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We introduce a gauge-invariant %'igner operator (GI%0) and a gauge-independent %igner func-

tion (GI%'F) that allow for both quantized and classical electromagnetic fields. If only classical

fields are present, a %eyl transform analogous to the one associated with ordinary %'igner functions

can be defined for any operator; in the case of quantized fields this is at least possible for %eyl-

ordered functions of the position and kinetic momentum operators. %e show how the evolution of
the operators having a %eyl transform can be followed with the aid of the GI%F defined as the

Heisenberg-picture expectation value of the GI%0, and derive for the GI%'0 the Heisenberg equa-

tion of motion which only involves the physical electric and magnetic fields. Some aspects of the

case of entirely classical fields are discussed in more detail. (i) The GI%F in conjunction with the

postulate that physical observables can be measured without referring to the gauge permits a

quantum-mechanical treatment of a full experimental run without the problem of relating the mea-

sured values to the gauge-dependent density operator. (ii) A closed equation of motion for the
GI%'F is obtained. (iii) In the dipole approximation quantum features of the dynamics are 1ost. (iv)

Quantum corrections to dynamics are associated with recoil effects.

I. INTRODUCTION

The Wigner function (WF) and related quasiprobabili-

ty distributions allow quantum-mechanical expectation
values to be written as phase-space integrals analogous to
those of classical mechanics. Classical intuition may then
be taken over to quantum mechanics, and semiclassical fi
or 1/T expansions can be carried out remarkably easi-
ly. ' 5 Applications of the WF along these lines have
emerged in wildly varying fields of physics and theoretical
chemistry; we mention as an example the formulation of
collision theory in terms of the WF. I.orentz-covariant
forms of the WF may also be envisaged. Accordingly, ap-
plications to relativistic quantum statistical mechanics
have been proposed. ' Finally, quasiprobability distribu-
tions permit mappings of operator equations onto c
number relations, which is the source of their use in quan-
tum optics.

Studies of photon recoil effects ' on an atom consti-
tute one particular application of the WF to fi expansions.
The initial motivation of this work was to develop a simi-
lar WF treatment of the motion of an unbound charged
particle in an electromagnetic (EM) field. Although an
immense literature has accumulated around the motion of
an electron in electric and magnetic fields, WF methods
similar to those we have in mind are scarce. ' ' In fact,
the ordinary WF stumbles on two fundamental obstacles:
In atoms the dipole approximation can be used, and hence
problems pf gauge invariance are averted. A dipole
approximation can also be introduced for an unbound

electron by neglecting the spatial variation of the radia-
tion field, but then the photon momentum is simultane-
ously forced to be zero. Consequently, the Doppler shift
and recoil effects are lost. Avoiding the dipole approxi-
mation seems desirable, but then special care must be tak-
en in order not to generate gauge-dependent results. The
ordinary WF is gauge dependent and does not suit to this
aim. Second, while in atoms spontaneous emission is easy
to deal with, it seems to us that it has not been known
how to incorporate the quantized radiation reaction field'
into the WF of a charged particle.

In this paper we present a gauge-invariant Wigner
operator (GIWO) and a gauge-independent Wigner func-
tion (GIWF) for a charged particle in an EM field that
also includes the quantized modes of radiation, and derive
the Heisenberg equation of motion for the GIWO. In a
follow-up paper this and the equation of motion for the
EM field are combined to gain access to radiation reaction
fields, which will lead to relaxation terms in the equation
of motion of the GIWF.

In order to set the stage for the development to follow
we summarize some aspects of the ordinary WF for one
nonrelativistic particle. We define a collection of func-
tions of the canonical position and momentum operators r
and p, labeled by classical indices r and p, as

W(r,p)= f d 'ud uexp —[u (p —p)(2m)'

+U (» —r)] . (1.1)
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(See Ref. 21 for a comment on the notation used here. )

Since every operator function of r and p can obviously

be represented as a linear combination of the "Wigner

operators" (WO's) W(r,p) in the form

O(r,j)=f d'r d'p 0(r,p ) W(r,p), (1.2)

0(r,p )= =0(r,p ) = (2M) Tr[ W(r,p)0(r",p)] . (1.4)

The function 0 is called ' the Weyl transform of the

operator 0. If the operator 0(r,p) is given by a power
series of Weyl-ordered (i.e., totally symmetrized) products
of the operators r;,p;,
~]A Ay ~ J j, 2 3 (A ]A 2+ 3A ]A 2w 3y

Nl (,Nl2, P$3

5 ),lip, ll3

(1.5)

then its Weyl transform 0(r,p) is precisely the same func-
tion of the c-number variables r; and p;,

m &m2PN3 m
&

m& m3 Il] N2 530(r~p)=+A„„„ri ri r3 pi p2 p3 (1.6)

Although such a simple substitution is not valid for a gen-
eral operator ordering, we stress that the Weyl transform
still exists and is given by (1.4). For instance, using the
commutators of r and P and (1.5) and (1.6) we obtain

A A ] A A A A ]Pl iAripi= &(rip]+pir])+ ripi+
2 2

Letting p denote the density operator of the particle, it
follows from (1.2) that

Tr(Op) =f d r d p 0(r,p)Tr[W(r, p)p]

=f d r d p W(r,p)0(r,p),

where the WF W(r,p) is defined as

W(r,p) =Tr[W(r,p)p]

(1.8)

T

0

(2W)'
d u exp —u p (r —,

'
u

~ p ~
r+ —,

' —u ) .

(1.9)

I W(r,p) I,&
can be viewed as a basis in the space of one-

particle operators, and the classical function 0 (r,p) serves

as a continuous set of expansion coefficients. Because

Tr[W(r,p) W(r', p')]=(2efi) '5(p —p')5(r —r'), (l.3)

a one-to-one correspondence between the operators 0 and
the expansion coefficients 0 can be set up:

The quantum-mechanical expectation value of the opera-

tor 0 may thus be computed just like a classical expecta-
tion value as an integral over phase space, provided 0 is
replaced with its Weyl transform 0 and p with the WF
8'. However, the WF is not a true phase-space density.
It is real, but it may take on negative values. In fact, the
WF corresponding to a pure state P= ~]/])(]/]~ is non-
negative if and only if the wave function (r

~
]/r) is an ex-

ponential of a quadratic polynomial of ri, r2, and r3.
As P is a positive operator, the procedure (1.9) cannot pro-
duce arbitrary functions of r and p, and hence all classical
phase-space distributions are not valid Wigner functions
either. An example would be W(r,p) =5(r)5(p), which is
feasible in classical mechanics but would give AM =0 in
quantum mechanics, too.

With the Hamiltonian

A, 2

H= + V(r) (1.10)

the Liouville —von Neumann equation for the density
operator p leads to the equation of motion for the WF:

—+ — f d~ V r+ifira p 5 a ]~2 a . a
t M Br p —i&& r p

X W(r,p, t) =0 .

Here the operator inside the integral is obtained by first
forming the 8/Br derivative of V, and then inserting the
appropriate arguments. This equation allows one to fol-
low the evolution of the expectation values of all opera-
tors. If Vis at most a quadratic function of r;, (1.11) be-
comes the classical Liouville equation. In this case the
difference between classical mechanics and quantum
mechanics no longer shows in the dynamics of the distri-
bution function, but it is still buried in three places in the
formalism. First, the function spaces where the distribu-
tion functions are allowed to reside are different. Second,
the Wigner function may depend explicitly on R. Third,
the Weyl transform of an operator may depend explicitly
on A.

In the presence of a magnetic field when the vector po-
tential A(r) cannot be chosen to vanish, a variant of the
WF giving the expectation values of functions of the
gauge-invariant kinetic momentum k =P QA(r ) a—ccord-
ing to the prescription (1.5), (1.6), and (1.8) would be more
appropriate than the WF for the operator P. Even if the
EM field is not quantized, such a function is not obtained
by simply transforming the variable p to k =p —QA(r) in
the WF; see the Appendix. Instead, one can define

W(r k)= f d uexp —u k+Q f drA(r+ru) (r —,'u ~p~r+ ——,'u)
(2m)' (1.12)

as a suitable GIWF.2 2 Although this form has been
known for a long time, to our knowledge considerations
like those sketched above for the ordinary WF have not
been published for the GIWF—not even the full equation

I

of motion in a form that would display the similarities to
and differences from the classical Liouville equation. Our
first aim is to fill this gap. Our second task is to general-

ize (1.12) further by letting A(r) be an operator of the
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quantized EM field.
The outline of the present paper is the following. In

Sec. II we define the GIWO, and the GIWF as the expec-
tation value of the GIWO. The generalizations of proper-
ties (1.1)—(1.9) to the GIWO and GIWF for both classical
and quantized EM fields, with a special emphasis on the
differences between these two cases, are presented in Sec.
III. In Sec. IV we derive the Heisenberg equation of
motion for the GIWO, and show how this determines the
evolution of the expectation values of observables. The
brief analysis of the case with only classical fields in Sec.
V serves as a first demonstration of the results of our for-
mulation. The discussion in Sec. VI concludes the paper.
In the Appendix we briefly consider an alternative sugges-
tion to include the vector potential into the WF.

The particle interacts with an electromagnetic field as
yet specified by the scalar potential k(r, t) and the vector
potential A(r, t). For maximum flexibility we adopt the
semiclassical approach, so the latter may contain both
classical field modes and modes of the quantized field,

A(r, t)=Ac(r, t)+Ag(r) . (2.3)

The classical field might be given in any gauge, but ac-
cording to the established practice we use the radiation
gauge whenever a quantized field is present. In terms of
boson operators b~ that annihilate photons with momen-
turn fiq, frequency Qz, and linear polarization e(q) (the
polarization label a= 1,2 is implicitly included in the
wave vector q even when not shown), the radiation field is
given in the Schrodinger picture by

II. THE O'IGNER OPERATOR
AND THE SIGNER FUNCTION

A. Basic notatian

A, (r) =A '+'(.-)+A '-'(".),
A '+'( )= 'y'g(q—)b e''t" A ' '=(A '+')t

(2.4a)

(2.4b)

[r;,pj] =i A5~j

it follows that the corresponding eigenvectors
l
r &, lp &

may be chosen to satisfy

(2.1)

rlr&=rlr& Plp&=pip& (2.2a)

(p I

p' & =5(p p')—
f d'r

l
r &(r

l
=1, fd'p

l p &(p l
=1,

(2.2b)

(2.2c)

We study a nonrelativistic particle with mass M and
charge Q in the whole three-dimensional space R (which
excludes the Aharonov Bohm -effect ). The canonical po-
sition and momentum operators r and P furnish a com-
plete set of operators for the spatial motion of the parti-
cle. From the commutator

' 1/2

e(q) . (2.4c)

The primed sum runs over the quantized field modes.
We now pause to prove an auxiliary result that is going

to play a considerable role in our theory: For any classi-
cal vectors u, v and for any Cartesian coordinates
i,j=1,2,3 the commutator

[A;(r+u), Aj(r+v)]=0 (2.5)

holds true. To establish this, we temporarily invoke the
polarization labels in the expression (2.4) of the field.
From the commutators

1 i(r lp&= exp —p.r (2.2d} [bq, ,&q, ]=[bq~, bq~ ]=0
it follows that

(2.6)

[A;(r+u), Aj(r+v)]=+' e; (q)ej(q)[exp[iq (u —v)] —exp[ iq (u —v—)]I .
20qepV

' (2.7)

The polarization vectors may be chosen in such a way
that e," (q)=e ( —q). It can then be seen that if there
were no restrictions on the sum in (2.7), it would consist
of two subsums which cancel. The assumedly finite num-

ber of modes which are treated classically are excluded in
the sum in (2.7},but then the cancellation only fails up to
a contribution of the order 1/V that goes to zero with
V~ao. Besides, it could be demonstrated from a full
quantum treatment that the restriction on the sum is an
artifact. Hence (2.5) is verified.

The classical electric and magnetic fields are obtained
from the classical potentials through

~c,k g eijk Ac,j ~ (2.9b)
tj i

Here and below a derivative with respect to an operator of
a function of this operator is understood as the derivative
of the function in question with the operator argument,

Aj(r ) = Aj(r)J g J (2.10a)

or equivalently,

I

or writing the latter in component form with the aid of
the Levi-Civita symbol e;~k,

Ec(r, t)= — 4(r, t ) Ac(r, t), — —(2.8)

(2.9a)
M =0

(2.10b)

By comparing (2.10b) and (2.5) it can be seen that (2.5)



O. T. SERIMAA, J. JAVANAINEN, AND S. VARRO 33

also holds for arbitrary spatial derivatives of the vector
potential, in particular for the magnetic field and its
derivatives.

The counterparts of (2.8) and (2.9) for the quantized
fields can be written

ILIA and III 8, Meanwhile we complete the introduction
of the basic matnematical machinery needed to deal with
the GDVO.

C. Baker-Campbe11-Hausdorff forxnulas

E ~&+'(r ) =g' Q&g(q)bqexp(iq. r ),

8 ~&+'(r)=g'q Xg(q)bsexp(iq r) .

(2.1 1)

(2.12)

We now derive a number of Baker-Campbell-Hausdorff
(BCH) formulas that recur over and over in the sequel.
First note that by taking the matrix elements of the opera-
tors involved one can prove from (2.2) the relations

We have displayed explicitly only the positive-frequency
parts of tPe operators. The negative-frequency parts are

simply Hermitian conjugates of these, and the full quan-

tum fields are sums of the positive- and negative-

frequency parts. The full fields, finally, are sums of clas-

sical and quantizixl fields, e.g.,

0

exp —u p ~r)= ~r —u),

0

mp —u p f(r)=f(r+u)exp —u p
fi

(2.19a)

(2.19b)

a(r, r)=a, (r, r)+a~(r) .

%e next introduce the kinetic momentum operator

(2.13) as is natural since P is the generator of spatial transla-
tions.

Let us next study the operator

k =p QA(r—, t) .

Its commutators read

[r;,kz] =i%5; J, [k;,Pcj] =ifiQ g c,~kBk(r, t) .
k

(2.14)

(2.15)

T(u, v;r)=exp —r(u k+v r)
fi

=exp —~[u p+v r" Qu A(r)—] . (2.20)

In contrast to the canonical momentum p, different com-

ponents of the kinetic momentum k do not commute, and
the commutator may even be a quantum-field operator.

8. Definition of the %'igner opera:or

With ~= 1 this become the operator T(u, v) of (2.16), i.e.,
the Fourier transform of the GIWO. Taking the deriva-
tive of (2.20) with respect to r gives

We define "the generating operator"

A
T(u v)=—exp —(u k+v r)

T(r) = —-
[ u p+ [v r Qu A (r )] I T(r)—,

B~ fi

and clmrl

(2.21a)

and the GIWO W(r, k) as the Fourier transform of
T(u, v),

T(0)=1 .

Trai sforming to an "interaction picture" with

(2.21b)

W(r, k) =
(2W)'

gT(r) =exp —wu p T '(r), (2.22)

X Jd ud v exp ——(u k+v r) T(u, v) . we obtain from (2.21}and (2.19b) the equation for T '(r):

(2.17}

This is coinpletely analogous to (1.1). Next, letting P
denote the density operator for the quantized degrees of
freedom for the system particle+ field, we define the
GIWF just like in (1.9),

B~ A'
T ' = —[v (r —ru ) —Qu A (r ru ) ]T '(r), —

T'(0)=1 .

(2.23a)

(2.23b)

Since only commuting operators appear inside the square
brackets in (2.23a), the solution to (2.23) can be found im-

mediately,
W(r, k)=Tr[W(r, k)p] . (2.18}

The GI%'F is thus the expectation value of the GI%0.
Notice that the GI%0 is Hermitian and the GIWF is
real. To the extent that the GIWF can be interpreted as a
distribution function, the expectation value of the opera-

tor T is the characteristic function of the distribution.
Since the implications of these definitions are somewhat

different depending on whether quantized fields are
present or not, we discuss these cases separately in Secs.

IT '( )=apex

T—Qu dr A(r —ru ) (2.24)

With x= 1, a formula for T(u, v) in (2.16) follows from
(2.22) and (2.24}. With the aid of (2.19b) the result may
be cast into several useful forms:
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r

1

T(u, v)=exp — u v exp —u P exp —v.r —Qu. drA(r —m)
2A 0

r

], /2
=exp u.p exp —v r . Q—u. drA(r+ru) exp u P2' fg —1/2 2A

r

e
1A=exp u v exp —v r Qu —dr A(»+su) exp —u.p2A' fi

(2.25a)

(2.25b)

(2.25c)

Further BCH formulas that are used later can be derived in a similar way:

7
T(u, v)=exp u v exp v —re.xp —u k

2A' A'

t' r I

,(2.26a)

=exp
l

2' uU exp uk exp U.r
i'

(2.26b)

],

exp —u k =exp — u dr A(r+nc) exp —u P (2.27a}

l=exp —u.p exp — u. drA{r ru)—
fi

(2.27b)

We finally emphasize that all BCH formulas presented are valid regardless of whether quantized fields are present or
not. This follows directly from (2.5}.

III. PROPERTIES OF THE GI%F

A. The case of classical fields

In this section we discuss the case when only classical EM fields are present. Then 4{r,t) and A(r, t) are operators
only through their argument r, and the vectors

~
r ) (or

~ p )) form a complete basis for the quantum-mechanical part of
the problem.

We first derive an expression for the GIWF from (2.18) using the BCH formula (2.25b). We obtain

A, 1 i 1/2
Tr[Tlu, v)p]= d r r exp u p exp —v r —Qu drdIr+ru) exp u p P rj2A —1/2 2A

{3.1a)

3
/' 1/2

d r r exp —v P gu drd(r+r—u) exp u P 'pexp u p r)-]/2 2A 2A'
(3.1b)

l 1/2
1 ~ 1d rexp —v r Qu drA(r+—m) (r+ —u ~p~r ——u),—1/2 2 2 (3.1c)

where (3.1b) follows from the cyclic invariance of the trace and (3.1c) from (2.19a) and its Hermitian conjugate. Taking
the Fourier transform we obtain the GIWF,

W(r, k)= f d ud vexp ——(u k+v. r) Tr[T(u, v)p]
(2M)

1/2

(2M)' f d'uexp —'u k+Q f drA(»+ac) &» ——,'u ~p~r+ —,'u&, (3.2)

Tr[T(u, v )T(u ', v')] = (2m%)35(u +u')5(v+ v') . (3.3)

Carrying out the relevant Fourier transforms we find that

which coincides with the earlier definitions repro-
duced in (1.12).

Starting from (2.25a) and (2.25c) we obtain in a similar
way

l

the GIWO satisfies the exact counterpart of (1.3) for the
ordinary %'0,

Tr[$'(r, k) fV(r', k')] =(2+4) ~5(r —r')5(k —k') . (3.4)

Since Ir,PI is a complete set of one-particle operators,
so is obviously Ir, k]. I.et us now assume that a given
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O(r, k)= J d rd kO(r, k)$V(r, k) . (3.5)

operator 0 can be represented in the form analogous to
(1.2) as

possible problems is presented in Ref. 5), but merely as-
sume that the class is large enough for our purposes. By
virtue of (3.4), a Weyl correspondence analogous to (1.4)
can then be set up,

We do not try to determine the class of operators that are
amenable to the representation (3.5) with sufficiently
well-behaved "functions" 0(r, k) (a clear exposition of

I

O(r, k)= =0(r, k)=(2M) Tr[W(r, k)O(r, k)] .

Since (3.5) may formally be written as

(3.6)

O(r, k)= — d ud v d rd k exp ——(u k+v r) 0(r, k)exp —(u k+v r)
(zw)' fi

L

T

co 1
d ud v(u k+v r)" I d t 1 kexp ——(u.k+v r) 0(r, k)

(2W)' „,nt
(3.7)

and the expansion of the powers in (3.7) automatically

produces all possible orderings of the operators k;, r;, the
A

operator 0(r,k) emerges from the expansion (3.7) as a
Weyl-ordered series. Conversely, if the operator 0(r,k ) is
given by a %'eyl-ordered power series

18 ),052, 153

8],F2, N3

(3.8)

then by choosing in (3.7) the 0 (r, k)

The GIWF is real, but because it contains the ordinary
WF as a special case (with A =0), it cannot be guaranteed
to be non-negative.

To complete the program patterned in the Introduction
an equation of motion for the GIWF is needed. This we
derive in Secs. IV and V. For the time being we turn to a
discussion of gauge independence and gauge invariance in
our formulation.

l. Gauge inuariance ivith classical fields

The gauge transformation '

1~"2 "3
m&, m2, m3
5 ),tl2, 53

(3 9)
A(r, t)~A '(r, t)=A(r, t)+ X(r, t),

r

4(r, t)~4'(r, t) =4 (r, t) — X(r, t), —
t

(3.12a)

(3.12b)

formally reproduces the series (3.8). Like the ordinary
Weyl transform in (1.5) and (1.6), the Weyl transform of
the Weyl-ordered function 0(r, k) is obtained by replac-

ing the operators r, k with the c numbers r, k.
If the operator 0(r,k ) is expressed in some other order-

ing than the Weyl order, its Weyl transform may still be
found from (3.6). In principle one might also recast the

operator into Weyl order and then replace r, k with r, k.
We give here an example that demonstrates the salient
difference from the ordinary Weyl transform. In contrast
to P;, different components of the kinetic momentum k in
general do not commute, and from (2.15) we obtain

fjQ . irtQ
kik2 ———,[k k i+2k k 2]+ii B(ir)~ kik2+i B3(r) .

2 2

(3.10)

The appearance of the magnetic field in the commutators
of k; does not cause any conceptual problems in the case
of the classical field, but it is going to introduce essential
complications when the EM field is quantized; see Secs.
III8 and IV.

From (3.5) and (2.18) it follows that the quantum-

mechanical expectation value of 0 can again be calculated
as if the Weyl transform 0 were a classical function
whose average is obtained using the "phase-space density"
8',

generated by an arbitrary real function X(r, t) leaves the
physical fields unchanged. In order to keep the
Schrodinger equation form invariant under the gauge
transformation, it is postulated that a simultaneous uni-

tary transformation defined by the operator

G =exp X(r, t) (3.13)

iq) ie")=G ie), (3.14)

and the operators, including the density operator p, be-
come

O~O '=GOG

Let us now study the operator

0 =0(r,p;A(r, t),4(r, t); IE(r, t),B(r,t) I;t)

(3.15)

(3.16)

that depends explicitly on the electromagnetic potentials
A and 4, and also in some uniquely prescribed functional
manner on the physical fields E and B. Such an operator
is called gauge invariant if it retains its form under a
gauge transformation,

must be effected on the states and operators characteriz-
ing the quantum system. The vectors of the Hilbert space
transform according to

Tr(Op) =I d r 1 k 0(r,k) W(r, k) . (3.11) O(r,j;A,k )~O'=GOG =O(r,j;A ', 4') . (3.17)
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It may be postulated that only gauge in-uariant operators
represent obseruable physical quantities '. From the point
of view of practical calculations a gauge-invariant opera-
tor possesses the advantage that its form in any gauge is
known and does not depend on the arbitrary function X,
hence the actual expression of 0 is also immediately
known in any fixed gauge.

It is well known that the kinetic momentum k is a
gauge-invariant operator, whereas the canonical momen-

turn P is not. It follows that every operator 0(r,P;A, 4)
that depends on the potentials only through the combina-

tion k =p —QA is gauge invariant. Although it seems to
be difficult to formulate the proof, we conjecture that the
inverse of this statement also holds: By reordering the
operators all gauge-independent operators may be cast
into the form

0 =0(r,k; IE(r, t),B(r,t) I ), (3.18)

which may contain a functional dependence on the physi-

cal fields E and B.
Since the GIWO (2.17) is a function of r and k only, it

is a gauge-invariant operator. Hence its explicit form in
any gauge is known. If the density operator is known (in
the same gauge), the GIWF may be calculated. Further-
more, being a quantum-mechanical expectation value in-
dependent of the unitary transformation [(3.13)—(3.15)],
the GIWF actually is independent of the gauge. The po-
tential A only appears as an auxiliary device during the
calculations.

However, the quantum-mechanical state P for a system
needed to obtain the GIWF is a priori known only by as-
sumption. For instance, thermal equilibrium may be as-

sumed if E =0 and B is time independent. If a process of
preparation or measurement is needed to determine the
state, the problem of relating the gauge-independent mea-
sured values to the state remains, cf. Ref. 17. In earlier
investigations of gauge invariance' ' ' ' the problem is
partly concealed by stating that in an experiment transi-
tions between (in general, time dependent) eigenstates of
some gauge-invariant operator are observed, and the
gauge-independent transition amplitudes are sufficient to
describe the experiment. In effect, the conventional ap-
proach assumes that the initial state of the system is
known

The GDvVF provides a handy solution to relating the
state of the system to measurements. To see this, we for-
mulate another postulate: Expectation Ualues of gauge
invariant operators can be measured without ever I2Faving to
refer to the gauge of the EM field. For each fixed r, k the
GI%0 is a gauge-invariant Hermitian operator, hence one
can (in principle) measure its expectation value, W(r, k),
without invoking the gauge. In an ensemble of identical
systems this can (in principle' ?) be repeated for every r, k,
and the whole GIWF W(r, k) is determined. That is, "the
state" of the system can be measured.

According to (3.17) the gauge transformation of any
gauge-invariant operator is a unitary transformation.
Since traces are preserved in unitary transformations, it
follows immediately from the definition (3.6) that the
Weyl transform 0 (r, k) of any gauge-invariant operator 0

is gauge independent.
Suppose the GIWF W(r, k, to) is initially determined ei-

ther by a measurement or an assumption. Next the sys-
tern is allowed to evolve and at time t the expectation
value of some gauge-invariant operator 0 is measured.
The result is

B. The case of quantized field modes

When quantized modes of the EM field are present,
A(r, t) [and possibly 4(r, t)) are operators also in the de-
grees of freedom of the EM field. The vectors

~
r) (or

~p)) no longer form a complete basis of the quantum-
mechanical part of the problem. Instead, one must use as
a basis either the vectors

(3.19)

where A, enumerates the vectors in some basis of the quan-
tized field, or any other basis obtained from the tensor
products in (3.19) by means of a unitary transformation.

In nonrelativistic quantum electrodynamics problems of
reconciling gauge transformations and quantization of the
field are usually avoided by using the Coulomb gauge and
quantizing only the transverse part of the EM field. Here
we adhere to the same procedure. The vector potential
A&(r) is quantized, but the scalar potential 4(r, r) is still
an operator only via its argument r.

The BCH formulas (2.25)—(2.27) remain valid when
quantized fields are present. By using the forms (2.25a)
and (2.25c) in the product of the operators and by taking
the partial trace with respect to the particle's degrees of
freedom, we obtain analogously to (3.4) the result

Trp[W(r, k) W(r', k)]=(2+%) 5(r —r')5(k —k')IF,
(3.20)

where IF stands for the unit operator in the field degrees
of freedom.

For the case of quantized fields the set of operators for
the system particle+ field is much larger than for a clas-
sical field; functions of the boson operators b&, b &

are also
incorporated. The GIWF is useful only if one finds for a
sufficiently large class of operators 0 the Weyl transform
0(r,k) satisfying

Tr(Op) = J d'r d'k 0(r,k) W(r, k) . (3.21)

We first note that (3.21) trivially holds for any operator 0
that can be represented in the form

Tr[P(t)0]= I der dik 0(r,k)W(r, k, r) .

It will be shown in Sec. V that the equation of motion of
the GIWF only involves the physical fields E,B. We have
thus provided a full quantum-mechanical description of
an experimental run, where the gauge fields at most ap-
pear as auxiliary devices in calculations. We note that a
third way to determine the initial density matrix is to
prepare the system in some chosen state. This may also be
expressed in terms of the GIWF, but a closer investigation
of this aspect will be the subject of a separate publica-
tion.
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O(r, k)= f d rd kO(r, k)W(r, k), (3.22)

with O(r, k) being a c-number function. As argued previ-
ously, an expansion of (3.22) in the form (3.7) gives a
Weyl-ordered series in r and k. Conversely, if O(r, k } is

given by a Weyl-ordered series of r and k, the representa-
tion (3.22) results by simply using inside the integral the

function O(r, k) obtained from O(r, k) through the re-

placement r, k~r, k. If it is not known whether the ex-

pansion (3.22) is possible, the necessary condition from
(3.20) and (3.22), Iiit—U(t, to) =H(t)U(t, to), (4.2a}

The first term is the kinetic energy, the second is the sca-
lar potential of the EM field, and the third is the free-field
Hamiltonian. If present, any potential of nonelectromag-
netic origin may be added to Qb and treated precisely in
the same way as this. We allow both for external classical
time-dependent fields Ac, 4, and the quantized field AQ
which is time independent in the Schrodinger picture.
The unitary time-evolution operator of the system U(t, to)
satisfies the equations

Trt [OW(r, k)] =(2W)-'O(r, k)I„~IF (3.23) U(to, to) =1 . (4.2b)

+ Tr[Bi(r }p) . (3.24)

may supply at least the negative answer.
In conclusion, we have argued that for a Weyl-ordered

A
operator O(r, k) one expects to find the "Weyl transform"
O(r, k) satisfying (3.21) and (3.22). What happens if 0 is
not Weyl ordered can be appreciated in an example de-
rived from (3.10):

Tr(kik2p)= f d rd kkik2W(r, k)

P(t) = U(t to}p(to)U (t to) .

The transformation of the operator

O(t) =O(r,P, I bq I, [b qt I;t)

to the Heisenberg picture is defined by

OH(t) = U (t, to )O(t) U(t, to) .

(4.3}

(4,4)

(4.5)

Given the density operator P(to) at time to, at time t it is

If Q is not Weyl ordered, the form (3.21) is in general pos-
sible only if also the expectation values of (products of
derivatives of) the magnetic field can be expressed in that
form. At first glance one might argue that by taking the
trace in the definition of the GIWF (2.18), one loses too
much information about the electromagnetic field, so such
expectation values could no longer be retrieved. But we
have not been able to prove this, and the contrary may
hold. In fact, the radiation-reaction fields can sometimes

be expressed in terms of the operator k, thus some of their
moments may be deduced from the GIWF.

IV. EQUATION OF MOTION
FOR THE VfIGNER OPERATOR

k;(t)k;(t)
H =g '

+Qtb(r, t)+A+'Qqb qbq .
e

(4.1)

A. The Heisenberg picture

We now embark on a study of the dynamical properties
of the system charged particle + field. The time evolution
is generated by the Hamiltonian

Ott is the same function of the operators as (4.4}, except
that r,p, etc., are replaced with their Heisenberg
transforms. Notice that the time-evolution operator is
unitary, hence the commutators of the operators are
preserved in the Heisenberg picture. It follows from
(4.2a) and its Hermitian conjugate that

dt A'
—OH(t) = — [Ott—(t),HH(t)]+ OH(t), —

t
(4.6)

O(t)= f d rd kO(r, k, t)W(r, k;r, k(t)}, (4.7)

where O(t} is the Weyl transform of O(t) at time t.
Then, at time t the expectation value of the operator O(t)
ls

where 8/Bt stands for the partial derivative with respect
to the explicit time dependence of the operator function
(4.4).

Along the lines of (3.5) and (3.21}we now assume that
in the Schrodinger picture an operator O(t) can be
represented in the form

Tr[O(t)P(t)]= f d r d kO(r, k, t)Tr[W(t)U(t, to)p(to)U (t, to)]=f d r d kO(r, k, t)Tr[WH(t)p(to)] . (4.8)

W(r, k, t) =Tr[ WH(r, k, t)p(to }), (4.9)

as the time-dependent generalization of the GIWF.
%e have now carefully defined the Heisenberg picture

We therefore use the Heisenberg-picture expectation value
of the GIWO,

in the ease when both the Hamiltonian and the operators
considered depend explicitly on time. The strategy of our
subsequent considerations is the following. First we
derive the Heisenberg equation of motion for the GIWO
W&. Next, we assume that quantized fields are absent,
multiply the Heisenberg equation of motion withP(to),
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and take the trace. This gives a closed equation for the
GIWF. The expectation values of any operators that can
be presented in the form (4.7), e.g. , of any Weyl-ordered

function of r and k, may then be calculated. We note that
a closed equation can be derived for the GIWF also when
radiation-reaction fields are present; this is the main
theme of the second paper in this series.

B. Heisenberg equation of motion

In this section we derive the Heisenberg equation of
motion for the Wigner operator WH. Since we use the
Heisenberg picture throughout the rest of this paper, the
subscript H will often be omitted in the operators. As the
transformation to the Heisenberg picture preserves com-
mutators, at every instant of time it is possible to find a
temporary basis [ ~

r, A, ) ] consisting of the eigenstates of
r(t) and satisfying

r
~
r, k):rH—(t)

~
r, A, ) =r

~
r, A, ),

exp —'u P ~
r, A, ) =

~

r —u, A, &,

(4.10a)

(4.10b)

(r, k
~
O(r; I bq ], I b qt ) )

~

r', k')

=(r,A. ~O(r;[bq], [bqt])
~

r', A. ') . (4.10c)

Here k labels some quantum numbers other than r needed
to specify the state uniquely. For instance, the basis ob-
tained from the one in (3.19) via the transformation

~&=U(t, to)
~

&
~
~& (4.11)

satisfies (4.10). Similarly, all operator equations that fol-
low from the commutators, in particular (2.19b) and
(2.25)—(2.27), remain valid in the Heisenberg picture.

The task is to calculate

—W(r, k;r, k(t)) =—W(r, k;r, k(t)) —W(—r, k;r, k(t)),g +Q4(r, t)+A'g'Qqb qbqdt ' ''
Bt

' ''
fi

' '' ', 2M
(4.12)

where the explicit time dependence has been indicated (below this is done only when the time dependence is specifically
emphasized). W is given by

l 3 3 1
W(r, k) = d ud v exp ——(u k+v r) T(u, v),

(2M) j6

T(u, v)=exp —(u k+v r) =exp —(v r+u Ip Q[Ac(r, t)+—A&(r)]])
fi

We start with the contribution to the equation of motion owing to the commutator with the scalar potential. Using
(2.25c) and (2.19b) we obtain

(2M) — [W(r, k),4(r, t)]=— d ud v exp — (u k+v—r ——,u v) exp —v r —Qu dq A(r+ru)iQ iQ l j.

X [4&(r+u ) —k(r )]exp —u p (4.13)

%e now write

4(r+u) —4(r)=u ~ I dr (r+ru) .
O

(4.14)

The special notation inside the integral stands for the derivative of 4 with respect to r taken at the point r+ru. In the
sequel we adhere to this convention in order to distinguish functions that are formed by taking derivatives from objects
acted on by the derivative operator. Unless otherwise stated, below the operator 8/Bk (Bf Br ) acts on all k (r) dependence
on the right of it.

Next we take the matrix element of (4.13) between two states of the temporary basis. From (4.10b) and (4.10c) we ob-
tain

(4.1Sa)
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The integral over U could now be carried out, and it would give a result proportional to 6[r —(r ——,u )]. It can thus be
seen that all matrix elements (4.15a) remain unchanged, if the replacement

84 (r'+su )~
Br

(r ——,u+ru )
Bp

(4.15b)

is carried out. Hence we may from (4.15) restore the operator equation

iQ i—Q 2 2
1~2 ' 84

[W(r, k), 4(r, t)]= 6 d ud U u ~ dr (r+~u) exp — (—u k+U r) T(u, u) .
X(2W)' —1/2 r

(4.16)

We may finally bring the function of u appearing inside the first set of large parentheses outside the integral by replacing
each u with —(fih)(aZak),

1/2
[8'(r,k),4(r, t)]=Q J d~

A
r+ihr W(r, k) . (4.17}

It can be seen right away that this operator term is precisely of the same form as the potential term in the equation of
motion of the ordinary WF, (1.11).

Steps very similar to the ones carried out above give the explicit time derivative in the form

Ar+ifiq, t W(r, k, t) . (4.18)

We next focus on the commutator with the free-field Hamiltonian in (4.12). We begin with

A. A)A l
[T(u, u), b qbq]=exp — uu+v —r" Qu —dr Ac(r+ru, t)

0

X exp — u dr Ag(r+ru },b qbq exp u'P
0

(4.19)

From (2.4) we obtain

1

0
u' dq A(2(r+ru)= ig'—(aqb q+a qtbq), (4.208)

with

1

u g(q) J drexp[ iq (r+ru)] —.
0

(4.20b)

13ecause aq, a q commute with each other and with the field operators, and the field operators of different modes also
commute with each other, the commutator in (4.19) may be obtained explicitly:

T

[, ]=exp —g' (aq b q +a q bq ) [exp[ i(aqb q+a—qbq)], b qbq]

iQ 1 iQ 1=i a b exp — u dr A&(r+ su ) —exp — u dt A&(r+ru ) a be e (4.21)

(4.20b) and the definitions of the field ope~ato~s E ~~+—1, (2.11},we ha

T( uu), igir' b qtbq

l l A( )exp —( —,'u U+U r) u drEI1 '(r+ru)exp — u drA(r+m)
0

iQ 1 A
+exp — u I dr A(r+m) u f d~E'+'(r+ru) exp —u.p (4.22)

The steps just like those from (4.13) to (4.17) finally give
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0

W(r, k),RQ Q&b(~b~ = —Q J dvE'() ' rii))r W(rk),

+g'(r, k) f d&E~+' r+ifir (4.23)

In this equation E (&+-' are still operators on the EM degrees of freedom, and therefore the order of E (&-+~ and W need to
be specified. Notice that the negative- (positive-) frequency component of the electric field appears to the left (right) of
the GIWO. The arrow above one of the derivatives indicates that this derivative exceptionally acts to the left.

The evaluation of the remaining commutator involving the kinetic energy in the equation of motion (4.12) is quite a la-
borous task. We do not present it in all detail, but only give an outline and derive some auxiliary results. Our tactic is to
keep the operator k =p —QA (r ) unsplit as far as possible. Therefore we employ the BCH formula (2.26a).

For the time being we, however, split exp[(i/A)u k] according to (2.27a), and obtain the commutator
('

A A jg
exp —u k, k; = exp — u dr A(r+ru), P; exp —u p

l—Q exp
1

u f dr A(r+riJ) exp —u P,A;(J') (4.24)

In spite of the fact that A (r ) may contain quantum-field operators, (2.5) ensures that in operator formulas involving only

functions of r, P, and A(r) and its spatial derivatives, the quantum-field nature never shows explicitly. Consequently,
the textbook result

[f(r ),P, ]= i&

still applies to the first commutator on the right-hand side of (4.24), whereas the second follows from (2.19b). We obtain
from (4.24)

j,

exp uk, k; —=Q guJ d~
J

T

AJ (r+ru) [A;(r+ru) —A;—(r)] exp —u k
r;

=guru, f'dr BAJ. BA;
(r+m) — dr (r+riJ) exp —u k

0

I=g f, d~ ux gXA (r+~u) exp —u k

1

=Q f dvigu XB(r+~u)];exp —'u k (4.25)

where we have used a standard formula of vector analysis derived from

g ~lJk~l J k ~ll ~JJ ~(J ~l J
k

It is also immediately obvious that

exp
g—Ur k- = —U-exp (4.26)

It follows from (2.26a), (4.25), and (4.26) that
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[T(u,u), k;k;]=exp —( '—u U+U r) Q i—fi +Q f dr[u XB(r+ru)]; f dr[u XB(r+ru)];

+2Q dr[u XB(r+ru)];k; —U;(U;+2k;) exp —u. k
0

(4.27)

It pays to remove the product k;exp[(i/irt)u k] from (4.27). To this end we first take the derivative of (2.27b) with
respect to u;, and obtain

l

au,
exp —u k = —exp —u P p —Q drA;(r ru—)+Qgu derJ 0

J

Aj
(r ru )—

drt

l
X exp — u ' dr A(r —ru ) . (4 2g)0

From the simple equality

it follows by integration that

1

zA r —ru

A;
(r —ru )

BrJ

(4.29a)

serted into (4.27). Next the Fourier transform

T(u, v)~ W(r, k) is introduced. By several partial in-
tegrations and steps like those from (4.13) to (4.17) the
desired commutator is finally obtained.

We collect all terms in (4.12) and write the complete
equation of motion for the GIWO:

8 8 8—+u +Q [u XB+Fc] W(r k t)
Bt Br

+ Q E & 'W(r, k, t)+ W(r, k, t)E &+' =0 .
k

1= A;(r N)+$ u~ —d71
0

J
(r ru) . —

rJ

(4.29b)

(}
exp —u k

Bu;

k;+Q f dr(l —r)[u XB(r+ru)];
0

When (4.29b) is inserted into (4.28), just as in (4.25) the
derivatives again combine to give the magnetic field.
With the aid of (2.19b), (4.28) becomes k Q A' 3 ~~2 . 8U=u+b, u= — — X dry r+ifrr

M Mi Bk

1 /2 w (j8= T8 r+i

(4.32a)

(4.32b)

(4.31)

Here the symbols marked with tildes may be operators in
the quantum-field degrees of freedom, and because they
contain powers of 8/Bk that operate on the label k of the
GI%0, we have

)(exp —u -k
fi

or equivalently,

(4.30a)
1/2

Ec= dr—1/2

ar+i Rr

kg exp —uk

Bu.
—Q f dr(1 —r)[u XB(r+ru)];

1/2
Eg r+I, fi~—1/2 Bk

(4.32c)
1

gexp u k (4.30b)

This expression was derived here because it shows a way
to handle products involving the GDVYO and the operator
k; an application is presented elsewhere.

The derivation proceeds as follows. First (4.30b) is in-

]/2, w
)F g = dTE g r+E'6'7—1/2

(4.32d)

Note that in the last term of (4.31) the derivatives inside
F. '+' exceptionally act to the left.
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Qualitatively this equation of motion mimics the equa-
tion of motion for the phase-space density of a particle
subjected to the Lorentz force Q(uXB+E). Quantum
mechanics appear in the field-operator character of 8,
E Ii+-', and W, in the "normal" ordering of E g'+-' and W,
and in the operator arguments i'~(B/Bk) of the fields.
Only one real surprise is present, namely, the velocity
correction

e a i~2
hu= — — y, f d~rB r+ifrrMi Bk ak

f(r) =f(r +u)

we obtain

g a — QEOEW= exp[ t(—Qt —q r)]
M au

=
2M au

1/2
dr W(r, u+m„, t)—1/2

(5.4)

which always adds to the ordinary velocity k/M. This is
a genuine quantum feature, at least of the order iit', but
otherwise we have no physical explanation to offer.

U. EQUATION OF MOTION
FOR FULLY CLASSICAL FIELDS

When only a classical field is present, one immediately
obtains the equation of motion for the GIWF by multiply-

ing (4.31) by P(tu) and taking the trace. To allow a closer
examination we write the result using the position and
velocity variables r and u =k/M,

r

—+(u+bu) + [(u+bu) XB+E] W(r, v, t)8 8 Q 8
Bt Br M Bu

with

bu= — — X f d~rB r+g fr 8 i~2 ibad 8
i u 1/2 M u

(5.2a)

1/2 i%~ 88=f drB r+
(5.2b)

E= ~E r+

E(r, t) = exp[ i(Qt —q r)]+c.c. , —

and only look at the electric field term in (5.1). Using the
familiar result

In the limit A'~0 (5.1) and (5.2) give precisely the clas-
sical Liouville equation for a particle under the Lorentz
force Q(E+v &(8). Quantum corrections appear as
powers of R .

If the electric field depends on the position at most
linearly and the magnetic field is homogeneous, the classi-
cal I.iouville equation is again retrieved. ' This implies
that in the dipole approximation for radiation fields
[E(r,t) independent of the position r, and 8:—0] all quan-
tum features of the dynamics get lost. Examples of iden-
tical results for a classical and a quantum particle under
such conditions can readily be picked up in the most re-
cent literature.

To appreciate the qualitative nature of the quantum
corrections we study the particle in a monochromatic
travehng plane wave

+c.c. (5.5)

Here u, =fig/M is the recoil velocity that the particle
would acquire if it could absorb a photon. We ascribe the
quantum corrections in (5.1) and (5.2) to the quantized ex-
change of momentum between the particle and the radia-
tion field, i.e., to recoil effects. In the present theory, and
in most approaches to light pressure' ' on atoms as
well, recoil effects and even the "photon momentum"
emerge from the assumption that the position label r of
the EM field is replaced with the quantized position of
the particle r. No field commutators, i.e., no photons,
need be introduced.

The GIWF theory with fully classical fields neither in-
corporates "spontaneous" photons emitted by an ac-
celerated charge, nor the associated radiation reaction.
Hence the approach is best suited to handle situations
which depend on (a large number of) induced absorption
and emission processes. For instance, a treatment of the
ponderomotive force with quantum corrections could be
set up, cf. Ref. 37. However, we neither dwell on the ap-
plications of the formulation with purely classical fields
any longer, nor do we try to patch up the case of classical
fields to include the classical radiation reaction.

VI. CONCLUDING REMARK. S

In this paper we have defined a gauge-invariant Wigner
operator and a gauge-independent Wigner function that
also incorporate the quantized degrees of freedom of the
electromagnetic field, and derived the exact nonrelativistic
Heisenberg equation of motion for the GIWO.

The emphasis has been on the case when the field is en-
tirely classical. Then it is possible to define a Weyl
transform of operators with all properties familiar from
the standard gauge-dependent Weyl transforms. Using
the gauge-independent Weyl transforms a quantum-
mechanical description of a full experimental run can be
provided where the gauge never has to be specified. We
have also stressed that in the dipole approximation classi-
cal and quantum dynamics are indistinguishable, and
qualitatively associated the corrections to the dipole ap-
proximation to recoil effects.

The gauge-independent Vfigner function automatically
avoids all gauge ambiguities, and is particularly well suit-
ed to iil expansions around the classical counterpart of the
quantum problem. Such characteristics may find good
use, say, in curing the reliance on an explicitly specified
gauge in some free-electron laser theories. However, this
is not the path we are going to follow. Since we have
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worked in the Heisenberg picture and at all stages retained
the option of letting the field be quantized, our formula-
tion possesses enough raw power to tackle the quantized
radiation reaction. This is the clue to the second paper in
this series.

w{r,k)= f d'u exp —u. [k+QA(r)j
(2+4')

x(.——,'. ipse. +-,'. & . (Al)

APPENDIX

1. On another %igner function v~ith vector potential

Occasionally ' a %F that also incorporates the vec-
tor potential is introduced simply by treating the ordinary
WF (1.9) like a distribution function and changing the
variables from r,p to r, k =p —QA(r). As the Jacobian of
the transformation is unity, the result is

This differs from the definition we have adopted, (1.12),
in that the integral over the vector potential is shrunk to
one point:

1/2
zA r+m ~A r

Such a replacement is an identity if A(t) is a linear func-
tion of position, but otherwise w(r, k) in (Al) need not
coincide with W(r, k) in (1.12).

Under a gauge transformation generated by X(r),
w(r, k) transforms as follows;

w'(r, k)= f d u exp —u [k+QA'(r)] (r —,'u ~p—'~ r+ —,'u)
(2W)'

(2m')3
' -P -' ' +X --,' -X +-,' -P -'' + A ~ --,' P +-,'2 2

(A2)

Unless the generator of the transformation is a linear
function of position, in general w'&w. The WF w(r, k) is
gauge dependent.

We next consider the use of w(r, k) to calculate expec-
tation values. Changing back to the variables r,p we ob-
tain

f d rd3kO(r, k}w(r, k)

dr p rp — Ar 8 rp

where W(r, p) is the ordinary WF from (1.9). The integral
on the left-hand side of (A3} is thus the expectation value
of the operator obtained by replacing in o(r,p)
=O(r,p —QA(r)) the arguments r,p by the operators r,p
and symmetrizing with respect to these canonica/ vari-
ables. There are trivial exceptions like the pair

O(r, k) =k~k, but in general no simple ordering rule for
r and k relates the function O(r, k) to the operator 0
whose expectation value is given by (A3).

Finally, if an equation of motion is derived for w(r, k),

it usually explicitly contains the electromagnetic poten-
tials. This is easily seen from (4.32c): in the equation of
motion for w(r, k) the integral over 7 is obviously absent
and t)A&/Bt should be taken at the point r=0 Hence th. e
higher tJltJr derivatives of the vector potential do not
combine with the derivatives of P to give derivatives of
the electric field. Again, P and A that depend on position
only linearly constitute an exception.

From the conceptual point of view the WF w (r, k) is a
hybrid that gives up both the gauge independence of the
WF (1.12) and the simple Weyl correspondence of the
usual WF (1.9). Moreover, the change of the variables
k=p —QA is not well defined if quantized fields are
present, and the quantized radiation reaction cannot easily
be incorporated into w(r, k). Nevertheless, thanks to the
exceptions listed above, when the fields are all classical
and a homogeneous magnetic field or the dipole approxi-
mation for radiation is assumed, the shortcomings of
w (r, k) need not show up if the potentials are chosen to be
linear functions of position. This is typically the case in
Refs. 39—41.
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