
PHYSICAL REVIE%' A VOLUME 33, NUMBER 5 MAY 1986

Canonical treatment of harmonic oscillator with variable mass
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By the use of a canonical transformation the problem of the harmonic oscillator with a time-

dependent mass has been transformed to that of an oscillator with a time-dependent frequency.

Pseudostationary and quasicoherent states are discussed.

I. INTRODUCTION

M (t)=m exp[21"(t) ] (1.2)

in order to treat the case of variable damping. Abdalla
and Colegrave give an exact solution for a particular
I (t). Remaud and Hernandez'o point out that when ener-

gy is supplied to an oscillating system in a periodic cycle,
the resulting dynamics may be described by

H(q, p, t) = + ,'M(t)cooq— (1.3)
2M t

with a periodic M(t).
This case could be considered to correspond to an imag-

inary damping coefficient 5 in (1.1},but then the Hamil-
tonian would cease to be real (in classical mechanics} or
self-adjoint (in quantum mechanics). This difficulty has
been overcome by Colegrave and Abdalla, "' who treat
the strongly pulsating case with

M(t)=mcos (5t+e) .

These authors give an exact solution which has been
rederived using an alternative method by Leach. '

Colegrave and Abdalla' ' have described the pulsating
oscillator system as simulating externally imposed
changes in the field and discussed the fluctuation which
could result from the interaction of the cavity field with
an atomic reservoir as, for instance, in laser production.
However, the main purpose of the present paper is to ex-

hibit, in a very simple way, a new treatment of the general
problein of a variable-mass oscillator (1.3). As discussed
in Ref. 11 we have employed canonical transformation
theory to transform the variable-mass oscillator to one
with a time-dependent frequency and to reduce the Ham-

The problem of the time-dependent harmonic oscillator
has been the object of renewed interest over the past de
cade. From the physical point of view, the most relevant
applications arise in the quantum-mechanical treatment of
the damped oscillator. This leads a variation of the mass
parameter according to

M (t) =m exp(25t) .
%e single out work by Kanai, ' Hasse, ' Tartglia, Dekk-
er, and Caldirola. 6 Dodonov and Man'Kos have con-
sidered the mass

(1.6)

where H is given by (1.3). The method we have used pro-
duces an exact solution for the Schrodinger equation (1.6}
for a general time-varying mass function M(t). A quan-
tal treatment of this problem is based on the Hamiltonian
(1.3) together with (1.2), and the order of presentation is
as follows. After introducing the canonical transforma-
tion in Sec. II we consider in Secs. III and IV the dynam-
ics of the mass oscillator first in the wave picture; then,
we calculate the expectation values of dynamical quanti-
ties. In Sec. V we introduce the solution in the Heisen-
berg picture and in Sec. VI we discuss the relation be-
tween the coherent states and pseudostationary states. Fi-
nally, we present some examples to illustrate the validity
of our method when the mass is taken as a function of the
time.

II. THE REDUCTION
TO A VARIABLE-FREQUENCY OSCILLATOR

As considered in Ref. 16 we transform the variable-
mass Hamiltonian (1.3) via the canonical transformation

qo(t) =[M (t)/m]'~'q (t),

p, (t) = [m/M(t)]'~'p(t)
(2.1)

to a form in which the time dependence is concentrated in
the fluctuation function y(t) defined by

y(t) =——[lnM(t)] .
l d
2 dt

The new Hamiltonian is

po ( 2 2 y(t)
Ho = + Tmcooqo+ (poqo+qopo) .2' 2

(2.3)

iltonian (1.3) to the standard form

H(t)=iriQ(t)(A A+ —, ),
where A and A are the usual Dirac operators and Q(t) is
the effective frequency. It is one of our intentions in the
present note to obtain a solution for the Schrodinger equa-
tion
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Let us introduce an explicitly time-dependent Dirac
operator

A, (i)=[2m%'0(i)]

where 0(t) indicates the derivative of 0(t) with respect to
t. Obviously A, (t) and its adjoint satisfy the canonical
relation

[A, (i),A, (i)]=1 . (2.5)
' m 0(r)+i y(r)+ qp+ipp

0(i)
20 r

(2 4} From Eq. (2.4) and its adjoint we have

and

qp(r} =[Pi/2m 0(t)]'~'[A, (i)+A, (r)]

iPp(t) =[m0(t)iri/2] [A i(t) —A i(r)] i —y(t)+1/2 0(i)
20(r)

' 1/2

[A, (r)+A, (r)] .
2Q i

(2.6)

(2.7)

Thus from Eqs. (2.6) and (2.7) substituted into Eq. (2.3) the new canonical Hamiltonian is
'2

Hi(t)= — fi[Ai(t) —A i(t)] + cop —y +0(t) t i h i i Q(t)
[A, (t)+A, (t)]'

[A ~i(r) —A i+'(r)]+imari Q(t) p +2 B~z

2 20t (2.8)

where Fz is the generating function given as in Ref. 17 by where x, (t) and x2(t) are two independent solutions of

Fz(qo pi r)=—

(qopi+piqo)

1, 0(t)
2pio 20(r)

1 0(r)
2 cop

(2.9}

x'+(pip —y —y )x =0 (2.15)

ab —c =w, w=xi —(xi/x&) .
t

(2.16)

and the constants a, b, and c are related according to

where pi is a new momentum defined by

+1 Q(r)

[0(t)coo] 20(i)

+[cop/0(t))' pp . (2.10)

Thus the problem of variable mass (1.3) is solved by ap-
plying the definition of the time-dependent Dirac operator
(2.4).

III. SOLUTION OF THE SCHRODINGER
EQUATION

From Eq. (2.9) the last term in Eq. (2.8) is

BFz R d Q(t)
Bi

=
40(r) dr "+20(r) "'+"'

——i}i (A, —A, ).
2 20(i) (2.11)

From Eqs. (2.8) and (2.11) we see that the original Hamil-
tonian (1.3) reduces to the remarkably simple result

H(t) —+Hi(t) =A'0(t)(A iA i+ —,
' ), (2.12) y=&0(&)qo 4(y)—=f(qo) . (3.2)

We shall turn our attention to the task of using the
Schrodinger picture to find the pseudostationary states.
The Schrodinger equation corresponding to the Hamil-
tonian (2.3) is

m P~o 2im B$qoP+
&

y(&)qoB
qo Bqo

y(i)g . (3.1)
fi Bt

Let us define

Then Eq. (3.1) becomes
2m~o, 2im 1 0(i) Bp

RQ(t) fi 0(t) 20(t) By

2im BP
RQ(r) Bt

(2.13)
imy(t}

p (3 3)
RQ(r)

The general solution is (cf. Ref. 18)

Q(i) =(ax i+bxi+2cx ix2) (2 14} We seek a separated solution of the form

where Q(t) is given by the equation
'2

1 d Q(r) 1 Q(i) +0 (t) =No y(&) —y —(i)
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P(y, t) = Y(y) T(t)

im Q(t}
2(rtQ(t) 2Q(t) A, =(2n+1)m/((1 (n =0, 1,2, . . . ) .

The solutions of Eqs. (3.5) and (3.6) may be written as

(3.7)

Equation (3.5) is the usual equation for the harmonic os-
cillator and requires the quantization

2 2 2dY& my
dye

(3.5)

With aid of Eq. (2.13) and after straightforward work we

find, with A, a constant of separation,
Y„(y)=H„—y exp — yz

2A

T„(t)=Q'/ (t)exp —i(n+ —,') f Q(v)dr
0

(3.8)

(3.9)

dT iQ(t)(ri im Q(t)
dt 2m 2((1Q (t)

(3.6}

Thus the corresponding solution of the time-dependent
Schrodinger Eq. (1.6) including a normalization constant
(with respect to qo) is

' I/4

q„(qo&t)= 2 "
( () ' H (&mQ(t)/(riq )

A~

Xexp ' — Q(t)+i y(t)+m . Q(t)
2Q t qo exp —i(n+ —,

'
) I Q(t')dt' (3.10}

From Eq. (3.10) it is easy to realize that the Schrodinger wave function is not much more complicated in form than that
for the time-independent oscillator.

IV. EXPECTATION VALUES AND MATRIX ELEMENTS

To calculate the matrix elements of V, T, and Ho with respect to the states (3.10},we can show that

2

& n
I

V
I

n') =—R I(2n+1)5„„+[(n+1)(n+2)]' 5„„z+[(n'+1)(n'+2)]' 5„

&n
I
T In' )= (n+ —,')Il+[f(t)/Q(t)] I5

2

(4.1)

[(n + 1)(n +2)]'/ 1 —2i[f(t)/Q(t)]- Qt

RQ(t) (t)
4

[(n'+1)(n'+2)]'/' 1+2i[f(t)/Q(t)]-
Q(t)

(4.2)

& n
I
Ho

I

n') =()lQ(t) 1+ z (n + —,
' )5„„+ [(n +1)(n +2)]' [f(t)+iQ(t)]5„„z

2Q'(t)

[(n'+ l )(n'+ 2)]'/'[ f(t) —i Q(t) ]5„ (4 3)

We notice that &n I
V

I
n') is time dependent and equal to

coo/Q(t) times the value for an oscillator with constant
Q1RSS

&n
I H, I

n) =[Q(t)/to, ][1+f(t)/2Q'(t)]

x& (4.7)

&n
I

V In')=[top/Q(t)]&n I
V

I

')n(, ()(t (4.4) and

The expectation values of V, T, Ho, and q(ipo+poqo in
the state f„r ae

& n
I

V
I

n ) = [ado/Q(t)] & n
I

V
I
n )~{()

& n
I
T

I
n ) =[Q(t)/t00] I 1+[f (t)/Q(t)]'I

x&n I
T In&~(()=

& n
I qouo+uoqo I

n &
= — f (t)(n + —,},2A

where

f(t)= y(t)+ Q(t)

(4.8)
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The kinetic energy T and the potential energy V may be

explicitly expressed as functions of the time. This will be
done in the following section.

V. THE EQUATIONS OF MOTION

In this section we shall derive the equations of motion
in the Heisenberg picture of quantum mechanics. The

canonical Hamiltonian (2.3) gives

dqo

dt
—y(t)qo =po/'m,

dpo 2

dh
+'Y(t)po = m—~oqo .

The general solution is given by

{5.1)

Q(0)
Q(t) v Q(t)Q(0 m &Q(t}Q(0)

(5.2a)

po(t) = Q(t)
Q(0}

' ]/2

cosI (t) f(t)
Q(t}Q(0}

sinI (t) po(0)

+ q (0) cosI(t}—v'Q(t)Q(0) 1+ sinI(t}
&Q(t)Q(0) Q(0)Q{t)

where

I (t) = f Q(t')dt'

and f ( t) is defined by Eq. (4.9). We may easily check that

[q (t),p (t)]=[qo(0) po(0)]=iiit .

From Eqs. (5.2), we find the following expressions for V(t) and T(t):

V(t) =Q(t) ' Q(0)cos I(t)+ sin I(t}+f(0)sin[2I(t)] V(0)(0)
Q(0)

2

+ [coo/Q(t}Q(0) ]sin [I(t)]T(0)+— sin[2I (t)]+2 sin I(t) [qo,po]+,2 2 1 too f(0)
4Qt

T( t) =Q '(0) Q(t)cos2I (t)+ sin I (t) —f(t)sin[2I (t)] T (0)
'(t) . ~

Q(t}

(5.2b)

(5.3}

(5.4)

(5.5)

+ —,
' [Q(0)Q(t)]-'([Q'(t)+f'(t)][Q'(0)+f'(0)]

+ I [f'(0)—Q'(0)][Q'(t) —f'(t)] —4Q(0)f(0)Q(t)f(t) Icos[2I(t)]

—[f(0)Q(t) —f(t)Q(0)][Q(0)Q(t)+f(0)f(t)]sin I(t))V(0)

+2 sin[2I(t)][qo,po]+ .
Q'(t) f'(t) f(0)f(t)—

Qt

In the final section, we shall compare these results with those obtained by Colegrave and Abdalla in Refs. 11 and 16.

(5.6)

VI. QUASICOHERENT STATES

As is to be expected from our reduction of the problem to Eq. (2.12), it is clear that we may use the number states of
the operator A, A, to construct coherent states in the form

[a(t)&=exp( ——,
' ~a~') g, , ~

(nt) }
(n })1/2

since we have ensured that [A, A ]= 1 at all times, it follows that

Ai
~

a(t) }=a(t)
~

a(t) },
AtiA i ~

n (t) }=n
~

n (t) }, n =0, 1,2, . . .

(6.1)

(6.2)

(6.3)
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From Eqs. (2.4) and (5.2) we can deduce that

Ai(t)=Hi(0)exp —i I Q(t')dt'

It follows from Eqs. (6.2) and (6.4) that

a( t) =a(0)exp i I—Q(t')dt'

(6.4)

(6.5)

As discussed in Ref. 8 the "best" coherent states are the eigenstates of the operator (2.4). Therefore, the expectation
values given by

1/2

[a(t)+a"(t)], (6.6a)

1/2

&a leo Ia&=t mQA

2
[a'(t) —a(t)] —y(t)+ Q(t) mh

2Q(t)

1/2

[a'(t)+a(t)] (6.6b)

and the product of uncertainties is

b, qobpo — 1+, y(t)+1 Q(t)
4 Q'(t) 2Q t

'2

(6.6c)

In the Schrodinger representation the quasicoherent state (6.2) is

Bg (qp, t)

Bqo

' 1/2
m . Q(t)——Q(t)+i y(t)+ q, +a 2mQ(t)

2Q t
0a(qo t) (6.7)

with solution

f (qp, t) =N (t)exp — Q(t)+i y(t)+
Pl Q(t)
2irt 2Q(t)

' 1/2
2mQ(t)

go+0.' Vo
' (6.g)

where

N (t)= Q(t)
' 1/4

exp[ ——,
' (a+a')'] .

Alternatively, we may write, as in Ref. 19,
1/4

0 (qo t)= mQ(t)
exp ——Q(t)+i y(t)+

m . Q(t)
2Q(t)

9'o '

Xexp( ——,
'

I
a ) g H„(v'mQ(t)/i)lqp)2 "~ (n!) 'a"(t), (6.9)

where a(t) is given by Eq. (6.5). Finally, comparing Eqs.
(3.10) and (6.9), we find that

eo n

g~(qo, t)=exp( ——,
'

I
a

I
) g, P„(qp, t) (6.10)

( ()i/2 ll

which is in agreement with Eq. (6.1).

VII. EXAMPLES

Finally, we shall introduce some examples to establish
the validity of our method to recover all the results of
Colegrave and Abdalla, with some more examples since
our method depends on y(t) which is easy to obtain.
Therefore, the task is to determine Q(t), which can be

done if one manages to have a solution for the differential
equation (2.1S). Thus we shall concentrate on Q(t).

Let us consider the following cases for coo&5&0:

(i) M(t) =m exp( —25t),

(ii) M(t)=m cos (5t),

(iii) M(t) =m (p &e '+pze ')

(iv) M(t) =me '/(I+pe ')

(v) M(t) =m cos"(5t),

(vi) M(t)=m(l+5t) " .
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xi ——cos(cot), x2 ——sin(cot), (7.1a)

where co=(cop 5—)', (cop+5 )'~, (cpp2 —52)'~2, respective

ly, and from Eqs. (2.14) and (2.16) we find

In order to calculate Q(t) we need to find x, and xz of
Eq. (2.15). We find for the cases from (i)—(iii) that

x2 ——[1+5 Icp r(t)r(0)]sin(cot)

——[r ( t) —r (0)]cos(cot),
5

where

r(t)=(1 —Ice'")/(1+pe' ') .

Thus the effective frequency reduces to

(7.2b}

(7.2c)

A~co=const . (7.1b)
Q =(~p —5')'"=~ (7.2d)

In case (iv), as discussed in Ref. 9, we have

x i ——cos(cot)+ —r(t)sin(cpt), (7.2a)

To continue our discussion we shall consider case (v),
which corresponds to a strongly harmonic oscillator to
power n; in this case the solution of Eq. (2.15) is

x, =cos"~ (5t}I[1—sin(5t)]/2I 2Fi a, 2a n—+1 1(52 2 2 ig2 2
(7.3a)

x2 ——cos"~~(5t)
t [1—sin(5t)]/2) ~zF, P, , 1+ (5 n—+4 cop)'~,

2
' 5

'
1 —sin(5t)

(7.3b)

aIld

P= —
I 1+[1+(2cpp/5n) )'~ ],

2
(7.3c)

where 2Fi is well known as the hypergeornetric function, ~p

M(t) =rn exp[2' sin(vt)] . (7.8)

Thus, the fluctuating function y(t) defined by Eq. (2.2) is

For example the pulsating oscillator mass as in Ref. 22 is
defined by

a= —
I 1+[1+(2cop/5n) ]'~

J . (7.3d) y( t) =pv cos( vt) . (7.9)

As a special case, if n = 1 we find

x i
——cos'~2(5t)P, (sin(5t}),

x z ——cos'~ (5t)Q, (sin(5t) ),
(7.4a)

s =(2cp —5)/25, co=(cpp+5 /4)'i (7.4b)

Finally it is interesting to discuss a slow linear change in
mass to power n given by (see, for example, Refs. 13 and
14)

where P, is the Legendre function of order s, Q, is the
second solution of Legendre's equation, and s is given by

Substituting into Eq. (2.15) we find

x+ [co(~)+pv sin(vt) —piv cos'(vt)]x =0 . (7.10)

There are two possibilities to deal with this problem, ei-
ther to consider p &~1, and then Eq. (7.10) is of the form
of Hill's equation for which a standard treatment exists,
or to use the rotating-wave approximation (RWA) which
gives an asymptotic solution for all values of p, . However,
one can also apply the perturbation method; in this case
Eq. (7.10) gives

x i
—cos(cl)pt) +A, I 2cop[ 1 +cos(vt)]sin(copt)

M(t)=rn(1+5t)'" . (7.5)
—v sin( vt) cos(copt) I, (7.1 la)

ln this case the solution of Eq. (2.15) is expressed in terms
of Bessel functions; thus

x2
——sin(cppt) +A, t 2cpp[ 1 cos( vt) )—cos(copt)

—v sin(vt)sin(cPpt) J (7.11b)

x i ——&1+5tJ,((cop/5)(1+5t)'),

x2 =&1+5t&,((cop/5)(1+5t)),

(7.6a) where

A, =pv/(4cpq~ —v } . (7.11c)
1

where r =n ——,.
By taking n = 1 Eqs. (7.6a) and (7.6b) are reduced to

Then, the augmented frequency Q(t) is

xi =cos(cPpt)~ x2 =sin(cPpt) (7.7)
Q(t)=cppI 1+2K[vsin(vt) —2cppsin(2cppt)]I . (7.11d)

Since the method adopted in the present paper deals with
all variable-mass parameters, this gives us advantage in
dealing with a mass varying periodically without zeros. ' x i

=cos(copt)exP(Pcopt) (7.12a)

If we use the rotating-wave approximation, we shall find
at exact resonance when mo ——v/2 that
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x2 ——sin(cont)exp( p—coot) . (7.12b)

VIII. CONCLUSION

The problein of the motion of a particle with a time-
dependent mass M(t) =m exp[21'(t)] in a uniform non-
stationary gravitational field can be described exactly by
means of the Schrodinger equation with Hamiltonian
(1.3). This is a real physical problem, and as we remarked
in the Introduction the harmonic oscillator with variable
mass has extensive applications in physics, es ially in
quantum optics, see Colegrave and Abdalla, ' ' ' s in plas-
ma physics ' ' and in studying the early stages of the
evolution of the universe; see, e.g., Ref. 26. Besides, un-

stable systems can be also described with the aid of the
concept of the time-dependent mass. However, the most
significant effect of the variable-mass parameter in a har-
monic oscillator is to change the natural frequency con to
an effective frequency Q(t) given by Eq. (2.14). This ef-
fective frequency allows us to make a separation of vari-
ables in solving the Schrodinger equation (1.6) and also to
overcome the difficulty in obtaining a solution of this
problem in the Heisenberg picture. We believe that all the
results reported in the present paper enable us to analyze
the quantal motion of a variable-mass harmonic oscillator
in a way that is straightforward and reliable, depending as

it does on well-established procedures for time-dependent
Hamiltonians, and can be easily compared with those ob-
tained by other authors. For example, the wave function
given in Sec. III, with the replacement y(t)~ —y and
Q(t)~co=(con y)—', leads to the result of Hasse, Tart-
glia, and of Colegrave and Abdalla. ' In Sec. V, by mak-
ing the same replacement, we obtain for the equations of
motion the results of the above authors and those given by
Dodonov and Man'Ko and in Ref. 28, while the kinetic
and potential energies are in agreement with the results in
Ref. 16. Note also that the replacement y(t)~ —vtan(vt)
and Q(t)~co=(con+y )'~ throughout Secs. II—VI covers
the results in Ref. 11. Finally, if we let y(t)~5/(I+5t)
and Q(t)~con and substitute into Eqs. (4.5) and (4.6) we
are left with Eqs. (5.17) and (5.18) of Ref. 12. We feel
that the present paper has important implications for
dealing with problems in quantum optics and plasma
physics and perhaps with other branches of physics in-

cluding solid-state physics and quantum field theory.
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