1 )P(2)a(3) . (3b)

The nonrelativistic Hamiltonian is

3
18= g ( ——,

' 7; —3/r;)+ Q g
i=1 i =t j&i ~J

The mass polarization contribution is not included.
Atomic units are employed throughout this work.

Evaluation of the matrix elements (P„~H
~
P„) can be

shown in a straightforward fashion to reduce to the calcu-
lation of integrals of the following type:

I(ij,k, l, m, rt, &,p, y)= f rtr&r3r23ri3rt2
—ar

&

—pr& —yr3Xe dridr2dr3 .

III. COMPUTATIONAL DETAILS

A. Choice of basis functions

One of the principal objectives of the present study was
to examine the rate of convergence of the energy expecta-
tion value. In order to study this in an unbiased fashion,
the initial choice of basis functions was chosen in a sys-
tematic manner, without direct consideration of obtaining
the optimal energy with the fewest possible number of
basis functions.

The following index of the basis function exponents i, j,
k, I, m, n is defined:

~=i +J+k+l+Pl +Pl .

The first 210 terms in the expansion of Eq. (1) involved
all possible terms for co=0 through co=4, added in in-

creasing order of ~. The basis functions for a given co

were added in the following order: largest n, all other en-
tries for i,j,k, l, m zero; n decreased by 1, m increased by
1, all other entries for i,j,k, l zero; and so on, then fol-
lowed by terms where n decreased by 2, m and I both in-
creased by 1, etc. For example, the first 16 entries for
co=4 are

These integrals in turn can be reduced to the evaluation of
the simpler integrals:

W(i,j,k,a, P, y)= f x'e dx f yje @dy

z'e-y' z .

(6)
The evaluation of the I and 8' integrals has been dis-
cussed in several places in the literature. ' ' ' ' The ap-
proach of Ohrn and Nordling was employed in the
present investigation.

[000004j, I000013j ~, I000022j ~, I000031j ~,

000040j ~, I000112j, [000121j~, I000130j
»

(000220j, I001003j .

An asterisk indicates both doublet spin eigenfunctions are
included. For a term where both spin eigenfunctions are
possible, if they were both included in the calculation,
then they were added as a pair with the first spin eigen-
function [Eq. (3a)] preceding the second [Eq. (3b)]. This
pairing was chosen for coding convenience. For such a
pair, the spatial component need only be computed once.

TABLE I. Breakdown of the maximum possible number of terms for a given ~ [see Eq. (7)] and the actual number of terms em-

ployed in the present calculation. Breakdown also includes the numbers of each type of doublet spin eigenfunction included.

0
1

2
3
4

6
7
8
9

10
11

Maximum number
of terms of spin

function l [Eq. (3a)]
possible

1

4
13
32
70

136
246
416
671

1036
1547
2240

Maximum number
of terms of spin

function 2 [Eq. (3b))
possible

0
2
8

56
116
216
376
616
966

1456
2128

Number of spin
function 1

terms employed
in Eq. (1}

1

13

70
63
19
17
11
10
9
2

Number of spin
function 2

terms employed
in Eq. I'1)

0
2
8

56
6
4
1

0
0
0
0

Maximum total number
of terms possible
in wave function

to given m

1

7
28
84

210
462
924

1716
3003
5005
8008

12376
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Certain combinations are related by symmetry to previ-

ously added terms, and are therefore not included in the
basis set. For example, {000103I is excluded because

{000013 I has already been included.
The total number of possible terms which can be incor-

porated grows very rapidly for increasing co, as Table I in-

dicates. To attempt to push the calculations to co=5, for
which the total number of terms is 462, would have been

prohibited by our present computer resources.
After the first 210 terms, the remaining 142 basis func-

tions added were selected so as to incorporate all the terms
included by Perkins and by Larsson, and additional basis
functions were added specifically to improve the energy

convergence. To some extent, the best choice of terms is a
matter of guesswork, although experience from the first
part of the calculation suggested what basis functions are
likely to be more promising than others. The final selec-
tion of basis functions did not include all those incor-
porated by Ho' in his accurate wave function. A number
of these excluded terms actually had little impact on Ho's
calculation, as is apparent from his table of energy versus
added basis functions. ' In addition, some basis functions
closely related to Ho's were tried, but these gave negligible
improvement in the energy. The final 142 terms in the
basis set are tabulated in Table II. Relatively few terms
involving the second spin eigenfunction [Eq. (3b)] were in-

TABLE II. Terms 211 to 352 employed in the basis set. An asterisk indicates that the same ijklmn

function was employed with both spin functions.

No.

211
212
213'
215'
217'
219
221
222'
224'
226
227'
229'
231'
233'
235
236
237
238'
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

i j k I m n

0 0 1 0 0 4
2 2 1 0 0 0
3 0 1 0 0 1

4 0 1 0 0 0
2 0 1 0 0 2
1 0 1 0 0 3
0 0 5 0 0 0
3 0 2 0 0 0
3 1 1 0 0 0
0 0 1 0 0 5

4 0 1 0 0 1

5 0 1 0 0 0
2 0 1 0 0 3

3 0 1 0 0 2
0 0 6 0 0 0
0 0 1 0 0 6
0 0 7 0 0 0
5 0 1 0 0 1

2 1 1 0 0 1

1 1 3 0 0 0
3 1 1 0 0 1

2 2 1 0 0 1

0 1 1 3 0 0
0 2 0 0 2 1

0 0 0 0 0 5
0 0 0 0 5 0
0 2 1 2 0 0
0 1 1 4 0 0
0 2 1 3 0 0
2 3 0 0 0 0
2 2 0 0 1 0
2 2 0 0 0 1

1 4 0 0 0 0
1 3 0 1 0 0
1 3 0 0 0 1

1 2 2 0 0 0
1 2 1 1 0 0
1 2 1 0 1 0
1 2 0 2 0 0
6 0 1 0 0 1

7 0 1 0 0 I

0 0 1 0 1 3

No.

266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

302
303
304
305
306
307
308
309

1 0 2 2
2 3 0 0
0 0 0 3
1 5 0 0
1 0 1 0
1 0 0 7
1 0 0 8

1 0 0 9
1 0 0 1

1 0 0 6
1 0 0 7
2 0 0 4
2 0 0 5

1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 0
1 0 1 4
1 0 1 1

1 0 1 1

2 0 0 0
1 0 0 4
1 0 4 0
0 0 1 4
0 1 4 0
0 0 2 3
0 0 3 2
0 0 4 1

0 2 3 0
2 0 0 3
2 0 3 0
1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 3
1 0 0 4
1 0 0 2
1 0 0 2
1 0 3 0
1 0 2 0

No.

310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351

i j k I m n

0 3 1 0 1 0
0 0 2 0 2 1

0 0 2 0 1 2

0 0 0 1 1 3

0 0 0 1 2 2
0 0 0 1 3 1

0 0 0 2 2 1

0 0 1 0 3 1

0 0 1 1 3 0
0 0 1 2 2 0
1 0 1 0 0 8

1 0 1 0 0 9
6 1 1 0 0 1

7 1 1 0 0 1111020
1 1 1 0 0 2
0 1 1 0 1 2
0 1 1 0 2 1

0 1 1 1 0 2
0 2 1 0 1 1

0 0 I 1 1 2
0 0 1 1 2 1

0 5 0 0 0 0
0 1 4 0 0 0
0 1 0 0 0 4
0 0 1 0 5 0
0 0 1 0 6 0
0 0 1 0 7 0
0 0 1 0 8 0
0 0 1 0 9 0
1 7 1 0 0 0
1 8 1 0 0 0
1 9 1 0 0 0
0 2 1 0 0 5

0 2 1 0 0 6
0 2 1 0 0 7
0 3 1 0 0 5

0 3 1 0 0 6
0 3 1 1 0 0
1 3 0 0 1 0
0 4 1 0 0 3
0 4 X 0 0 4
1 2 1 0 0 2
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eluded in this set. Although no additional time is re-
quired to construct the necessary spatial matrix elements
for the second spin eigenfunction, additional resources are
expended in the solution of the secular equation. Also, at
this point in the calculation, the second doublet spin
eigenfunction is having negligible impact on the ground-
state energy.

Table I indicates how many terms for a given value of
co are included in the calculation, for each of the two spin
eigenfunctions. For values of co beyond 4, only a very
small proportional of all possible terms have been includ-
ed in the calculation.

An orbital exponent optimization was investigated for
several small basis set expansions. 5 The outcome was
that most exponents were close to the values employed by
Larsson, Perkins, and Ho. ' The entire present calcula-
tion was carried out with the set u=P=2.76 and y =0.65
employed by Larsson. This set was selected because it
would afford the possibility of providing some important
checks on the accuracy of the present computations.

S. Accuracy controls

There are four major accuracy considerations involved
in the present calculations. These are (i) the accuracy of
the W integrals [Eq. (6)], (ii) the accuracy of the I in-
tegrals [Eq. (5)], (iii) the resulting accuracy of the indivi-
dual matrix elements, and (iv) the accuracy of the solution
of the secular equation and of the resulting lowest eigen-
value. The possibility of linear dependence of the basis set
was also explored.

For positive values of the exponent set i,j,k in Eq. (6),
the W integrals are given by simple closed formulas, and
have been evaluated to 18 significant figures in the present
calculation. For negative values of i +j and i +j+k, the
algorithm of Ohrn and Nordling ' was used. This algo-
rithm involves an infinite summation of positive terms.
The convergence criterion was set to obtain approximately
18 significant figures. Some exploration of the effect of
the convergence cutoff was made for representative W in-
tegrals. For the W integrals, we expect that 16 (or better)
significant figures have been obtained.

Since the functional dependence of the I integrals on
the W integrals is not completely trivial, particularly for
the situation where l, rn, n are all odd in Eq. (5), no at-
tempt was made to carry out an error analysis on the I in-
tegrals directly in terms of the errors in the W integrals.
Instead, the effect of the W' convergence cutoff criterion
on the I integrals was investigated directly, by computing
a variety of I integrals with different values of the W-
integral cutoff.

The evaluation of the I integrals breaks up into two dis-
tinct cases. For the case where I, m, and n are not all
odd, the I integrals can be calculated in closed form. For
the situation where l, m, and n are all odd, the I integrals
involve an infinite summation. This infinite summation
represents a major bottleneck in the calculations. In the
present computations, the convergence criterion on the in-
finite summation for the all odd i, rn, n case was set to
obtain approximately 18 significant figures, although a
conservative estimate is 16 significant figures. Numerical

tests were made on representative I integrals to test the ef-
fect of different values of the convergence cutoff.

Of principal interest is what happens to the calculated
energy as the cutoffs for the 8' and I integrals are
changed. Several different tests on some small-term wave
functions were explored. Care was taken to include basis
functions in the test set which would lead to a number of
all odd I, m„n exponents for the I integrals. From these
investigations we have confidence that the cutoffs em-

ployed for the 8' and I integrals have no impact on the
number of reported significant figures for the energy and
the expectation values given.

Instead of attempting a direct error analysis on a typi-
cal matrix element, an alternative procedure was imple-
mented. The number of significant figures for the matrix
elements was deliberately cut in stages from 18 to 12.
This is perhaps an important indicator of significant fig-
ure control because it is carried out on the full 352-term
wive function, a situation obviously not possible for the
8' and I integral convergence criteria discussed above.
%hen the matrix element input was restricted to 14 signi-
ficant figures, all calculated expectation values were un-

changed to seven significant figures, with changes typical-
ly in the 9th to 11th significant figures, except for the
Fermi-contact interaction and (r; ), which were both al-
tered in the eighth significant figure. Reduction of the
number of significant figures for the input matrix ele-
ments to 12 led to final expectation values which were
changed by no more than 2 in the ninth significant figure.
The exceptions were the aforementioned two expectation
values: they were changed by 6 (Fermi interaction) and 4
((r; ) ) in the sixth significant figure.

Two diagonalization routines were employed (and some
preliminary calculations done with other routines). The
final results reported were based on Nesbet's procedure.
As the wave function was constructed, the Nesbet routine
was checked against the EIGEN diagonalization subrou-
tine. Cutoff tolerances in both routines were tested to see
their effect on the calculated expansion coefficients. The
final set of expansion coefficients is believed accurate to
better than seven significant figures.

As a final check on potential significant figures loss,
the individual positive and negative contributions to the
energy and each of the reported expectation values were
added separately. Three to four significant figures are
typicaHy lost in the addition of both components, except
for the moments (r; ), (r;J ), and (r,j ), for which five
significant figures are lost.

For a large part of the calculation, the ratio A, ;„/A, ,„
(A, ;„equals the smallest eigenvalue, iL,„equals the larg-
est eigenvalue) of the overlap matrix was monitored as the
basis set was expanded. This serves as a means to ascer-
tain possible problems with near-linear dependence in the
basis set. Because of computational limitations, it was not
possible to follow this ratio to the very end of the 352-
term wave function.

All of the calculations were carried out on the
Honeywell DPS 8/44 computer at the University of
Wisconsin —Eau Claire (UWEC). The calculations were
carried out in double precision (HEx mode) which yields
18 significant figures.
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TABLE III. Expectation values for the 5 ground state of Li I. ( 6; ) = ( g,', 8'; ) and ( 8J.) = ( g,'.
, g,', 6',J. ). All values are

in a.u.

Expectation
value 150

Number of terms
210 280 320 352

7.477 845 7.478 006 7.478 051 7.478 054 7.478 058

—3 —1.715 396(1)' —1.715408{1) —1.715431(1) —1.715 431(1) —1.715431(1) —1.715432(1)

(5(r;))

(4~8(r, )~. )

2.198269

4.992 291

1.838 295(1)

9.286 100(1)

8.673 893

3.690 388(1)

1.381 507{1)

2.887 942

2.198227

4.992 367

1.838 796(1)

9.294062(1 }

8.674023

3.691 433(1)

1.381 857{1)

2.895 211

2.198295

4.989 491

1.835 204(1)

9.255 906(1}

8.668 346

3.684 270(1)

1.383 263(1)

2.902 746

2.198207

4.989 653

1.835 522(1)

9.260 143(1)

8.668 657

3.684 905(1}

1.384 207(1)

2.902 411

2.198202

4.989 669

1.835 583(1)

9.261 378(1)

8.668 687

3.685 026( 1)

1.384 136(1)

2.902 691

2.198208

4.989 579

1.835 514(1)

9.260 858(1}

8.668 507

3.684 889(1)

1.384 150(1}

2.904079

'The notation (n) signifies X 10".

and 4 is normalized. Besides the energy components, and
moments of r;" and r,j, Table III also gives the electron
density at the nucleus:

p(0)=(5(r;) &,

and the Fermi-contact interaction

(9)

f=4m(5(r;)rJ

TABLE IV. Ground-state energy and scale factor for wave

functions of different size.

Number of
terms

28
84

150
210
280
320
352

—7.475 984
—7.477 845
—7.477 927
—7.478 006
—7.478 051
—7.478 054
—7.478 058

Scale factor
i) [Eq. (11)]

1.000073
1.000 111
1.000070
1.000023
1.000004
1.000003
1.000001

IV. RESULTS

The principal results of the calculations are assembled
in Tables III and IV. The shorthand notation for expecta-
tion values is employed:

Table IV lists the ground-state energy and scale factor
ri defined by

—,'(v&
(T&

where ( V& and (T& are the potential energy and kinetic
energy, respectively. All reported expectation values have
been appropriately scaled using the values of ri tabulated
in Table IV.

Calculations were also carried out with only the single
spin eigenfunction given by Eq. (3a) included in the basis
set. The basis set for this calculation was ordered in ex-

actly the same manner discussed above. The results ob-
tained for the various expectation values are presented in
Table V.

V. DISCUSSION

A. General convergence characteristics

A general feature of the present calculations is the very
slow convergence observed for the energy, and most of the
reported expectation values. This is not a totally unex-
pected result, particularly in light of the results of
Larsson, and Ho. ' The present calculations clearly indi-
cate just how poor the overall convergence is, beyond the
Larsson expansion.

There is no question that approximately the same
ground-state energy could have been obtained with fewer
terms in the expansion, assuming the restriction to the
fixed orbital exponents employed in the present calcula-
tions. A number of terms in the basis set have very minor
impact on the ground-state energy. The slow convergence
of the calculation is not governed totally by the presence
of these energetically unimportant basis functions.
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TABLE V. Expectation values for the 5 ground state of Li I, for wave functions involving only one spin eigenfunctiou [Eq. (3a)].

Expectation
Value

( 3l—r; &

( llr; )
(r, )

&r,'&

&r,, &

(r„')

(4 S(r, )~. )
Energy

—1.715 344(1)
2.197 864

4.996092
1.843 152(1)
9.342459(1)
8.681 394

3.700 144(1)
1 ~ 381 017(1)
2.915014

—7.477 789

7.477 976

—1.715414{1)
2.198 189

4.990405
1.835 878(1)
9.258 473(1)
9.670 122

3.685 613(1}
1.383725(1)
3.075 229

—7.477 976

Number of Terms
150

7.478 039

—1.715426(1)
2.198 187

4.989 972

1.835 781(1)
9.261 567(1)
8.669 246

3.685 431(1)
1.384 386{1)
2.952 384

—7.478 039

7,478 049

—1.715429(1)
2.198 195

4.989 737

1.835 619(1)
9.261 439(1)
8.668 82S

3.68S 102(1)
1.384 281(1)
2.932 8SO

—7.478 049

251

7.478056
—1.715432{1)

2.198203

4.989 623

1.835 574(1)
9.261 602{1)
8.668 595

3.685 009(1)
1.384 149{1 }
2.936683

—7.478 056

B. Basis set selection and convergence rate

As indicated in Sec. IO, the optimaI strategy to obtain
the lowest energy with the minimal basis set was not pur-
sued. This is obvious from a comparison of the results re-

ported in Table IV with the summary of several of the
most accurate calculations published for the ground state
of Li, Table VI. In particular, the energy obtained from
Larsson's 100-term and Ho's 92-term wave functions (see
Table VI) are superior to the energy obtained from the
210-term wave function of the present study. The sys-
tematic selection of all terms to ui=4 (giving rise to the
210-term wave function), avoids the difficult, if not im-
possible task of deciding the likely impact that a given
term will have on the energy. In addition, the selection of

basis functions that are important for improving the ener-

gy important region, may be far less appropriate for im-
proving expectation values that emphasize other regions
of configuration space. The systematic inclusion of all
terms to co=4 gives a clear picture of the very slow con-
vergence of the energy, and of most of the other calculat-
ed expectation values.

Beyond term 210, basis functions were added according
to their expected impact on the energy. The 25 terms of
Larsson involving co&4 were included. From the final
352-term wave function, the 100-term wave function of
Larsson was calculated. Complete agreement was found
with Larsson's reported energy and Fermi-contact interac-
tion, " and with the published coefficients, s to what is be-
lieved are an appropriate number of significant figures. A

TABLE VI. Upper bounds to the nonrelativistic ground-state energy of S Li I. The wave functions are listed in chronological or-
der. (CI denotes configuration interaction. )

Wave function

Weiss'

Larsson"

Sims and Hagstrom'

Perkinsd

Muszynska et al.'
Ho'

Pipin and Woznicki~

Present work

Present work

Empirical estimates
for the nonrelativistic

ground-state energy

'Reference 2.
"Reference 4.
'Reference 7.

Type

CI
Hylleraas

(single spin function)

Hylleraas
(both doublet

spin functions)

Combined CI-Hylleraas

Hylleraas

Combined CI-Hylleraas

Hylleraas

Combined CI-Hylleraas

Hylleraas
(single spin function)

Hylleraas
(both doublet spin functions)

dReference 8.
'Reference 9.
Reference 10.

Number of
terms

150

30

139

92

170

251

352

Energy

—7.477 10
—7.478 010

—7.478 025

—7.478 02
—7.477 93
—7.478 044
—7.478 031
—7.478 044
—7.478 056

—7.478 058

7 478 068
—7.478 073'

~Reference 11.
"Reference 37.
'Reference 26.
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number of Larsson's smaller wave functions were also
checked in the early stages of the calculations.

Although attempts were made to select those basis
functions that would have significance for the energy
bound, many of these terms had relatively minor bearing
on the energy. These terms did, however, provide a useful
guide as to what types of additional terms to avoid. The
rate of convergence is definitely affected by the selection
process. For example, the last 22 terms selected improved
the energy by -3.6 p,hartree, whereas the 49 terms im-
mediately preceding these, improved the energy by
-3.5 p,hartro:. Experience in basis function selection
does have an important relationship to the overall conver-
gence of the calculation.

The basis set included a number of terms where

Il„,m&, n&) in Eq. (2) were all nonzero, and a number
that would lead to the all odd ease for the I integrals.
The former selection leads to a much more involved cal-
culation, particularly for the matrix elements of the kinet-
ic energy. The second of the aforementioned sets implies
a heavy computational burden, because of the infinite
series involved in the evaluation of the resulting I in-

tegrals. It was found that terms with all nonzero

I l&, m&, n„I generally made only minor contributions to
the convergence of the energy. A similar remark seems
valid for the other expectation values calculated in this
study. This observation is supported in part, from the re-
sults presented in Table III, and from the calculation of
these same expectation values from many other wave
functions not tabulated in Table III. For other expecta-
tion values that are particularly sensitive to correlation ef-
fects, such as the mass polarization, the above observation
requires further investigation.

It was found that basis terms involving a single in-
terelectronic coordinate function, r,j, generally had the
most bearing on the energy, particularly when coupled
with Ii,j,kj sets such as (0,0, 1] and [i,0, 1), with i &0.
The importance of these combinations should, of course,
be expected.

C. Convergence of expectation values

The results presented in Table III for the kinetic-energy
expectation value might at first glance appear to suggest
that this expectation value is converging to around
7.478 060, that is, an approximate uncertainty of
-2X10 a.u. This is probably a false conclusion for
two reasons. The slow convergence of the overall calcula-
tion is operative for this expectation value. Secondly, if
the empirical estimates for the nonrelativistic ground-state
energy given in Table VI are accepted, the uncertainty in
the reported kinetic energy is closer to —1 X 10 a.u.

The electron-nuclear potential energy has the fastest
convergence of any expectation value reported in Table
III. The uncertainty for this expectation value appears to
be —1&10 a.u. The electron-electron potential energy
is uncertain to —1&10 a.u. The convergence of this
expectation value is clearly nonmonotonic.

For the moments (rP ) with n = 1 to 3, the convergence
is nonmonotonic for each n reported. The matrix ele-
ments appear to have converged to —1X10, 1)&10

and 5 X 10 for n = 1, n =2„and n =3, respectively.
Not too surprisingly, the absolute uncertainties in the mo-
ments increase with increasing n. The larger n, the poor-
er the convergence. The standard unconstrained varia-
tional procedure deals best with the "energy important re-
gion" of configuration space. Typically, expectation
values of the kinetic energy, electron-electron potential en-
ergy, and the electron-nuclear potential energy will con-
verge most quickly, directly reflecting the aforementioned
fact. As the higher moments focus attention away from
the energy important region, the asymptotic characteris-
tics of the wave function have a greater bearing on the ac-
curacy of the computed moments.

The moments of r,j for n = 1 and n =2 also show non-
monotonic convergence. The estimated uncertainties in
these expectation values are -2&10 and -2)&10
for n =1 and n =2, respectively.

The electron density at the nucleus, and the Fermi-
contact interaction, both exhibit nonmonotonic conver-
gence. The associated uncertainties are -2)& 10 a.u.
for p(0), and -2X10 for the Fermi-contact interac-
tion.

The energy convergence is noted to be very slow, and
not particularly uniform. The ground-state energy calcu-
lated in the present investigation is the most accurate
value reported to date for Li i. The present energy is ap-
proximately 3 cm ' lower in energy than the very accu-
rate recent calculation of Pipin and Woznicki. " A chro-
nological ordering of several of the most accurate calcula-
tions presented in Table VI indicates the progress made on
the lithium ground state over the last twenty-five years.

Three empirical estimates of the nonrelativistic
ground-state energy have been presented in the litera-
ture, ' 'is of which the smallest and largest values are
given in Table VI. If these values are accepted, the
present calculated energy is 2A to 3.3 cm ' above the true
nonrelativistic ground-state energy. Bunge has estimat-
ed the nonrelativistic ground-state energy by subtracting
from the experimental energy, estimates of the relativistic,
specifi isotope shift, and the Lamb-shift corrections.
The specific isotope shift employed by Bunge was the
value calculated by Prasad and Stewart. A slightly more
accurate value can be deduced from the experimental level
isotope shift measurements of Lorenzen and Niemax.
From their data, the specific isotope shift is calculated to
be 2.4X10 a.u. , which increases Bunge's estimate by
one in the last quoted figure given in Table VI. The esti-
mate of Woznicki and co-workers was obtained by com-
bining the results of Pekeris's calculation on Li+ with the
relativistically adjusted experimental ionization energy.
There are no highly accurate calculations of the principal
relativistic contributions to the ground-state energy of Li i
available in the literature. For this reason, and the earlier
cited comments on the lack of availability of an accurate
Lamb-shift correction, it is not possible to assess the accu-
racy of either of the empirical estimates of the nonrela-
tivistic ground-state energy reported in Table VI.

D. Effects of one versus two spin eigenfunctions

Table VI indicates the energy obtained with only one of
the two spin eigenfunctions, that of Eq. (3a), included in
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the calculation. This wave function contains 251 terms,
and the resulting energy is only very slightly higher than
the value obtained from the 352-term wave function em-

ploying both spin eigenfunctions. Larsson found a simi-
lar behavior; the addition of 40 terms containing the
second spin eigenfunction [Eq. (3b)] to his 60-term
single-spin eigenfunction wave function lowered the ener-

gy by 1.5 X 10 a.u. It appears, at least insofar as the en-

ergy is concerned, that the second spin eigenfunction has
little overall impact on the calculation. Delves ' has sug-
gested a cautionary note in this regard, and this reference
may be pursued for further elaboration.

For the other expectation values considered in this
work, except the Fermi-contact interaction, which is dis-
cussed in detail below, the results presented in Table V for
the 251-term single spin eigenfunction expansion are in

fairly close agreement with the results presented in Table
III for the 352-term function.

E. Fermi-contact interaction

It is well known that the Fermi-contact interaction
represents a sensitive test of the accuracy of the wave
function, particularly for the region of configuration
space close to the nucleus. The Fermi-contact interaction
for the lithium atom has received considerable attention in
the literature. Harriman summarizes the results of al-
most 50 calculations. The recent review by Lindgren
provides additional discussion. The difficulty of deter-
mining an accurate value for the Fermi-contact interac-
tion is readily apparent from these articles and the refer-
ences included therein.

Larsson has reported the most accurate value for the
Fermi-contact interaction. He has also carried out a care-
ful study of the convergence of this property. The final
value reported by him was 2.906 a.u. , in close agreement
with the experimental value of 2.9062 given in the same
paper. Hibbert labeled the convergence of Larsson's
Fermi-contact interaction erratic. z~ It is clear from
Larsson's calculation that the convergence is not mono-
tonic. On the other hand, it is not at all clear from the fi-
nal results of Larsson's calculation, that the Fermi-
contact term has stabilized to 2.906 a.u.

Bunge has addressed the above question in a clear and
succinct fashion. He points out on the basis of a rough
order-of-magnitude analysis of significant figure loss, that
the Fermi-contact interaction reported by Larsson is un-
certain to -0.002 a.u. Bunge also emphasizes the critical
dependence of the Fermi term on the numerical precision
of the overall calculation.

The present calculation indicates that the convergence
of the Fermi-contact interaction is not monotone for the
basis set employed. As discussed above, we did explore
the effects of tolerance changes in the diagonalization pro-
cedure to see its effect on the Fermi-contact interaction.
The studies involving deliberate truncation of the number
of significant figures of the input matrix elements gives us
confidence that the error of the reported Fermi interaction
is below that of the Larsson calculation.

The present results indicate that the 100-term wave
function of Larsson has not yielded a value for the

Fermi-contact interaction stabilized to 2.906 a.u. As indi-
cated above, we have been able to reproduce this value
from a subset of the final expansion. It appears that the
overall slow convergence of the calculation has a consider-
able bearing on the Fermi-contact term.

The effect of both doublet spin eigenfunctions has a sig-
nificant bearing on the calculated value of the Fermi
term. Comparison of the results in Tables III and V pro-
vides evidence that the particular spin-dependent property
under consideration is rather sensitive to the presence of
the second spin eigenfunction, even though it has little
impact on the energy and other spin-independent proper-
ties. Given the very slow speed of convergence of the Fer-
mi term for the wave function with a single spin eigen-
function (see Table V), it is difficult, if not impossible, to
predict just how large a basis set would be required for the
accurate calculation of this property using a single-spin
eigenfunction in the basis set. This is particularly true
when the nonmonotonic nature of the convergence is
noted.

The experimental value of f reported by Larsson differs
slightly from other values reported in the literature.
Considering the uncertainty associated with the nuclear
moment of Li, and the corresponding measured value of
the hyperfine splitting, the experimental value of f is
taken to be 2.9096+0.0001 a.u. A slight correction for
the effects of finite nuclear mass introduces a factor of
approximately (1 3m, /—M7 )-0.999765, where m, is

the electron mass and Mz is the nuclear mass of Li.
Li

This refinement lowers the value reported in Table III to
2.9034 a.u. The present calculation leads to a value too
low by 0.006 a.u. (0.2% error). The value of 2.9034 to-
gether with the estimated uncertainty of -0.002 given
above in Sec. VC, does not quite overlap with the experi-
mental result for f. This difference may suggest the need
for a larger error of -6X10 a.u. in the computed
Fermi-contact term, and be another indicator of the poor
convergence observed for this property.

F. Extrapolation

Several extrapolation procedures were considered in the
present study. An extrapolation was employed using
several energy values, Ett, for wave functions with N
terms, with N suitably chosen in a manner analogous to
Schiff et al. This procedure gave unrealistic results due
to the lack of smooth variation exhibited by the E~
values. Plotting Ez versus X ' showed the best trend,
but the resulting "curve" was sufficiently nonsmooth as to
not be particularly useful for extrapolation purposes. The
approach suggested by Goldman of examining Ez
versus AE&, where EE~——E~ —EN ~, yielded a totally er-
ratic plot of no value for extrapolation purposes. The
nonmonotonic convergence, particularly over the last 100
terms, makes attempts at extrapolation in the present cal-
culation not worthwhile.

VI. CONCLUSIONS

The present study has reported the results of extensive
calculations on the ground state of S I i I. The calculated
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energy of —7.478058 a.u. is the lowest to date for this
system.

The two general observations from the calculations can
be summarized as follows. (i) Very slow convergence was
observed for the overall calculation, and in particular, for
the Fermi-contact interaction. (ii) The nod to include
both spin eigenfunctions to accurately determine the
Fermi-contact interaction is clearly shorn, and this sup-
ports previous statements in the literature to this effect,
made on the basis of much smaller wave functions.

In view of both the slow convergence of the present cal-
culation, and the difficulty of assessing the correctness of
the empirical estimates of the nonrelativistic ground-state

energy, an accurate lower bound estimate of the energy
seems to be highly desirable. Such a calculation involves

considerable computational and mathematical complexi-
ties, which to date, have not been addressed in the litera-
ture.
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