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We study a model for dynamic percolation relevant to the electrical conductivity of water in oil mi-
croemulsions. The charge carriers reside on percolation cluster sites and can propagate by hopping between
nearest-neighbor sites. The cluster sites also undergo diffusion, so that the clusters continuously rearrange
themselves. The conductivity below the percolation threshold p. is finite and, as p— p., increases as

|p. — p| =3 where 3 differs from the static exponent s. In the neighborhood of p,, the conductivity depends

as a power law on the rate of cluster rearrangement.

A remarkable electrical conductivity transition has recent-
ly been observed in several water-in-oil microemulsion sys-
tems.!=> As the volume fraction of water p is increased to-
wards a critical volume fraction p. (which is a function of
temperature and other parameters such as the surfactant
concentration), a sharp increase of several orders of magni-
tude in the electrical conductivity occurs. There is consider-
able experimental!~® and theoretical '~° evidence that at low
and intermediate water concentrations the microemulsions
consist of globules of water in oil which undergo Brownian
motion. In some systems, the globules also show attractive
interactions.”8

A percolation picture for the transition involves the for-
mation of clusters of water globules which are sufficiently
close to each other so that an efficient transfer of charge
carriers between the globules can occur.*® An alternative
view is that the formation of a continuous connected water
phase is responsible for the conductivity transition.!® The
experimental results, together with the present theoretical
arguments, provide additional support in favor of the form-
er view, at least for the systems studied in Refs. 1 and 2.

In a previous publication’ we analyzed the volume frac-
tion of water at which the transition occurs, and the effect
of the interactions and temperature T on the transition. We
showed how the location of the percolation threshold p.
depends on the strength of the attractive interactions. The
system can go through a percolation transition when either
the water fraction or 7 is varied. Since the location of p, is
a slowly varying function of 7, we expect the exponents
when the temperature is varied to be identical with those
measured when the concentration of globules is varied.

In the usual static model consisting of a system of con-
ducting regions randomly embedded in an insulating matrix,
the conductivity vanishes below p. of the conducting
phase.!! However, for microemulsions, the clusters con-
tinuously rearrange themselves because of Brownian
motion, resulting in a finite conductivity for p < p.. The
charge carriers are not trapped in the finite clusters. A
charge on a water globule can propagate by either hopping
to a neighboring globule, or via the diffusion of the host
globule. If the typical hopping time of the carriers between
globules is much shorter than some characteristic time relat-
ed to the motion of the globules, one expects a steep in-
crease in the overall carrier diffusion as the concentration p
approaches the critical concentration p.. This is due to a
transition from a regime of transport dominated by globular
motion and cluster rearrangement to one dominated by the
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motion of charge carriers on a large connected cluster of
globules.

Thus, in microemulsions there are two relevant time
scales: (a) The characteristic time it takes for a cluster to
rearrange itself, and (b) the time it takes for a diffusing
charge carrier to visit all the sites in a typical finite percola-
tion cluster. For percolation clusters,!? this latter time is
also the time for the mean-square displacement to be of the
order of the cluster size. The ratio of these times deter-
mined whether the system is in a slow- or fast-
rearrangement regime. This observation leads to the for-
mulation of a scaling expression for the diffusion of a
charge carrier below p.. The main consequence of this scal-
ing is that in the limit of slow cluster rearrangement, the
conductivity increases as |p.—p|~% as p— p. (except for a
small region around p.). The exponent 5 can be expressed
in terms of static percolation exponents and it differs from
the corresponding exponent s for the termite case.!> The
fact that 5 > s is in agreement with experimental results in
microemulsions’»>*!* which find §=1.2+0.05 in three
dimensions (3D) whereas s —0.6-0.7. The other conse-
quences of the cluster dynamics are (i) a ‘‘smearing’’ of the
conductivity transition in a region around p. and (ii) the ac
conductivity of the dynamic system differs from the ac
response of a static percolating system.

We consider a lattice with a fraction p of sites randomly
occupied by cluster particles one of which hosts a charge.
Each cluster particle performs a random walk on the lattice
which is characterized by a jump rate 7!, the charge per-
forms a random walk only on the cluster sites with a jump
rate of unity. The only interaction between the particles is
the excluded volume. The unique feature here is that the
clusters evolve and rearrange in time, so that neighboring
configurations in the Markov chain are correlated.

Initially, one cluster particle hosts a charge, which can
propagate in the system either by hopping to a nearest-
neighbor cluster particle, if one exists, or being carried
along if the host particle diffuses. Let T; be the time for
rearrangement of a typical cluster, e.g., for a large cluster to
be broken up into two smaller ones, or for two clusters to
fuse into a single larger one. This rearrangement may be
considered a slow process if the time 7 it takes the charge
carrier to visit all the sites in a typical cluster is much small-
er than Tx.

The corresponding characteristic time for p < p. is the
time to explore a cluster of size £, ‘r—~—§wf/". Dy is the
fractal dimension, d is the spectral exponent given by!2
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(7=2Df v/(n+2v—B), p is the conductivity exponent for
p > p., v is the correlation-length exponent, £ ~ |p —p.| =",
and B is the exponent for the probability to be in the infi-
nite cluster, P(p) ~ (p—p.)f for p > p.'> In a time 7, the
charge carriers explore a region of size ¢, if 7 << Ty, the
mean-square displacement for times comparable to Ty is of
the order of R}~ £27A* ~|p—p.|=®=A)_ Since the spec-
tral dimension!? d < 2, the time for the mean-square dis-
placement to be of the order of the mean cluster size is
comparable to the time needed to visit all sites of the cluster
once. Note that T; represents an effective rearrangement
time, which in principle depends on |p—p.|. The rear-
rangement time of individual clusters may depend on the
cluster size. Our assumption that T; does not depend on
|p — p.| means this dependence on the cluster size does not
affect the global macroscopic diffusion.!® Our numerical
results, shown below, support this picture. Due to the clus-
ter rearrangement, the motion of the charge carriers is dif-
fusive for t >> Tg with a diffusion coefficient (r << Tg):

DGp-p)~RE Ly -en )
P — D Tx Te P~ P .

If p is sufficiently close to p., or T is not very large, the
rearrangment of the cluster will occur before the charge car-
rier visits all the particles in the cluster. The diffusion coef-
ficient will then depend only weakly on the typical cluster
size. This criterion defines the fast-rearrangement regime.
For times ¢ << Ty the random walkers see the fractal na-
ture of the static structure and the diffusion will be

. /D
anomalous'?>!” with (R2(¢)) ~¢ /.
One can use this analysis to generalize Eq. (1) into a
complete scaling relation:'®

- Ll -7
D(p=pe,7) T lp = p| N (2a)
1) I, x<<1, 2b)
x = _. v — v
X d(2v—-8)/2 Df, x> 1

Equation (2b) predicts that for p sufficiently close to p., D
depends only on the p-independent rearrangement time as
D~ (Tg)~#®w+5 where 5=2v —g.

To test the scaling hypothesis of Eq. (2) we have carried
out numerical simulations and calculated the diffusion coef-
ficient for the lattice model described above. The simula-
tions were carried out on a 400 % 400 square lattice, where a
fraction p of the sites are occupied by cluster particles.
N,=1000 “blind” random walkers!® (representing the
charge carriers) are placed randomly on occupied sites. The
random walkers (RW’s) do not interact with one another.
A large number of independently diffusing RW’s were
chosen in order to achieve good statistics.

The two microscopic times in the simulation are (a) the
time it takes each RW to attempt a move (this time is taken
to be unity) and (b) the time it takes for each cluster parti-
cle in the system to attempt one move. In practice, we
move each random walker m steps and then move a ran-
domly selected fraction ¢ of cluster particles once. The ra-
tio of these two microscopic times is y=1/T=¢/m. The
diffusion coefficient was determined from long runs, typical-
ly (3-5)x10° RW steps, which was long enough to be in
the diffusive regime where

R0 =-SIn()-1,012~Dr .
Ny 4

The smallest diffusion constant we could accurately measure
was D ~3x107% so that for the smaller values of y, we
could not go to as low a probability p as for larger y. For
each value of vy, we used several values of ¢ and m, to be
convinced that the results for the diffusion coefficient of the
random walker depended only on y. This was true for small
¢ << 1; however, for large ¢ ~1, D depends on both y
and m. For all of the data presented here, D depends only
on vy.

A semilog plot of diffusion coefficient versus p is shown
in Fig. 1. For values of y > 10725, there is a rather smooth
transition at p.=0.59, and the transition becomes steeper
with decreasing y. Although we have no numerical results
for y of order unity, it is quite obvious that the percolation
threshold would not be reflected in the behavior of D. At
p., D~ P as predicted by Eq. (2), where p=u/(5+u).
The normalized diffusion coefficient D (p — p.)|p — pc|¥/y is
plotted versus the scaling variable |p — p.|**%/y in Fig. 2 for
§=s5=1.28 and §=2.53. Clearly the scaling relation §=s
does not fit the data. Figure 2 also shows that scaling is
obeyed very well for § =2v— g, for which all the data col-
lapse onto a single curve. Experimental results"?° for mi-
croemulsions in 3D find §=1.2, consistent with the result
§5=2v—B=12. While our 2D simulations determine
5=2.6 £0.3 with only moderate precision this is in good
agreement with!® 2v—8=2.53. The possibility 5=s is
definitely ruled out. The crossover from the slow rear-
rangement regime, where D changes as |p — p.|~*~#) and
depends linearly on vy, to the fast rearrangement regime, in
which D depends on y as a power law is clearly seen.

For the dynamic system studied here, the diffusion coeffi-
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FIG. 1. Diffusion constant D in 2D vs the fraction p of occupied
lattice sites for six values of y, where vy is the ratio of the time for
each random walker to attempt a move to the time for each cluster
particle to attempt one move.
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3.0 T T T T cant role due to the rearrangement which takes place
_ on times much shorter than w~!. Thus, ¢(x <<y)
(a) s=s=1.28 ~ (1/Tr) f(y) as given by Eq. (2b). For wTg >> 1 we ex-
2.0 . . pect 2(p — p.,Tr, w) to be independent of Ty, with scaling
oz . similar to the dc case, save that the variable is w7.!” These
a L@’ B limits are obeyed for
s 10 T
g ettt Y(xy)=(ax+By)flax+By) , 4)
= 00l ° : s . * . ° B where [ is the scaling function defined in Eq. (2) and «,8
’ L. == " . are (possibly complex) constants of order unity. The scaling
L e’ ® eee e ° o o . form of Eq. (4) can be heuristically demonstrated by invok-
_10 | | | i ing the Kubo relation for the frequency-dependent diffusion
~6.0 4.0 —20 0.0 2.0 2.0 coefficient,
~In [(pc—pY ] '
D(w,T)= [ (V(DV(0))e-ivar (5)
0 where (V(¢)V(0)) is the velocity autocorrelation function
peS g | x §=2.53 of the charge. Assuming that the hopping of the charge and
-2.0— ot oo the breakup of the cluster are uncorrelated,
- e
5 a0l V(DY) = V(D) V(0 TR ©)
Q * [ ]
& Y " where (V(t)V(0)). is the autocorrelation function for
8 4ol 10720 . Tr — oo and exp(—1t/Tg) represents the probability that
£ 10 “[ . ) the cluster has not rearranged at time T7x. Writing
. 1303; : . (V(1)V(0)), in the scaling form we find
_5.0
e ®) ‘ VOV ~—~ot/7) . )
: T
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FIG. 2. Normalized diffusion coefficient from Fig. 1, plotted vs
the scaled variable |p—p.|5*#/y, with (a) §=s5=1.28 and (b)
§=2v—-B=253.

cient D and the conductivity X of the system are proportion-
al to each other. In this respect, diffusion on dynamic per-
colation clusters differs from diffusion on static percolation
system, where for p > p,, 3= D|p— p.|B, where |p—p.|# is
the probability that a site is in the infinite cluster. In the
dynamic system above p., the distinction between the infi-
nite cluster and the finite clusters becomes meaningless for
times larger than Tg.

ac conductivity measurements”“ on microemulsions can
provide information on the conductivity mechanism, due to
the introduction of an extra time scale, the driving frequen-
cy w. The scaling expression for the dc conductivity, includ-
ing w and 7 is

S(p—pe, T, w)=(p—p)~ @By (wr, 1/ Tg) . 3)

1,2

For x/y ~wTg << 1 the frequency does not play a signifi-

Inserting Eq. (7) into (5) and comparing with (3), we see
that

E(p—pc,TR)=-r“f¢(y)enry/TRdy ) (8)
By comparison
D(p—p,Tr,0)=(Tg'+0)(p—p) fliot+7Tgl) . (9

Because the conductivity is dominated by hopping, = and D
are proportional by the Einstein relation. At p=p. we
predict a frequency-independent conductivity for w < 1/Tx
followed by a power-law behavior with an exponent
wu/(3+un) at higher frequencies. Recently this prediction
has been confirmed by Bhattacharya et al.! and VanDijk.2
The study of X(w) near p. can give information on the
magnitude of Tk, which can be compared with other data
such as that from inelastic light scattering® in order to
understand the dynamics of microemulsions.
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