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Analysis of the correlation effects in molecular second-order time-dependent properties:
Application to the dynamic polarizabilities of the neon atom and the dispersion coefficients
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A diagrammatic analysis is presented of the electronic correlation in second-order time-dependent

molecular properties. It is shown that the solution of the first-order time-dependent perturbation

equation in a configuration-interaction (CI} basis will give considerable errors, when the basis is

truncated at the singly and doubly excited-state CI level and unperturbed orbitals are used. This is

due to the occurrence of unlinked clusters for which correction formulas are derived in the present

paper. The theory is illustrated by calculations on the Ne atom and the Ne2 dimer. Cluster-

corrected polarizabilities and dispersion coefficients are compared with values obtained in large CI
bases containing triply excited states.

I. INTRODUCTION

Molecular properties can be measured by bringing a
molecule into an external field and determining the in-
teraction energy of the molecule and the field. This ener-

gy may be expanded as a Taylor series in the field param-
eters, and if the external field is weak compared to the
internal fields of the molecule, the expansion is quickly
convergent. This usually being the case, one commonly
considers only the terms linear and quadratic in the field.
The linear term is proportional to a first order prope-rty,
and the quadratic term is proportional to a second order-
property The firs. t-order properties are permanent proper-
ties of the molecule, and the second-order properties
describe its response to the applied field. In this paper we
are concerned with interactions of molecules with mul-
tipolar electric fields. ' In that case the first-order proper-
ties are permanent multipole moments and the second-
order properties are multipole polarizabilities.

Great strides have been made in the computation of
second-order properties during the last two decades.
Especially static properties can be calculated nowadays
with very good precision. A convenient and reliable
method is the finite field me-thod 2Appli. cation of the
finite-field procedure to the HF (Hartree-Fock) equations
yields the same second-order properties as those obtained
by the CHF (coupled HF) method, s and the RPA
(random-phase approximation) method. From the point
of view of diagrammatic MBPT (many-body perturbation
theory} these three methods can be described by stating
that they sum the so-called bubble diagrams to infinite or-
der in the correlation potential V. From the point of
view of CHF theory no correlation is involved, only a
self-consistent solution of the first-order perturbed HF
equation is required. This is why Sadlej calls these self-
consistency effects "apparent correlation. "

Also "true" correlation effects can be obtained by
finite-field methods. One can, for instance, apply MBPT
and use the one-electron Hamiltonian (Fock operator plus

the external field) as the zeroth-order Hamiltonian. The
correlation potential V can then be accounted for in a few
low orders by the usual summations over linked dia-
grams. This approach can be analyzed in terms of double
perturbation theory, where the field-free HF equations
constitute the zeroth-order problem and where V and the
external field are both treated perturbationally. This
shows that finite-field MBPT is equivalent to a double
perturbation theory in which the external field is
"dressed" to infinite order by bubble diagrams. s

A similar distinction exists for finite-field CI (configu-
ration interaction} methods in which the orbitals are, or
are not, relaxed in the external field. If the CI basis is
constructed from field-free orbitals, and if the basis is re-
stricted to singly and doubly excited states (SDCI), the
second-order properties turn out to be not very accurate.
The reason for this is twofold. In the first place one
misses part of the self-consistency effects, because only
bubble diagrams with intermediate summations over sin-
gles and doubles are accounted for. Secondly, and more
importantly, the second-order energy is contaminated by
unlinked clusters, which are already second order in V.
This can be shown by the same techniques as will be used
in this paper. If, on the other hand, a SDCI computation
is based on finite-field orbitals, self-consistency effects are
accounted for to infinite order in V, and the first unlinked
cluster that appears is the one that can be computed by
the Davidson-Siegbahn formula. ' Hence the second-
order property can be easily corrected and reliable results
are obtained.

The importance of orbital relaxation for second-order
properties computed by the coupled-cluster (CC) method
has been pointed out by Sekino and Bartlett. " In the CC
method the problem caused by unperturbed orbitals is not
the appearance of unlinked clusters, of course, but the fact
that high excitations are needed for obtaining reliable re-
sults. "

The situation is not so favorable for dynamic (time
dependent) properties. Although fairly good results can
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be obtained by the TDCHF (time-dependent CHF)
method (see, e.g., Ref. 12) true correlation effects are often
important and are difficult to calculate. To a large extent
this difficulty is due to the fact that there is no finite-field
method that procures time-dependent orbitals. It is con-
ceivable that the TDCHF method can be extended to yield
second-order perturbed orbitals, but to date this has not
been attempted. An additional problem is that the orbi-
tals will depend on the strength and the frequency of the
field. So, even if perturbed orbitals could be calculated, it
would have to be done for many frequencies, which would
make the correlation calculations very expensive, because
they would require a four-index transformation for each
frequency.

For the time being it is therefore inevitable to employ
unperturbed orbitals. One can use these in double pertur-
bation theory, in the manner pioneered by Kelly, ' or in
time-dependent CC thixiry for which Dalgaard and Mon-
khorst' have developed a formalism. We have chosen to
describe the zeroth- and first-order time-dependent PT
equations in a CI basis, and to solve these equations exact-
ly. This way one obtains first- and second-order proper-
ties that are of infinite order in the correlation potential.
The CI approach was initiated by Nesbet' and applied re-
cently by Visser, %'ormer, and Jacobs' to He, H2, N2, 02,
and Ne.

The zeroth-order equation in the CI approach to time-
dependent properties is the ordinary CI equation and
about its solution a vast literature is in existence. The
solution of the first-order equation does not belong to the
standard repertoire of quantum chemistry. Visser et al.
solved the problem by an ab initio computation of Cauchy
moments (moments of negative power of a multipole os-
cillator strength distribution) followed by a Pade approxi-
mant representation of the dynamic (frequency-dependent)
polarizabilities. "

The advantage of the CI approach over the double per-
turbation approach of Kelly is that the method is in prin-
ciple exact. And indeed, in cases small enough to be
amenable to a full CI treatment nearly exact results have
been obtained. ' In practice, however, it is often necessary
to truncate the CI basis at the SDCI level. As is well-
known the zeroth-order energy is then contaminated by
unlinked cluster contributions. One of the main purposes
of this paper is to demonstrate that also second-order
dynamic properties are contaminated by unlinked clusters.
As a matter of fact, the use of unperturbed orbitals to-
gether with the truncation at the SDCI level introduces
two types of unlinked clusters which are second-order in
the correlation potential, and especially one of them gives
a sizable contribution to the frequency-dependent polari-
zabilities. Furthermore it will be proved that these clus-
ters cancel against terms that occur if the CI basis is ex-
tended to include triples, thus at the SDTCI level the re-
sults are markedly improved.

This paper is based on an analysis of the zeroth- and
first-order equation by Rayleigh-Schrodinger perturbation
theory. ' Explicit formulas will be derived for the first
two unlinked clusters that appear in SDCI dynamic prop-
erties, thus enabling us to corrix:t for their effects. As a
quantitative illustration of the theory results are presented

for the dipole and quadrupole polarizabilities of the neon
atom, together with the van der Waals constants C6 and
Cs of the dimer. A comparison with results obtained in a
SDTCI basis and with literature values shows that the
SDCI properties are in1proved greatly and that a reliable
calculation of correlated dynamic properties is possible by
the SDCI perturbation method corrected for unlinked
clusters, at least for closed-shell molecules.

II. THEORY

Consider an N-electron molecule in a monochromatic
multipolar electric field' of frequency to/2m. Let its
Hamiltonian be

H:= g (t I
h + icos(cot)

Ij )X;tXJ

+ —,
' g (ij

I
u

I
lk )X;XJXkXI, (1)

i,j,k, l

where X~ and XJ are the usual fermion creation and an-
nihilation operators, h is the kinetic energy plus nuclear
attraction operator, u is the electron-electron repulsion
and icos(tot) is the interaction of the electrons with the
time-dependent external field. The summations run over
all molecular orbitals. Assuming that the molecule is in a
closed-shell state, we distinguish occupied (hole) and vir-
tual (particle) orbitals. The former will be designated by
Greek letters a,P, . . . , and the latter by Latin letters
a, b, . . . . By the use of Wick's theorem the Hamiltonian
can be written in normal product form with respect to the
Fermi vacuum'
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Henceforth we take the energy Eo of the Fermi vacuum
as our energy zero and consider H~ only.

Preferably we would partition the Hamiltonian in Eq.
(2) such that all one-electron terms constitute the zeroth-
order Hamiltonian. For the reasons stated in the Intro-
duction, this is not feasible in the case of tiine-dependent
fields, however, and therefore we start by solving the
time-independent Hartree-Pock problem

f lk;&=~;14 &

in order to obtain the molecular orbitals p; and orbital en-
ergies e';. The operator f is defined by Eq. (5).
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The solution of the Schrodinger equation is then ap-
proximated by means of time-dependent perturbation
theory, i.e., by solving the zeroth- and first-order equa-
tion

different from the ground state, which is always the case
for atoms. If (Iio and q)( ' have the same symmetry as W
and )II"), Eq. (15) requires an orthogonalization of )I)(" to
%" ', and hence 4I"' receives a small ' component along
40, and the following equation does not hold strictly:

(18)

(~(0) g(0)+~)
~

)p(()(~)
&

(gp'()) gr )
~

q/(o)
&

where

&w":=~a+ ~x

and

(12)

Below we shall discuss the solution of Eq. (10) and (11)
and illustrate the contributions to the respective wave
functions and energies graphically. To that end it is con-
venient to define the projector on the Hartree-Fock
ground state

()Il(0)
)

Pr
)

)II(0)&
AE

~
(0) (0)

&

Wo (13)

(0"0) I)P(")&=0, k =1,2. (15)

Furthermore, we shall apply the normalization conditions

(40
~

ep&=1

(C, i

q"'& =1.
The following orthogonality condition holds strictly and
automatically if the perturbation W possesses a symmetry

The second-order energy

(2)
()II' '

~
W)v

~

4""(co)&+ ()I)' '
~

W)v
~

)I("'(—co) &E(2)(~)
(e(0) (o)

(14)

equals the negative of the frequency-dependent polariza-
bility. In the derivation of the perturbation equations (10)
and (11) use is made of the orthogonality condition

Q:=1 P. — (20)

Furthermore it is useful to define a frequency-dependent
reduced resolvent

Q(Fx+)Q
(21)

Since R (co) does not depend on V)v, we see that this is a
Rayleigh-Schrodinger —type resolvent. Because the set of
all singly, doubly, . . . , E-fold excited states spans the Q
space, and because these excited states are eigenstates of
Fq, the resolvent can be expressed as a sum of one-, two-

, . . . , and E-particle resolvents, thus

R (co)=R)(co)+R2(co)+ +RN(co) . (22)

Here the k-particle resolvent is given by

P:=
i @0&(@0i

and the projector on its orthogonal complement (the Q
space)

Rk(co) =
a», a2, . . . , e& u», a2, . . . , a&

(~.,
—e,)+ +(e.„—e,, )

(23)

where the k-fold excitation operator is

~g» yg2y ~ ~ ~ 70k

k

It is easily proved that

Rk(co)R((co) =5k )Rk(co)

(24)

(25)

obtain the lowest roots by a standard iterative procedure.
The following analysis will exhibit what the correlation
contributions are to the SDCI wave function and energy
thus obtained. This analysis is closely related to the one
of Bartlett and Shavitt.

Following Lowdin' in his derivation of Rayleigh-
Schrodinger perturbation theory we partition Eq. (10).
Using

where the squared resolvent has an appearance similar to
the resolvent itself [Eq. (23)], with a squared sum of one-
electron transition energies in the denominator.

(26)

(27)

A. The zeroth-order equation

In order to establish the notation we briefly consider the
solution of the zeroth-order problem, Eq. (10). It is
perhaps good to stress that in practice we describe this
equation in a basis of singly and doubly excited states, and

PFNP=PF~Q =0,
we find that the partitioned form of Eq. (10) is

PV Q i

)P(o)
&

g(0)
i
@ &

(28)

(29)
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Q(~~+ VN E—'")Q
I

q'"'& = Q—Viv I
+o& .

From Eq. (29) it follows that the correlation energy is

g(o) (q)
i

V Q i

ip(o)
&

(30)

(31)

which is a formula well known from Rayleigh-
Schrodinger perturbation theory. It is also well known
that the solution of Eq. (30) can be written as the follow-
ing expansion, where we use the resolvent R (0) at co=0:

Q ~

ql'"&= —g [R(0)(E'"—V„)]"R(0)Vxl@o&,
Jc =0

(32)

which together with the normalization condition, Eq. (17),
determines

~

iII' '&. Note also that

R,(0)[—1+V„R,(0)—Z"'R, (0)

~ivR(0)~xR2(0)+ ' ' ]~is I
@o& (35)

E
to)

are shown in Fig. 2. Note that the term containing E' ',
Fig. 2(c), is unlinked and already arises if the resolvent
R (0) is restricted to R2(0).

If E' ' is approximated by the first term of Fig. 3—
which is of second order in the correlation potential
Vz—the unlinked diagrams, Figs. 2(c) and 2(p), cancel

each other. [Note that the two time-ordered versions of
Fig. 2(p) must be included to achieve this cancellation. ] It
is evident that the resolvent must include at least R2(0)

R (0)V~
~
4o &

—R 2 (0)V~
~
4o & . (33)

The terms in Eqs. (31) and (32) can be represented
diagrammatically. We follow Paldus and Ciiek "

by let-
ting the time fiow from right to left. Resolvents may be
represented by vertical lines between the interactions, but
we only show them explicitly if they appear squared, i.e.,
a squared resolvent is designated by two vertical lines in
the diagram. Furthermore, only Brandow (antisym-
metric) prototypes will be presented. A prototype stands
for a sum of Brandow diagrams that differ from each oth-
er in that the fermion lines are oriented in distinct ways.
Furthermore, all internal lines must be labeled by summa-
tion indices, see, e.g., Ref. 19 for more details.

The components

R i(0)[Vie —VivR (0)Viv — ]R2(0)Viv
I
@o& (34)

of
~
%(0)& along the singly excited states are shown in

Fig. 1. Similarly the doubly excited components

i I

Qe

Qn Qo

+ g ~ ~

+ 0 ~ ~

FIG. 1. Components of the CI wave function along singly ex-
cited states through third order in the correlation potential.
(a)—(d) require singles and doubles in the basis, and (e)—(g) re-
quire triples also.

FIG. 2. Components of the CI wave function along doubly
excited states through third order in the correlation potential.
(a)—(h) arise in a SDCI wave function, triples are needed for
(i)—(l) and quadruples for (m) —(p). The unlinked diagram (c)
cancels against the two time versions of (p). The two vertical
lines in (c) designate a squared resolvent.
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+ (yllll[vID))l ] +~ + @+. .

+ e ~ ~

2

+ ~+ + 0 ~ ~ + ~ ~ ~

FIG. 3. Lowest-order contributions to the SDCI correlation
energy. The unlinked diagram (c) can be corrected for by the
Davidson-Siegbahn formula (Refs. 9 and 10},other fourth-order
terms [arising from Figs. 2{d)—2{h)j are not shown.

and the four-particle term R4(0) to obtain the second un-

linked term, and hence we find the well-known result that
the SDCI correlation energy contains contributions from
unlinked clusters. The first such cluster is of fourth order
in VN. It is easy to correct the coefficient C'~ of

~

4' ')
along the doubly excited state C'~

~
4c), by adding the

term corresponding to Fig. 2(c),

ab u(1 —Pi z) I a
(gab ) E{0) (36)

(6~ +e's s~ —6p)—

Neither is it difficult to give similar expressions for resol-
vents expanded in Gelfand states or spin-bonded functions
by the use of the hole-particle formalism described in
Refs. 26 and 27, respectively.

The corresponding unlinked cluster correction to the
SDCI energy [cf. Fig. 3(c)] is the well-known Davidson-
Siegbahn correction. ' It is perhaps of interest to point
out that the Davidson-Siegbahn formula can also be ob-
tained by coupled-cluster theory.

Since in our actual calculations the zeroth-order prob-
lem is solved in a basis containing only singles and dou-
bles, our wave function does not contain terms corre-
sponding to Figs. 1(e)—1(g) and Figs. 2(i)—2(p). We do in-
clude, however, all terms with intermediate summations
over singles and doubles to infinite order in V~. Since, as
we shall see, the solution of the first-order equation con-
tains unlinked terms which are second order in Vz, we
have not attempted to correct our zeroth-order wave func-
tion by means of Eq. (36), this being a third-order correc-
tion.

+ 0 ~ ~

FIG. 4. Expansion of the norm of the zeroth-order wave
function in orders of V„. Cf. Eq. (17) for the intermediate nor-
malization of

~

4' '). Double vertical lines indicate squared
resolvents.

The normalization factor (4' '~ 4' ') ' is expanded
through third order in the correlation potential in Fig. 4.
The first-order energy of Fig. 5 can be combined readily
with Figs. 1, 2, and 4. This reveals that the first contribu-
tion to b,E'" is of second order in V~ (a fact which some-
times is referred to as the Ms)lier-Plesset theorem ). The
perturbation W being a multipolar field, &&'" is the
correlation contribution to the permanent multipole mo-
ment of the molecule.

If we recall that Q ~

4' ') starts with a first-order term
and E'o' with a second-order term, we find that the first-
order wave function is given through second order in the
correlation potential VN by

i
0""(co) ) = —R (co) Wz

i

0" ' )

R (ru)(E"' —V~)R (a))W„~ e'"
&

—R (ro) VNR (r0) V~R (a) ) W~ i

'Il' ') .

In Fig. 6 the components are shown of the first-order
wave function along the singly excited states; they are ex-
panded up to and including terms quadratic in V~. In
Figs. 7 and S components along doubly and triply excited
states, respectively, are given diagrammatically. In these
figures only the first two terms of Eq. (39) are shown; the
terms containing E' ', being at least of third order in V~,
are omitted.

Making the first-order approximation
B. The first-order equation

The first-order equation, Eq. (11),can be rewritten with
the aid of the reduced frequency-dependent resolvent, Eq.
(21) or (23), as follows:

Q I

'P"'& = —Rz(0) V~
I

~'o&

[cf. Eq. (35)] and accordingly writing

(40)

from which follows

~

gp(1)(~) )

=R (co}(bE"'—W~)
~

4' '), (37)
(yt I

i
yt 1)-

e 0

+ t ~ ~

= y [R(cd}(E' ' —Vjv)]"R (C0)(bE'"—W~)
~

4' ') .

(38)

FIG. 5. Expansion of the correlation contributions to the
first-order energy. The solid dot represents the interaction with
the external field.
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Qd

I I

+ ~ +

+ ~ +

Qt

Q

I

I

Qi

Qe

Qo

FIG. 8. Components of +'"(co) along triply excited states.
The resolvents to the left of the solid dot are co dependent. See
Figs, 1 and 2 for the definition of the zeroth-order functions.

FIG. 6. Components of %""Ceo) along singly excited states.
The resolvents to the left of the solid dot are co dependent. See
Figs. 1 and 2 for the definition of the zeroth-order functions.

E' '= —(40i V~R2(0)V~
i
40)

we easily find that the three unlinked diagrams, Figs. 6(b),
6(i), and 6(o), cancel each other. Indeed, the numerators
of these three diagrams are equal, and introducing the
shorthand notation 5i ——e, —e and b,2 e, +eb —e —eii,——
we find for the denominators the rule

1 l

b,,(b, , +co)' (~i+ad)(~i+~i+~)~i
1+

(&)+~) (&i+&2+co)2

This rule is shown in Fig. 9. Hence the first-order (in W)
wave function does not contain unlinked clusters of
second order in V~, but it is necessary to include the
disconnected triply excited states of Fig. 8(a) in order to
achieve cancellation. The algebraic expression represented
by Fig. 8(a) is

jj~ x',

Q

FIG. 7. Components of 4"'(u) along doubly excited states.
The resolvents to the left of the solid dot are m dependent. See
Figs. 1 and 2 for the definition of the zeroth-order functions.

FIG. 9. Cancellation of unlinked clusters contributing to
4'"(co) in second order of Vz. Cf. Eq. 4,

'44). Resolvents to the
left of the solid dot are m dependent, those to the right are for
6)=O.
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—Z, (~)W„~ q to')

g N [X,X XsXpX,~X„]
i 4o)

(a
i

IY
i a)Cp

X
a +Eb +Ec 6a EP 6y+

(43)

ic sense of the word}, one expects this to hold for all or-
ders in V~. Indeed, this has been proved within the
framework of coupled-cluster theory by Monkhorst.

If we restrict the basis to singles and doubles, out of the

c(0)
+

where C+~ is the coefficient of
~

4' ') along Cgz ~

4o).
It is not difficult, but tedious, to demonstrate that simi-

lar cancellations of third-order unlinked clusters occur.
There are two types of such clusters: The first type arises
from the third-order term in E' ', and the zeroth-order
term (the HF component) of O' '. In a basis containing
triples cancellation will occur. The second type originates
from the first-order term of qj' ' and the second-order
term of E' '. It is easily shown that quadruply excited
states are required to remove this type of unlinked clus-
ters.

The second-order energy (the negative of the
frequency-dependent polarizability), defined in Eq. (14), is
shown in Fig. 10 expanded through second order in V~.
(Recall that the expansion of the components of

~

4' ')
along the singly excited states start in second order, and
the expansion of the doubly excited components in first
order. ) The unlinked diagram 10(c) arises from the expan-
sion of the normalization factor shown in Fig. 4.

Figure 10 reflects a hierarchy of approximation
methods. Diagram 10(a) is the only one appearing in the
UCHF (uncoupled HF) approximation, while the Tamm-
Dancoff method (singly excited CI} is needed to account
for 10(i) and 10(m) as well. Since we solve the first-order
equation in an exact manner, we sum the Tamm-Dancoff
diagrams to infinite order. The same holds for the RPA
diagrams with intermediate summations over singles and
doubles, which are the Tamm-Dancoff diagrams together
with the other "bubble" diagrams 10(d), 10(h), and 10(I).
The same diagrams appear in the (time-dependent) cou-
pled HF method, which also sums 10(r), 10(t), and 10(x)
(i.e., if we replace in Fig. 10 4' ' by its first-order approxi-
mation). The true correlation effects are accounted for
by the diagrams 10(e), 10(f), 10(g), 10(k), 10(1), 10(n), 10(o),
10(u), 10(v), and 10(w).

If we expand
~

ql' ') through first order in V~, we find
that the numerators of the unlinked diagrams 10(b), 10(c),
10(p), 10(q), and 10(s) are equal. Using the same short-
hand notation as for Eq. (44}, we find for the sum D of
the denominators

1 1 1

bi(b, i+cu) b2(hi+co) b2(b, i+62+co)

Qj

I I

0 0

Qs Qt

Qw

I

I

I

f

2
(6i+co)(hi+ 62+co)b2

1 =0.
(&i+~)'(&i+&2+~)

It is easily verified that D =0, which proves that the
frequency-dependent polarizability does not contain un-
linked clusters through second order in Vz. Since the po-
larizability is an extensive property (in the thermodynam-

FIG. 10. Contributions to the second-order energy (the nega-
tive of the frequency-dependent polarizability) through second
order in V~. The resolvents between the solid dots are co depen-
dent. The mirror images of the diagrams {d), (e), (j)—(1), (q), (r),
(u), and (x) are not shown but must be included. Diagrams
(a)—(o) are accounted for in a basis consisting of singles and
doubles, whereas (p)—(x) require triply excited states. The un-

linked diagrams (b) and (c) cancel against the sum of (p), (q), and
(s).
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unlinked diagrams only 10(b) and 10(c) arise, and the can-
cellation of Eq. (46) cannot occur. In that case we can
compute the contributions of these two unlinked diagrams
separately, and correct the results. Algebraically diagram
10(b) is

E(0)+ (a i

8' (a&(a [ W )(2&

(e, —e +co)'

Diagram 10(c) arises from ()p( '~)p( '&. If we write C0
for the coefficient of the HF state in the SDCI wave
function —which is normalized to unity —this function
can be written as C0 i

)p( '
&, and we obtain for 10(c)

EUL(~) +UCHF(~)(1 Co) (46)

Note that, E' ' being negative, EU& is also negative and
note further that EUL is positive. Since EUL appears with
a minus and EUL with a plus sign in the second-order en-

ergy expression, correction for both these unlinked terms
increases the polarizability.

Alternatively we can include triples in our basis. In
that case we not only effectuate cancellation of the un-
linked diagrams, but also obtain correlation contributions
from new diagrams, such as the bubble diagrams 10(r),
10(t), and 10(x), and the true correlation diagrams 10(u),
10(v), and 10(w). It is likely that especially the EPV (ex-
clusion principle violating) contributions of 10(u), 10(v),
and 10(w) are of importance. These EPV diagrams cancel
against the corresponding EPV terms of Fig. 10(q), 10(s),
and 10(p), which are unhnked. Hence the cancellation of
the diagrams 10(b) and 10(c) is not complete. Indeed,
those terms of these latter two diagrams that are charac-
terized by the fact that their disconnected parts have one
or more summation indices in common are not unphysical
and should not cancel. Although these terms do not
violate the Pauli principle they are often referred to as
EPV terms, the reason being that they have the same
value as the sum of the EPV terms 10(u), 10(v), and 10(w).
Hence, the unlinked-cluster corrections, given in Eqs. (45)
and (46), overcorrect the second-order energy, and so the
inclusion of triples in our CI basis will give more reliable
results than the use of Eqs. (45) and (46). However, in
most cases of practical interest the SDTCI basis is too
large to handle, and then the SDCI values, corrected for
unlinked clusters, form a good and rather reliable option.

III. COMPUTATIONAL ASPECTS

The theory of Sec. II has been tested on the neon atom.
To that end we used the basis of Ref. 12, which is a
(11s,7p, 2d, lf/7s, 5', 2d, lf) basis consisting of spherical
Gauss-type orbitals. The integral, self-consistent-field,
and four-index transformation programs employed are all
part of the ATMoL —4 set of programs.

The zeroth-order problem, Eq. (10), is solved by our
conventional CI program in a basis of singly and doubly
excited states. The lowest eigenvector and eigenvalue is
obtained by Shavitt's routine, which is based on the
method of overrelaxation.

The solution of the first-order problem, Eq. (11), has
been extensively discussed in Ref. 16. Briefly, the method
may be described as an ab initio procedure for the compu-

tation of even and odd Cauchy moments. Cauchy mo-
ments arise in the expansion of the dynamic polarizability
as a power series in the frequency 0). Thus, we define the
moments by the Cauchy expansion
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Recall [cf. Eq. (14)] that

(q'"
i
~

)
q ("(~)&+ (q ("

i
~

)
q "'(—~) &

()Il(0)
~

)Il(0)
&

(48)

oo k —1

(g )2 ~ gk+ I

we obtain from Eq. (45)

EUL( —0))= 2 E g (k + 1 )ci) SUCHF( —3 —k)
k=O

where

(50)

S„,„„-3-k:=2 @+2(e, —e )
(51)

Hence the first unlinked-cluster correction to S(—2 —k)
1s

With the Cauchy moments S(—2 —k), k =0, 1, . . . , E, as
input, we compute the [N, N —1] Padi: approximant of
a(0)) by means of Nutall's compact formula. 5 This for-
mula for a Pade approximant contains an inverse matrix.
Rather than computing the inverse of this matrix by any
of the standard methods, we diagonalize it and compute
the inverse of the diagonal form. Its eigenvectors and
eigenvalues constitute an "effective spectrum. "'7 It can be
shown 6 that this Pade approximant procedure is
equivalent to the solution of the first-order equation in a
Cauchy basis. In practice we take X so large that the
approximation to a(0)) has converged, that is, an increase
of N does not change the results significantly.

Once the different dynamic polarizabilities are known,
the van der Waals coefficients easily follow from the
Casimir-Polder integral. Since the effective energies are
the poles of the polarizabilities and the corresponding
residues are simply the matrix elements of 8')v between
the effective states, the Casimir-Polder integral is most
conveniently computed by the residue theorem. This
gives the van der Waals coefficients their well-known
form of a double sum over the spectra of the monomers,
the difference with the exact formalism being that the
spectra are now effective rather than exact.

In Sec. II we discussed the correlation and unlinked-
cluster contributions to the second-order energy given on
the left-hand side of Eq. (47). By making an expansion of
this energy in powers of the frequency 0), we can apply
directly the findings of Sec. II to the computation of the
Cauchy moments. In particular, Eqs. (45) and (46) yield
formulas for the lowest-order unlinked clusters that con-
taminate the Cauchy moments computed ln an SDCI
basis. Using the formula
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SUL( —2—k) =(k + 1)E SUCHp( —3 —k) (52)

Recall here that E' ' is the SDCI correlation energy.
From Eq. (46) it follows immediately that the second

unlinked-cluster correction is

SUL( —2—k) =( 1 —Co )SUCHF( —2—k)

The coefficient Co is the component of the HF state in
the SDCI wave function. The UCHF Cauchy moments
defined by Eq. (51) are easy to compute; we have used the
program MULTPROP (Ref. 39) to that end.

In Sec. IV we shall compare the corrected SDCI polari-
zabilities and van der Waals coefficients with correspond-
ing values obtained in a CI basis augmented with triples.
Unfortunately, however, the inclusion of all triply excited
states is outside the scope of our CI program, so that we
are forced to employ a selection procedure. In this pro-
cedure we use Eq. (43), or rather the equivalent of Eq. (43)
for h-p (hole-particle) spin-bonded functions.

In a basis of h-p bonded functions the three-particle
resolvent, appearing on the left-hand side of Eq. (43), can
be written for co =0 as

Ri(0) =
Is;a, b, c;a,P, y I

~ {s;a,b,c;a,P,yI )({s;a,b,c;a,P,yI ~

a+Eb+Ec 6a +P 6y

where the sum runs over all linearly independent triply ex-
cited bonded functions

~
{s;a,b, c;a,p, y I ) and s,

1 & s & 5, labels the spin coupling. The selix:tion criterion
that we have applied is

/
( {s;a,b, c;a,P, y I f

W~
/

ql' ')
{ &5. (55)

6'g +Eb +E~ —6~ —6'p —6y

Since the zeroth-order function 4'0' is given as an expan-
sion of bonded functions, the computation of the numera-
tor of Eq. (55) is reduced to the computation of a matrix
element of a one-particle operator between h-p bonded
functions. We have written a program for this special
case of a doubly excited ket and a triply excited bra,
which is based on the formulas of Ref. 27. These formu-
las give the matrix element the same appearance as the
summand on the right-hand side of Eq. (43). The only
difference is that this summand is not multiplied by a
spin-symmetry coefficient as it must in a spin-adapted
formalism.

To conclude we remark that we have used a
"coefficient-driven" algorithin in the computation of the
numerator of Eq. (55). That is, the outermost loop runs
over the nonzero coefficients of 4'o', the next inner loop is
over the one-elietron integrals, and the innermost loop is
over the spin-coupling index s. In this manner we avoid
considering triples that do not interact with any doubles.

IV. RESULTS AND DISCUSSION

We have argued in Sec. II that a SDTCI basis (i.e., a
basis containing all singly, doubly, and triply excited
states) yields frequency-dependent polarizabilities that are
correct through second-order in the correlation potential
V~. Its use should give better results than Eqs. (45) and
(46), because these remove all second-order unlinked dia-
grams, including the EPV diagrams. Although the use of
an SDTCI basis is to be preferred, we cannot handle such
a large basis in full. Therefore, we have to resort to the
selection procedure described in Sec. III. This selection
scheme is applied for four different values of the thresh-
old 5, defined in Eq. (55). The results are given in Table I.
The dimensions listed in this table pertain to bases in
which the maximum Abelian point group Dih is used.

The same results are plotted in Fig. 11, where one sees
clearly that the dipole polarizability ai, the quadrupole
polarizability a2, and the van der Waals coefficients C6
and Cs depend linearly on 5 to a very good approxima-
tion. This simple dependence enables us to extrapolate
linearly these quantities to 5=0. The extrapolated values
are compared in Table II with results from literature.

One notices that ai and C6 agree almost perfectly with
the corresponding literature values, which are well estab-
lished. The quantities ai and Cs on the other hand, are
not yet very well known. Early results are those of

TABLE I. Results for Ne and Neq for different selection thrcsholds 5.
C

5(—4)
3(—4)
1(—4)
5(—5)

2718
4084
8007

10939

4689
6730

11729
14794

2.609
2.627
2.647
2.654

6.310
6.359
6.408
6.424

6.728
6.764
6.803
6.820

82.36
82.90
83.45
83.66

Number of triples of dipole symmetry, dimension SDCI basis: 1911.
Number of triples of quadrupole symmetry, dimension of SDCI basis: 1743.
o;I is the static dipole polarizability.
a2 is the static quadrupole polarizability.
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Doran, who applied MBPT through second order in V~,
and used a basis of numerical HFS (Hartree-Pock-Slater)
orbitals. In his work Doran included the continuum by
Gauss-I. aguerre quadrature over HFS continuum orbitals.
Recently, Diercksen and Sadlej have computed the
quadrupole polarizability of the Ne atom by finite-field
SD-MBPT (MBPT with summations over intermediate
singles and doubles) through fourth order in V~. They
have used quadratically integrable orbitals (which are
known to account very well for the continuum in certain
cases ), and they have compared different basis sets. In a
basis comparable to ours (their basis B) they find
ai ——6.68 a.u. , which is very close to our cluster-corrected
SDCI value 6.71 a.u. This seems to indicate that our ap-
proach gives results of the same quality as the finite-field
SD-MBPT method. To test this further we applied the
(12s 8p 3d 3f) basis D' from Ref. 42 and found ai ——7. 117
a.u. In the same basis Diercksen and Sadlej found
a2 ——7.48, so that the agreement in basis B is more or less
coincidental. Since the corrected SDCI values are con-
sistently below the SDTCI static polarizabilities, it is quite
possible that the value ai ——7.48 is the better one.

It is interesting to note that the static dipole polarizabil-
ity ai did not change by the enlargement of the basis, so
that we may safely assume that the values for ai, given in
Table II, are very close to the limit of a complete orbital
basis. The remaining error in the SDTCI value must be
ascribed to the neglect of quadruples and perhaps relativ-
istic effects.

The SDTCI value of C6 coincides exactly with the
semiempirical value, but the corresponding cluster-

Cs n
)a.u) (a.u. )

-6.84
h

'C8

C6 CXq

I a.u. ) I a.U, )

6.5—

~ ~.a

I I I

l.0 2.0 3.0 4.0 5.0 5 x10"

FIG. 11. Dipole polarizability a~, quadrupole polarizability
a~, and the dispersion coefficients C6 and C~ as functions of the
triples selection threshold 8, cf. Eq. (57).

TABLE II. Results for the Ne atom and the Ne2 dimer (a.u.).

TDCHF'
SDCI
SDCI+ UL'
SDCI+ UL"'
SDTCI'
Literature

2.337
2.324
2.591
2.651
2.658
2.668 ~

5.392
5.587
6.345
6.688
6.435
6 43"

5.930
6.026
6.624
6.706
6.826
7.48 '

68.26
73.20
82.45
85.54
83.77
73.87'

'ai is the static dipole polarizability.
a2 is the static quadrupole polarizability.

'Reference 12.
~First unlinked-cluster correction, cf. Eq. (45).
'First and second unlinked-cluster corrections, cf. Eqs. |,'45) and
(46).
~Extrapolated to zero selection threshold.
~Semiempirical estimate, Ref. 40.
"Semiempirical estimate, Ref. 41.
'MBPT calculations, Ref. 42.
'MBPT calculations, Ref. 43.

corrected value is too high. In the basis D' of Ref. 42 it
is even slightly higher: 6.735 a.u. It seems that the C6
value is not yet at the limit of a complete orbital basis,
and accordingly the exact agreement between the SDTCI
value and the semiempirical one is due to cancellation of
errors caused by an incomplete basis and the neglect of
quadruples. Note parenthetically that in earlier work
from our laboratory an estimate of an SDTCI limit was
given in which no excitations from the 1s orbital were al-
lowed. The effect of the ls excitations is not negligible,
however. For instance, it increases the C6 from 6.262 a.u.
to the present value of 6 435 a.u.

Our SDTCI value of C& is considerably larger than
Doran's value, i but the same is true for ai, and since our
az value is probably too small, it is fair to assume that our
Cs value is better than Doran's. Furthermore, our experi-
ence so far indicates that upon enlargement of the orbital
basis the SDTCI value always increases, so that the value
Cs ——83.77 is likely to be too low. This is confirmed by
our calculations in the basis D' of Ref. 42, which give a
cluster-corrected Cs value of 90.59, which is 5.5% higher
than the corresponding value in the smaller basis. If we
assume that the SDTCI value is too low by a similar per-
centage, we arrive at an estimate for the exact value:
C's -88 a.u.

The TDCHF values given in Table II were obtained in
the same atomic-orbital basis as is used in the present
work. We can therefore give a rather accurate estimate of
the true correlation effects. They are 12.1%, 16.2%,
13.1%%uo, and 18.5% for ai, C6, a2, and C8, respectively.

From the theory in Sec. II it follows that the two
unlinked-cluster corrections given in Eqs. (45) and (46)
must bring the SDCI results close to the full SDTCI re-
sults. It is therefore of interest to compare the cluster-
corrected SDCI values with those obtained in an SDTCI
basis, irrespective of the fact whether these latter quanti-
ties are the most accurate available. From the figures in
Table II we find that a& and a2 are, respectively, 0.3%%uo

and 1.8% below the corresponding SDTCI reference
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TABLE III. Effective dipole and quadrupole SDTCI spec-
trum of the Ne atom. .

Dipole
TO

(21, +2ls )!
2l~+ 2' +2 l~, lg (2i ))(2i )(

0.509 134
0.929 985

—0.793 889
0.344 377

0.730710
1.155466
3.067 341
5.908007

0.976405
—1.758 727

0.687 742
0.361 427

0.747 281
1.597 128
2.650636
5.879463

(7 II )2(T s )2

where ( To };and E; are listed in Table III for i = 1,2, 3,4.

V. SUMMARY AND CONCLUSIONS

values. The corresponding errors in the SDCI basis being
12.6%%uo and 11.7%, respectively, we see that the improve-
ment by the unlinked-cluster formulas is large. Stated
differently, this means that the main reason for the poor
behavior of a SDCI treatment based on unperturbed orbi-
tals is the contamination of the second-order energy by
unlinked clusters. The contributions of the unlinked dia-
grams have about the same absolute value as those of the
true correlation diagrams, but are of opposite sign.

The fact that the static cluster-corrected polarizabilities
are below the SDTCI polarizabilities must probably be as-
cribed to the diagrams in Figs. 10(t)—10(x), which contri-
bute to the latter, but not to the former.

The corrected C& and Cs values are, respectively, 3 9%.
and 1.8% above the SDTCI reference values. The im-
provement over the uncorrected SDCI van der %'aals
coefficients is considerable, since these are about 12% too
low.

Another possible way of extrapolating the results ob-
tained in truncated SDTCI bases is by linearly extrapolat-
ing the Cauchy moments to 5=0. The advantage of this
is that the extrapolated Cauchy moments yield an extra-
polated effective spectrum, which is essentially of full
SDTCI quality. This effective spectrum is given in Table
III. This spectrum reproduces the fifth line of Table II
to four-figure accuracy, if we use the formulas

The most important result of this paper is that
(frequency-dependent) SDCI polarizabilities are in error
by about 12%, when the CSF's (configuration state func-
tions) in which the first-order wave function is expanded
are constructed from unperturbed orbitals. These errors
are caused by the contamination of the first-order wave
function and the second-order energy with unlinked clus-
ters. Unfortunately, it is at present not feasible to perturb
the orbitals in time depe-ndent fields to at least second or-
der, which would be required for a reliable calculation of
time-dependent second-order properties.

We have shown that there are two different ways to im-
prove upon the SDCI results obtained in an unrelaxed or-
bital basis:

(i) by inclusion of triply excited CSF's in the CI basis,
(ii} by the correction formulas given in Eqs. (45) and

(46}of this paper.
The first method gives rise to very large CI basis sets,

but is in principle a better method than the second. The
second method has the advantage of being cheap and easy
to apply and also improves the SDCI results considerably,
as can be seen in Table II. It gives polarizabilities and van
der Waals coefficients of the Ne atom and the Ne2 dimer
which deviate less than 4% from those obtained in the
SDTCI basis.
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