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Collective variable description of a free-electron laser
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%'e give a collective variable description of high-gain free-electron-laser amplifiers which reproduces the

solution of microscopic equations quite satisfactorily both in the linear and in the nonlinear regime.

Free-electron lasers (FEL's) are increasingly the object of
intense theoretical investigations and experimental efforts
due to their relevance as sources of powerful, coherent radi-
ation virtually in the whole electromagnetic spectrum. The
FEL process can be described as a stimulated magnetic
bremsstrahlung from a beam of relativistic electrons injected
in a suitable magnetic array (undulator or wiggler), where
the particles can efficiently couple to a radiation field
transferring a fraction of their kinetic energy to the pho-
tons.

The existence of an FEL high-gain regime has been
demonstrated in recent years. 2 For example, Orzeckowski
et al, obtained a peak power as high as 80 MW for radia-
tion in the millimeter range (X=9 mm) in a single-pass
amplifier experiment; that is, the simplest FEL mode of
operation, which unlike the oscillator mode does not require
mirrors, or different stages in the electron-radiation interac-
tion as in the optical klystron mode. The radiated intensity
exhibits an impressive exponential growth before saturation
effects set in. This behavior occurs even starting with a
negligible input power; the physical basis for this regime of
self-amplified spontaneous emission (SASE) is a collective
instability for the system. 3~

A simple description of the SASE instability can be given
in terms of only three (complex) collective variables, which
has allowed both a classical' 6 and a quantum analysis of
the linear stage of exponential amplification. On the other
hand, the saturation regime, described in terms of trapping
of the electrons in the ponderomotive potential of the com-
bined (radiation+undulator) fields, s requires the numerical
integration of the 2%+2 coupled evolution equations for
the position and momentum (or phase and energy) vari-
ables of the N && 1 particles and the complex field ampli-
ude 3, 8-11

We point out that a long-time (i.e., long undulator)
analysis of the FEL equations in the high-gain regime sho~s
"well behaved, " nearly periodic undamped oscillations of
the radiated intensity, though of irregular amplitude, at least
for a sufficiently high number of electrons, despite the
underlying chaotic behavior of the particles. 4 This has fur-
ther stimulated us to develop a description of the FEL by
means of few relevant collective variables which holds for
the ~hole dynamics, i.e., also well beyond the linear stage.
It should be the FEL analog, though in purely classical
terms, of the description of conventional lasers usually
given in terms of few relevant macroscopic variables, that is
the atomic polarization and population inversion and the
field amplitude. " However, this analogy is relevant only as

da J/dr = pj, (J = 1, . . . , W) (la)

dpj/dr = —[A exp(icrJ)+c. c.l, (J= 1, . . . , N) (1b)

dA/dr = N ' g exp( —ia J)+iSA (1c)

~here, using the same notations of Ref. 3 to which we refer
for more details,
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The meaning of the dimensionless variables and parame-
ters in Eqs. (la)-(1c) is the following: a, and p, are the
phase (position) variable and the energy variation or
"momentum" variable, respectively, of the jth electron; 3
is the scaled complex field amplitude of the radiation field,
~ the scaled time, and 6 the detuning parameter. In Eqs.

regards our attitude to the problem. Actually, conventional
lasers are the prototypes of open systems which undergo a
dissipative dynamics, ~hereas FEL dynamics is basically
Hamiltonian. Furthermore, the familiar laser instability
leads to a stationary (lasing) state, whereas in high-gain
FEL amplifiers we are interested in the transient evolution
due to the SASE instability.

In this Rapid Communication we formulate a collective
variable description of the FEL which reproduces the
behavior predicted by the 2%+2 evolution equations quite
satisfactorily both in the linear and in the nonlinaear regime.
In particular, we reproduce the same cubic characteristic
equation of the linear analysis which rules the instability and
the high-gain behavior of the microscopic description, and
obtain the values of the build-up time of radiated intensity,
that is the time at which the first peak is emitted, and the
height of this peak within a few percent with respect to the
values obtained from the full set of microscopic equations.

The microscopic Hamiltonian model of a single-pass FEL
is given by the following well-known set of equations
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(2) these quantities are expressed in terms of the amplitude

Ep and the frequency so= ck of the radiation field, the mag-
netostatic amplitude Bp and frequency cup= ckp associated
with the undulator periodicity, the energy y, of the jth elec-
tron in rest mass units, the initial mean energy & y & o

W QJ7 j(0), the resonance energy y~, and the general-

ized Pierce parameter p which contains the undulator
parameter Mand the relativistic plasma frequency O~. The
FEL resonance relation is ru = 2co07 ii/(I +W2). Note that if
the undulator length is Lo = 2rr cNO/c00, No being the
number of periods, the scaled time is defined in the interval
0 ~ ~ ~ 4~p Wp corresponding with the time interval
0» t » Lo/c in which the FEL process takes place. The set
of Eqs. (1), which depend only on the detuning parameter
5, is the same studied in Refs. 4 and 6 and can be obtained
from Eqs. (13)-(15) of Ref. 3 in the approximation

pp& && 1, which has been sho~n to be valid for p && 1.
Let us define the mean value of 8 as (8) = N

where 8& is any dynamical variable referring to the jth elec-
tron. In this way we define the average momentum

&p& =& 'Xpj . (3)

the average kinetic energy

&p'&=A' 'gp), (4)

and the bunching parameter

b= &exp( —io)&=% 'Xexp( —ioJ)
J

(5)

such that 0»
I b I

» 1. This parameter approaches one when
the electrons bunch in an optical wavelength, which allows
for an efficient energy transfer from the particles to the ra-
diation field.

Equations (I) admit two constants of motion, 6 which ac-
cording to definitions (3)-(5) can be written as

&p&+ IA I'= IA lg,

&» + '(A'b A6") —gI A I—
2

2p '+i(A'6 Ae")0—
GAIA I( -. (7)

2

In Eq. (6) we have taken into account that &p&O=O by
definition [Eqs. (2) and (3)]; hence in Eq. (7) (p)(= (Ap)(
is the initial energy spread. The first constant of motion,
Eq. (6), is the total momentum conservation; the second
one, Eq. (7), is associated with the existence of a Hamil-
tonian for Eqs. (1), as discussed in Ref. 4. Anyway, Eqs.
(6) and (7) can be easily verified by differentiating with

9 = (exp( llT)p) = 1V /exp( l(TJ)pg
J

(10)

From definition (10) and Eqs. (1) one gets the following
equation of motion for 9'(r):

P- —A —i (exp( —ia)p'&. —A'(exp( —2io )), (11)

where, according to the definition of the mean value,

(exp( —io)p'& =.N 'Xexp( —Io J)pJ2,
J

(exp( —2io )) = N '/exp( —2ia J)
J

(12a)

(12b)

Thus, Eq. (9) has implied the introduction of a new quanti-
ty, P= (exp( —io) p&; in turn, the evolution equation for
P, Eq. (11), involves two further mean values; clearly, this
process generates a hierarchy of equations which contain
higher and higher moments, as usual in nonlinear dynamics.
%e try to truncate this hierarchy by writing a closed system
of evolution equations for only three complex macroscopic
variables, namely, the field amplitude A, the electron
bunching parameter b, and phase-momentum average 9'.

To this end we truncate the hierarchy by assuming that

((p —&p&)'«p( — )) = &(p —&p&)') &exp( — ))

(13)

This factorization ansatz can be related to the underlying
chaotic behavior of the %-electron system demonstrated in
Ref. 4. The validity of approximation (13) can be numeri-
cally checked by solving the exact set of Eqs. (I). The
result is shown in Fig. 1, where we compare the time evolu-
tion of the real and imaginary parts of the (unfactorized)
left-hand side and the (factorized) right-hand side of Eq.
(13). By Eq. (13) the term (12a) can be expressed as

(«p( —io) p'& = (p') 6+ 2(p & (+—
& p) b) (14)

The quantity &p'& in Eq. (14) can be easily evaluated with
the help of the constant of motion relation (7), obtaining

respect to time and using Eqs. (I).
The field Eq. (Ic) can be written as (overdot = d/dr)

A = b+ ISA

where we have just used the definition (5) of the bunching
parameter b(t) By. this defintion and Eq. (la) one finds
the evolution equation for b(t)

b= —i,
~here we have defined the phase-momentum average

(exp( —irr)p2) =2[ib(Ab' A'6)+ &p&—(9'—&p&b)+5b(IA I2 —IA I))]+b[&p & 220i(Ab' A "b)0]—(15)

As concerns the term A (exp( —2ia)), we drop it i.n Eq. (11) since the numerical solution of Eqs. (1) shows that its ef-
fect is negligible with respect to that of the term (12a). Now by inserting Eq. (15) into (11) we obtain a closed system of
equations for the three complex collective variables A, b, and 9' which read

A = b+i5A

b= —i+,
~= —A+26(A6' —A'6)+2i(IA I' —IA lg)[a+(IA I' —IA lg

—@)]6—I [2(At' —A'6), +i&p'&, ] .

In Eq. (16c) the constant of motion relation (6) has been used to eliminate (p&.

(16a)

(16t )
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FIG. 2. Dimensionless radiated intensity
~
Jt

~
vs dimensionless

time 7. Crosses: from Eqs. (1}as in Fig. 1; open circles: from Eqs.
(16) for 8=0 and with the initial condition (ReA)p= (ImA)p=0. 03,
(Reb)p ——3.8x 10 2 (Imb)p= 0.15, (Re9 )p= —4.5x 10, (Im 9~)p
= —5.2x10 3, (Ap)(=2x IO

teristic equation

A.
' —5A. '+ 1 = 0

which gives the same instability analysis and exponential
behavior as in Refs. 3 and 4. Hence the collective variable
description of Eqs. (16) gives the same short-time behavior
as the microscopic description of Eqs. (1). 1n particular, the
initial equilibrium condition (17) is unstable for
5 » (3/2)'i3, leading to a strong self-bunching of the elec-
trons and exponential growth of the radiated intensity. As
concerns the long-time behavior, in Fig. 2 we compare the
radiated intensity calculated from the numerical integration

To check the validity of Eqs. (16) we first linearize
around the initial condition, which is an equilibrium condi-
tion,

Ap —ho= +v=0

The linearized system is

(17)

FIG. 1. Check of the factorization ansatz (13). (a) real part of
((p —(p))2exp( —ia)) (cross.es) and real part of ((p —(p))2)
x (exp( —iir)) (open circles) vs dimensionless time r, from Eqs.
(1) for N = 100, 8 = 0, and the initial condition
(ReA)!!= (ImA)0=0. 0&, (irj)t! randomly distributed (Ib la=0. 15),
(pj)0 distributed according to a Gaussian with (p)o=0, and
(hp)0=0. 05. (b) imaginary part of ((p —(p) )2exp( —io ))
(crosses) and imaginary part of ((p —(p)) )(exp( —icr)) (open
circles) vs dimensionless time ~, from Eqs. {1}as in case (a).
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This system is equivalent to the linear system for collective
variables of Refs. 3 and 4 obtained via linearization of the
microscopic Eqs. (I). In fact, looking for exponential solu-
tions as exp(ilier), one gets the well-known cubic charac-

FIG. 3. Time evolution of the radiation field phase. Crosses:
from Eqs. (1) in the same case considered in Figs. 1 and 2; open
circles: from Eqs. {16)in the same case considered in Fig. 1.
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of the microscopic Eqs. (1) for %=100 electrons, and the
same quantity obtained from Eqs. (16); the comparison has
been performed for operation on resonance, i.e., 8 = 0,
when the growth rate is maximum. Equations (1) were in-

tegrated with an initial condition with randomly distributed
electron phases ( ~

h ~o
——0.15) and a small field

(~A ~o
——0.04) to simulate electron and field noise, and with

electron momenta distributed according to a Gaussian with
zero mean value and uncertainty (Ap)II=0.05 to simulate
energy spread. The initial values for the real and imaginary
parts of the field amplitude A used in Eqs. (1) and those
calculated from Eqs. (1) for the real and imaginary parts of
the electron collective variables b and 9', (~9'~o=7X 10 ')
were taken as initial values for system (16). The agreement
appears to be qualitatively and even quantitatively remark-
able. In particular, the build-up time is approximated within

5'/o and the peak height within 15'k. This agreement is also
evident from Fig. 3, where we compare the time evolution
of the field phase in the two cases.

In conclusion, we think that Eqs. (16) provide a good col-
lective variable description of the essential features of the
dynamic of high-gain FEL amplifiers.
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