(2)

Errata

Erratum: Decay of the direct correlation function in linear lattice systems [Phys. Rev. A 29, 2854 (1984)]

M. Robert

An elementary arithmetic mistake is contained in the steps leading from the basic Eq. (4.3), which is correct, to Eq. (4.4). In terms of the variables x and y defined in (4.5), the left- and right-hand sides of Eq. (4.3), respectively, read

$$\lambda^{2}[\beta\mu_{+} + (1-\beta)\mu_{-}] = A[x + (x^{2}-1+y)^{1/2}]^{2}(B-C)$$
(1)

and

$$\mu_{+}\mu_{-}[\beta\mu_{-} + (1-\beta)\mu_{+}] = A(y-1)(B+C) ,$$

with

$$\begin{split} A &= y^{-3/4} (x^2 - 1 + y)^{-1/2} (x^2 - y)^{-1/2} , \\ B &= (x^2 - 1 + y)^{1/2} (x^2 - y)^{1/2} (x^2 - 1)^{1/2} , \\ C &= x (x^2 - 1)^{1/2} (x^2 - y)^{1/2} , \end{split}$$

so that up to their common factor $A(x^2-y)^{1/2}(x^2-1)^{1/2}$, (1) and (2) reduce to

$$[x + (x^2 - 1 + y)^{1/2}]^2[(x^2 - 1 + y)^{1/2} - x] , \qquad (1')$$

and

$$(y-1)[(x^2-1+y)^{1/2}+x]$$
, (2')

respectively.

It is readily checked that (1') and (2') are identical: The factor $[(x^2-1+y)^{1/2}+x]$ is common to each of them, so that we must compare $[x + (x^2-1+y)^{1/2}][(x^2-1+y)^{1/2}-x]$ with y-1; but these are obviously identical. Consequently, the direct correlation function has always exactly the range of the intermolecular forces.

I am indebted to Dr. K. Tanaka, Dr. T. Morita, and Dr. K. Hiroike for pointing out this arithmetic mistake.

Erratum: Efimov states in ⁴He trimers by two-body effective-range and scattering-length analysis: A comparison with Faddeev calculations [Phys. Rev. A 31, 3981 (1985)]

Stephen Huber

A number of errors appeared in Table I of this paper. Table I is reprinted below with corrections given in boldface type.

TABLE I. Potential-energy characteristics and dimer and trimer binding energies for ⁴ He mo

Potential	Core type	Location of min (Å)	Depth of min (K)	Dimer B.E. (K)	Timer binding energies (K)		
					Ground	1st Efimov	2nd Efimov
Smith-Thakkar (Ref. 11)	Hard	2.8	-12.82	-5.53×10^{-3}	-0.150	-6.7×10^{-3}	None
ESMMSV (Ref. 12)	Soft	2.97	-10.57	Unbound	- 0.067	-1.6×10^{-4}	-7.1×10^{-6}
MDD2 (Ref. 13)	Soft	3.02	-10.75	-4.95×10^{-4}	- 0.087	-1.1×10^{-3}	None
Beck (Ref. 14)	Soft	3.0	-10.34	-1.05×10^{-5}	- 0.070	-2.2×10^{-4}	-1.5×10^{-5}
Lennard-Jones (Ref. 15)	Hard	2.88	-10.22	Unbound	-0.066	-2.2×10^{-4}	-1.8×10^{-5}