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Ground-state dissociation energies D, and equilibrium distances R, for the series of homonuclear

alkali-meta1 diatomic molecules Liq, Na&, . . . , as well as those for six heteronuclear alkali-metal dia-

tomic compounds, are evaluated on the basis of a simple valence-bond model. Each alkali-metal

atom in a diatomic molecule is characterized by two quantities: a Gaussian parameter P, of the
valence-electron function and a valence-to-core "relative-size" parameter y=(P, /P, }i, with P, the

Gaussian parameter for the core-electron charge distribution. For the homonuclear diatomic mole-

cules, accurate results are obtained with a 2s Gaussian valence function {r —a )6 orthogonalized to
the core. For each homonuclear diatomic molecule there exists an optima1 (P„y}set yielding values

of D, and R, in practically quantitative agreement with experiment. The quantities P, and y exhib-

it the expected physical behavior over the series in that P, decreases from Lii to Csi, and y is

highest for the lightest diatomic molecule Lii. The compounds K2, Rbi, and Csi are found to be
"Heitler-London" molecules to within 5% of their binding energies. An approximate, similar,

analysis of six heteronuclear diatomic compounds yields close agreement with experiment for LiNa
and RbCs, whereas with the other four compounds {LiK, NaK, NaRb, and NaCs) the agreement

with experimental D, and R, is to within at most 5%. Also RbCs is a "Heitler-London" molecule

to a very good approximation.

I. INTRODUCTION

In recent years there has been an upsurge in research on
alkali-metal di- and polyatomic compounds (Li„, Na„,
etc., also of mixed composition) for several reasons. One
incentive has been the possibility of studying two-photon
processes' (ionization, dissociation, and excitation) in
the diatomic molecules with lasers in the visible spectral
region. Also, cw alkali-metal dimer lasers have recently
been realized. The present high accuracy of laser spec-
troscopy has made it possible, for example, to determine
ionization potentials of alkali-metal atoms and diatomic
molecules to within a few cm . For the diatomic mole-
cules, on which we will concentrate in the present paper,
the experimental ground-state dissociation energies range
from 24 kcal/mole for Li2 to 10 kcal/mole for Css,' the
equilibrium distances lie between 2.7 A (Li2} and 4.6 A
(Cs2). Thus, bonding in these compounds, although much
weaker than in H2 (109.5 kcal/mole), is considerably
stronger than in so-called "van der Waals complexes" (a
few kcal/mole).

On the theoretical side, the development of extensive
methods has led to numerous applications in alkali-metal
diatoinic molecules (and some small-size clusters}, also as
a test of the validity of different approximation methods.
All-electron SCF (self-consistent field) and valence-
electron CI (configuration interaction) as well as MC
(multiconfiguration) SCF methods are now of common

use with the alkali-metal diatomic compounds, as exem-

plified by the MC SCF work on Liz (Ref. 6) and Nas (Ref.
7) by Konowalow et al. , followed by a number of analyses
of similar complexity on these and other members of the
series. It was found that, especially for the heavier atoms
(from potassium onwards), intershell correlation poses a
stumbling block because of slow convergence (see, e.g.,
Ref. 8). The correlation complication was circumvented
by Miiller and Meyer, s who introduced a (dipolar} core-
polarization potential (CPP) developed by these authors
and Flesch, ' containing an atomic parameter (cutoff ra-
dius) which was determined such as to reproduce the ex-
perimental ground-state ionization potential of the atom.
Their results (using a valence CI method, plus CPP) for
the ground-state properties of Lis, Na2, Ks, and LiNa
differ from experimental data by only 1—2%.

On the other hand, to take full advantage of the partic-
ularly simple electronic structure of alkali-metal atoms
(one valence electron well outside a closed inner shell), a
great many theoretical studies have been based on pseudo-
or model potentials to represent the cores. These are ei-
ther determined from experimental valence-electron atom-
ic spectra, or constructed nonempirically (SCF-adjusted).
For heavy atoms, relativistic contributions to nonempiri-
cal pseudopotentials have been included. The paper by
Miiller and Meyer contains a thorough analysis of the
characteristics of such calculations.

Preuss and collaborators" ' incorporated the Miiller-
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Flesch-Meyer core-polarization potential in their pseudo-

potential calculations on alkali- and noble-metal com-
pounds. In its most detailed version (for large cores as
with Cu and Ag), there are five parameters per atom,
determined such as to reproduce experimental
excited —to—ground-state atomic energy differences, and
the calculated (SCF) frozen-core Dirac-Fock ionization
energies of the atoms. For alkali-metal diatomic mole-
cules the complexity is not quite this large, since the ap-
proximation of nonoverlapping cores is found to hold to
good approximation. This reduces the number of adjust-
able parameters per atom to three, plus a summation over
angular momenta. A discussion of still other approaches
to core-polarization and correlation effects, e.g. of a per-
turbation analysis by Jeung et al. ' in conjunction with
SCF-adjusted pseudopotentials, is found in the paper by
Muller and Meyer. The most detailed pseudopotential
analyses generally yield binding energies with an accuracy
of 0. 1—0.2 eV and equilibrium distances differing by
about 0.05 A from experiment. For full details we refer
the reader to the literature quoted.

Little effort has been undertaken in the literature over
the past 50 years with the aim of providing insight into
the binding characteristics of the whole series of alkali-
metal diatomic compounds. Recently, Pelissier and
Davidson' applied a nonorthogonal configuration in-
teraction method to these molecules. The atomic orbitals
forming the basis were expanded in large sets of Gaussian
functions. Besides the calculated full CI values for D,
and R„a decomposition of the binding energy was per-
formed in terms of contributions of different types (ionic
terms, s-P excitation} for the series H2, Liz, Naz, and Csi.
These authors find a large contribution of s-p excitation.
They also deduce that valence —other-core overlap consti-
tutes the principal difference between binding in Hz and
in the alkali-metal diatomic molecules. Their full CI
values for D, amount to 79 (H2), 71 (Li2), 72 (Na2}, 76
(K2},and 53 (Csz} percent of the experimental values. Al-
though the agreement is quantitatively rather poor, the re-
sults account qualitatively for the observed decrease in
binding energy going from Li2 to Csz.

In spite of these advances, full-scale ab initio analyses
resulting in (close to) experimental accuracy are limited to
the lightest alkali-metal diatomic molecules, whereas
pseudopotential approaches still necessitate large basis sets
and extensive parametrization, thereby losing part of their
advantage in principle. This raises the question whether
such large-scale calculations are appropriate, and suffi-
ciently accurate, for the evaluation of interactions in, or
below, the millihartree domain. Davis and Monkhorst'
constructed molecular basis functions for the hydrogen
molecule from combinations of up to 40 Slater functions,
with the aim of finding criteria for basis sets yielding en-
ergies accurate to below 1 millihartree ( &0.5 kcal/mole).
Their attempt was not successful, and the authors con-
clude that it might be more profitable to pursue methods
that do not re1y on basis sets.

Already in 1934, a valence-bond treatment of Liz was
carried through by James, ' following the Wang-
Rosen ' ' analysis of the hydrogen molecule, with a
distance-dependent exponential parameter in a 2s Slater
function for the Li valence electron. The calculated disso-
ciation energy was, however, much too low, accounting
for only 20% of the experimental value (at an assumed
separation of 2.78 A). A subsequent variational treatment
by the same author, ' modeled after the James-Coolidge
analysis of Hi, but without the riz correlation terms in

the variation function, yielded a binding energy still too
low by about 50%. Recently, we calculated the
ground-state binding energy and equilibrium distance of
the hydrogen molecule using (simple) Gaussian wave
functions for the atoms, with distance-dependent ex-

ponential parameters, i.e., without the use of basis sets. In
the present paper a similar approach will be formulated
for the alkali-metal diatomic molecules.

II. THE MODEL

We consider a system of two (identical) alkali-metal
atoms A and 8, in a two-electron description (valence
electrons 1 and 2), at a distance R from each other, and
write down the expectation value (E) of the total Hamil-
tonian H«, in a valence-bond approach. Let the one-
center wave functions for the valence electrons be g„and
fz, respectively. We write H„,=Hp+ V, with Hp the
Hamiltonian for the noninteracting atoms and with V
their Coulomb interaction. For the singlet state of the
system we obtain directly for F., with ( ) referring to the
simple product gq'/Pi ', and with b, the overlap integral

8=((I+Pig)Hto, (I+Pip))/2(1+6, )

=(H„,(I+P)i)) l(1+6, )

= (H. &+«(I+P„)&/(1+~')

+[1/(1+b, )]((HpPiz ) —(Hp ) (Pip ) ),

where I is the identity operator and Pi& permutes the la-
bels of the valence electrons (thus (Pi&) =b, ). The first
term on the right of (1) is the expectation value (Hp ) for
two noninteracting atoms, the second term is of the same
form as the Heitler-London (HL} interaction energy, and
the last term contains "exchange corrections" to (Hp).
This term is zero if Pz and Qadi are eigenfunctions of Hp,
the second term is then the so-called "exact HL energy. "

In the first instance we choose, as for the hydrogen mol-
ecule, 1s Gaussian functions

g„(1)=(P/n' ) ~'exp( 13 r', „/2—),
and similarly for fz(2), with characteristic parameter P,
to be determined. Equation (1) can now be readily
evaluated. The results for the three terms of the sum are,
respectively,

(Hp) =(3' /m)P 2e P(2n— . (2)



33 MODEL ANALYSIS OF GROUND-STATE DISSOCIATION . ~ .

( V(I+P, ))i/(1+6 )= PI 1/13R+[1/(1+6, )][ 2—rf(PR)/PR+2 ' rf(2 '/ PR)/2 '/ PR]

+[6 /(1+6. )][—2erf( ,'P—R)/—,'PR+2'/ n '/ ]I,
[1/(1+6, )]((HuPiz) —(Hu) {,'Pi2))= —(trt /2m)[h /(1+6, ) j ,'13—'R

+ [b, /( 1+5 )]e P[2 n '/ —2 erf( ,' PR—)/ ,' PR—] .

(3)

(4)

To simplify the notation, we abbreviate the sum of (2),
(3), and (4) by F(P,R). A relation between P and R at the
minimum (fixed P) of F is obtained from

f BF(P,R)/t)R]t) =0. This relation is very close to a hyper-
bola PR =C, with C =1.2748 [the value 1.2748 is exact
on the basis of the Heitler-London part of F(P,R), i.e.,
Eq. (3)]. Small deviations (a few percent at most) occur
for R &0.8 A, thus for P&1.6 A '; for the hydro-
gen molecule the precise value is 1.3105. As in the case
of Hz, we will interpret (Hu ), Eq. (2), in the model as de-
fining the zero of interaction.

In applying the same formalism to the alkali-metal dia-
tomic molecules, we observe that the terms in Eq. (1) in-

volving the single atom -operator Hu are overestimated
without appropriate scaling, since the hydrogenic model
imposes that (Hu) depends on the principal quantum
number n of the valence electrons as 1/n We .now gen-
eralize the model treatment through the condition that the
kinetic-energy part of (Hu), i.e., the first term of (2),
must be equal to (3trt /m)p /n, the potential part of
(Hc) [second term of (2)j equal to —2e P(2m '/ )/zn

for n =1,2, . . . , 6. The same scaling pertains to the two
parts of Eq. (4).

With the above procedure, ls Gaussian functions can
be applied to the series of alkali-metal diatomic molecules.
In Table I, the results of the calculations are given. The P
values for the alkali-metal atoms were determined, in first
approximation, from PR,„&,——1.3105 (Hz), where R,„~, is
the experimental equilibrium distance in the dimer; R,
and D, are the calculated equilibrium distances and disso-
ciation energies (E (Hu ) at R =—R, ), and —EHi. is the
Heitler-London part, Eq. (3), of D, .

As it is seen from the table, the model results for D, are
in rather good agreement with experiment for Lit, but
they are too high for the other dimers; the R, values agree
with experiment to within only a few percent, and may
thus be considered satisfactory. Surprisingly, however,
the Heitler-London contributions are always larger than

D, . The P values in Table I also give a measure for the
relative overestimate of (Hu ) in the absence of scaling. If
we compare Li and Cs, then without scaling (taking in
first approximation for the P values those of Table I) the
kinetic energy (proportional to P ) decreases by a factor
(0.282/0. 490) =0.33, whereas according to the 1/n rule,
this factor should be 0.33 X(2 /6 ) =1/27.

III. BINDING ENERGIES
W'ITH CORE-ORTHOGONALIZED VALENCE

FUNCTIONS

The results of the previous section show that to obtain
binding energies of the alkali-metal dimers which are sig-
nificantly better than those calculated with ls Gaussian
functions, the atomic cores must be taken into account ex-
plicitly. This is most simply accomplished through
orthogonalization of each valence function to that of its
core. For the wave function of the core we choose a sim-
ple Gaussian G„with a parameter P„ to be determined,
to represent the core electrons collectively. The core orbi-
tal is occupied by two spin-paired electrons.

This procedure was first carried out for a ls Gaussian
valence function G, Schmidt-orthogonalized to the
simple-Gaussian core function 6,. The orthogonal
valence function f„ then reads, with 5 the overlap in-
tegral between 6 and G, (both Gaussians normalized to
one)

where

with

[2y 1/2/(y + 1 ) ]s/z (6)

y =—(P, /P)

The parameter y is a measure of the relative extension
of the ls Gaussian part of the valence function and that

TABLE I. Model values of the equilibrium distance 8, (in A) and the dissociation energy D, (in
kcal/mole) for the homonuclear compounds Li2, Na2, K~, Rb2, and CS2, %'ith 1s Gaussian valence-
electron functions {parameter P), as compared with experiment. Also given are the Heitler-London

0
component —EHq of D, and the value of the 1s Cxaussian parameter P {in A ') for each atom.

Compound

Li2
Na2
K2
Rb2
Cs2

2.6
3.0
3.9
4.1

4.7

23.34
21.32
16.86
16.02
14.34

EHL

25.42
22.20
17.29
16.29
14.52

0.490
0.428
0.334
0.314
0.282

~expt

2.673
3.079
3.924
4.1?0
4.648

Dexpt

24.37
17.22
12.00
11.30
10.42

'Detailed references are given in Table II.
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P a =3/(1+y), (7)

where y is the "relative-size" parameter, y=(P, /P) . We
then evaluate the quantity E —(Hp) Eq. (1), applying
the scaling procedure to the terms occurring in Eq. (4) in
the same way as outlined for the case of ls Gaussian
valence functions. Ex~licitly, the kinetic energy part of
(Hp ) for a function (r —a )6 reads

:—K(y)+P2/2m .

of the core; y & 1 in all systems considered.
We then choose values for the parameter P of the

valence function, and values for the parameter y. A scan-
ning procedure may then yield sets (P,y) which lead to
R„D, values close to experiment.

The dissociation energies are now found to be lower
than the experimental values, by about 10%, in contrast
with the nonorthogonalized ls Gaussian functions (Table
I). The equilibrium distances are between 5% and 10%
lower than the experimental values; furthermore, best re-
sults for all compounds are obtained with y =20, a physi-
cally unlikely result.

Consistently good results for the whole series of
homonuclear alkali-metal diatomic molecules were ob-
tained by using a valence function (r —a )6, with Gauss-
ian parameter P. This function, orthogonalized to 6„
may be considered the "2s" to the ls Gaussian 6.
Orthogonalization yields the simple relation

The function E(y) varies slowly with the relative-size
parameter y; for y~ Oo it is equal to 1.1, for y =24 it is
1.15, for y=9 it amounts to 1.30 and for y =2 it reaches
the value 2.35. We scale (Hp )(„.„by a factor S~„ through
the condition

S~„I(.'(y ) =3/2n (9)

=L(y)(2n'e .P) . (10)

Also L (y) varies slowly with y„ for y —+ oo it is 0.53,
for y =24 it is 0.52, for y=9 it amounts to 0.51 and for
y=2 it reaches the value 0.57. We scale (Hp)~, by a
factor S~„through the condition

S~,L(y) = 1/n

The scaling factors are then also applied to the two
terms of Eq. (4), i.e., those containing the single-atom
operator 80.

After applying the scaling we use a scanning procedure
and calculate dissociation energy and equilibrium separa-
tions for different sets of P„y values. For the homonu-

It is found, as in the case of ls Gaussian functions, that
S(,„ is practically equal to 1/n for the range of y values

(9—25) for the alkali-metal dimers.
The corresponding equation for the potential part

(Hp)~, reads

'a'+ ,' g'a-'
(2rr '~ e P)

TABLE II. Optimal model values for the valence Gaussian equilibrium parameter P, (A ) and the valence-to-core relative-size
parameter y in the orthogonahzed function (r —a~)G, for homonuclear and heteronuclear alkali-metal diatomic compounds. Also

0
given are the calculated equilibrium distances R, (A), the dissociation energies D, (kcal/mole), and the Heitler-London parts —EHL
of D, . In the last two columns, values for the dimensionless quantity P,R, are listed.

Diatomic
Optimal values

|'
Model Calculated

—EHL

Experimental
R,

Model

P,R,

Llp

Na2

K2
Rb2
Cs2
LiNa
LiK
NaK
NaRb
NaCs
RbCs

0.760
0.678
0.538
0.505
0.454
0.710"
0.630"
0.616'
0.608"
0.575"
0.482"

24
12.4
9.1

10.0
11.8
17
16
11.5
11.5
11.9
11.2

24.38
17.22
12.00
11.29
10.37
20.33
17.16
14.93
14.55
13.73
10.97

2.64
3.06
3.94
4.19
4.63
2.87
3.25
3.39
3.45
3.64
4.37

18.44
15.30
11.42
10.95
10.18
16.71
14.64
13.73
13.55
12.90
10.70

24.37~
17 22~ d

12.00'
11.301'

10.42'

20.29'
17.59+0.35
15.07"'
15.05~

14.16q

10.96'

2.673'
3079' '

3.924'
4.170"
4.648'
2.885'
3.322
3 498"
3.558~

3.850"
4 37'

2.00
2.07
2.12
2.12
2.10
2.04
2.05
2.09
2.09
2.09
2.11

'Reference 25.
"Reference 26.
'Reference 27.
dReference 28.
'Reference 29.
Reference 30.

~Reference 31.
"Reference 32.
'Reference 33.

"Reference 34.
"P,(MN) determined through independent scanning.
'Reference 35.

Reference 36.
"Reference 37.
Reference 38.

I'Reference 39.
qReference 40.
'Reference 41.
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clear compounds the choice of the optimal P„y values

follows from the criterion of obtaining the closest agree-
ment between the calculated and the experimental values
of D, . This criterion leads to calculated equilibrium
separations which differ from experiment by —1.1%
(Li2), —0.6% (Naz), +0.4% (Ki), +0.4% (Rbi), and

0.4—% (Csi). These optimal P„y values giving very
good agreement with both the experimental dissociation
energy and the equilibrium separations, are reported in
Table II for the homonuclear alkali-metal diatomic com-
pounds, and for the heteronuclear compounds LiNa, LiK,
NaK, NaRb, NaCs, and RbCs. For the latter category,
only one P and one y variable were used, in order not to
complicate the model. %e have also listed the Heitler-
London contributions —EHL and the values for the di-
mensionless product P,R, .

From the table we see that the function (r a)G—
yields indeed very accurate results for the whole homonu-
clear series. The fact that y increases somewhat from Ki
to Csq (from 9.1 to 11.8} may be due to the fact that only
for nonorthogonal (ls Gaussian) valence and core func-
tions y=(P, /P) is a "true" relative-size parameter. In
addition, deviations from the hydrogenic model adopted,
and relativistic effects (shrinkage of valence orbitals) may
play a role with the heavy diatomic molecules.

The Heitler-London contributions to the bonding are
much more satisfactory than those found in the case of Is
Gaussian (cf. Table I). They amount to 76% for Li2, of
the same order as for H2 (78%), and to 89%, 95%, 97%,
and 98% for Naq, Ki, Rb2, and Cs2, respectively. Ac-
cording to the model the heavier alkali-metal diatomic
molecules are, therefore, "Heitler-London molecules" to a
very good approximation.

For the heteronuclear compounds listed in Table II we
have taken, as we mentioned, one variable P and one vari-
able y. Excellent agreement with the experimental R„D,
values is obtained for LiNa and RbCs, i.e., for the lightest
and heaviest heteronuclear diatomic molecules, respective-
ly. Here, the optimal values of P, are very close to the ar-
ithmetic mean of the P, in their homonuclear compounds.
With LiK, NaK, NaRb, and NaCs we find deviations of a
maximum of 5%. The approximation of using one vari-
able P, y set, may be too crude in these cases.

Finally, we have verified that the alternative criterion
for choosing the optimal P„y values, based on the closest
agreement between calculated and experim. ental equilibri-
um separations, leads to optimal P„y values which are
very close to those listed in Table II. In the case of Liq,
with P, =0.755 A ' and y=23, one obtains R, =2.67
A and D, =23.61 kcal/mole, with an error of —3% of
the dissociation energy. We note that the product P,R,
remains practically constant for the two sets of optimal
P„y values.

IV. CONCLUDING REMARKS

From the analysis presented in this paper, a strikingly
simple interpretation emerges regarding the effect of core
electrons on ground-state dissociation energy (D, ) and
equilibrium separation (R, ) of homonuclear alkali-metal
diatomic compounds. Excellent agreement with experi-
ment is obtained for D, and R, in a two- (valence-) elec-
tron model by choosing 2s Gaussian orbitals (r a—)G
for these electrons. Here 6 is a simple Gaussian function
with characteristic parameter P, and ai is chosen such
that the valence function is orthogonal to the simple
Gaussian core function G„yielding P a =3/(y+1),
with a relative-size parameter y=(P, /P) .

We have concentrated on equilibrium properties of the
alkali-metal diatomic compounds (D„R„P„y). In prin-
ciple, it would have been possible to construct the com-
plete potential E —&Ho& as was carried through for the
hydrogen molecule (Fig. 3 of Ref. 23), by minimizing
E= &~„,& of Eq. (1) with respect to all variables. How-
ever, it seemed more judicious to test the model first with
respect to its accuracy at the equilibrium configurations.

The values for the dimensionless parameter P,R, are
quite close over the whole series of alkali-metal diatomic
compounds (Table II), with a maximal deviation of 4%
from a mean of 2.08. If we impose the condition

2 = 2&r &., pi. G
——&r &„

with parameter P' for the simple Gaussian, the P,'R, is
found to lie between 1.29 and 1.34 over the whole series.
It is interesting to note that these values practically coin-
cide with the corresponding value 1.31 obtained earlier
for the hydrogen molecule.

The set of P„y values for each alkali-metal diatomic
molecule obtained from the analysis implicitly contains
effects such as valence-core polarization (same, or other,
core), relativistic effects, etc. It is anticipated that such
information provided by the model may prove adequate
when we consider (weak} bonding in more complicated
molecules and in small clusters of metal atoms.

The analysis presented thus far applies for homonuclear
diatomic compounds (for the six heteronuclear systems we
adopted the approximation of taking a single P, y set of
variable parameters). An important question concerns the
possibility of formulating an analogous approach for the
case of strongly heteronuclear diatomic compounds.
Here, the alkali-metal hydrides are an obvious choice.
This analysis is under way; the results will be published
separately.
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