
PHYSICAL REVIE%' A VOLUME 33, NUMBER 4 APRIL 1986

Fast and slow quenches in nucleation: Comparison of the theory
with experiment and numerical simulations

I. Edrei and M. Gitterman
Department of Physics, Bar-lian Uni versity, 52100 Ramat-Gan, Israel

(Received 21 December 1984)

Numerical estimates of the time lag, the distribution function, and the flux of nuclei show that the differ-

ences between slow and fast quenches can be seen only if the critical nucleus has a comparatively large ra-

dius. 1n this case, a clear dependence on the quench rate appears, which hopefully might be observed in

laboratory experiments and numerical simulations.

Recently, we formulated a new approach to time-
dependent effects in nucleation theory. " One usually as-
sumes that the stationary regime sets in immediately after a
quench from a stable into a metastable state. The transition
time 0 ("the incubation time, " "the time lag") has been
considered by some authors (see review in Ref. 3) and
found to be very small (10 '-10 sec), at least for liquid
systems. %e have sho~n, however, "that in some cases 0
is not small, it may reach dozens of seconds. Moreover, it

turned out that one has to distinguish between "slow" and
"fast" quenches. It is in the latter case that 0 increases
drastically, and this leads to a much longer decay time of a
metastable state. The distinction between the slow and fast
quenches has the following simple physical meaning. The
metastable state that appears after a quench is a state of in-

complete equilibrium. In contrast to a slow quench, only
small nuclei of a new phase are in equilibrium immediately
after a fast quench. Therefore, it takes a long time for the
nonstationary flux to set up a steady-state distribution of
nuclei, and these transient processes cannot be neglected.

It is not surprising why previous investigators have over-
looked this effect. They did not study the dependence of
the time lag on the initial conditions, and assumed it was
obvious that all transient processes are determined by the
potential barrier for nucleation. Accordingly, all the in-

tegrals involved were calculated by the method of the
steepest descents near the barrier.

Some experiments have been performed under different
quench rates. Howland, %ong, and Knobler studied the
influence of the quench rate on the temperature distribution
in the experimental cell. Different quench rates have been
used by Ahlers, Cross, Hohenberg, and Safran' in a dif-
ferent dynamic problem in which a system passes through
an instability point in the Rayleigh-Benard convection. %e
do not know, ho~ever, of any experimental study of the
dependence of the time lag on the initial conditions.

Another powerful method of investigation of nucleation
phenomena is by numerical simulation. There are indica-
tions of the importance of the rate of quench. Molecular
dynamics studies under different quench factors (rescaling
of the velocity of every particle at each time step) show a
dependence of the onset of the nucleation process on the
quench rate (see Fig. 2 in Ref. 6). Numerical solutions of
the system of the time-dependent differential equation
describing the nucleation (for different sizes of nuclei) indi-
cate that the time lag depends on the minimal size of the
nuclei present in equilibrium concentration (Fig. 1 in Ref.
3). There are, however, no systematic numerical studies

~here nucleation processes have been studied under dif-
ferent quenching rates.

The relaxation of a metastable state is usually described'
by the distribution function W(r, t) of nuclei of size r at
time r. The variation of W(r, t) is determined by the
change of the flux J(r, t) of nuclei according to the con-
tinuity equation
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To solve the Fokker-Planck equation (1) for W(r, t), one
has to know the explicit form of the functions F(r) and
D (r ) which determined the systematic growth (decay) and
the diffusive growth of the nuclei, respectively. One usually
assumes some model expressions for F (r ) and D (r ). We
have shown, however, that there is no need for additional
assumptions; not too far from the critical point these two
functions are fully determined by the critical dynamics, '

namely, for the nonconserved order parameter.

F(r) =2cI' ———;D(r) =cI 2; Do=1 Do kT (2)
r rc r' ' 4n. a-

where c l is the diffusion coefficient far from the critical
points. The parameter Do is determined by the surface ten-
sion o- and the temperature T. Since it has the dimension
of length squared, it can be estimated as the square of a
correlation length g Do —('. Expressions similar to (2)
have been obtained for the conserved order parameter.

The important parameter of the nucleation theory is the
so-called critical radius r„which determines the competition
between the volume and surface parts of the nucleus ener-
gy. In fact, those nuclei with r & r, will shrink and those
with r ) r, will grow in time. All our consideration relates
to the first stage of the decay of a metastable state before a
substantial number of critical nuclei appear. The second
part of the transition from a metastable to stable state has to
be considered separately, using, for example, Eq. (1), but
with the correlation radius changing in time.

%e considered the vicinity of the critical point in order to
find the form of the functions D(r) and F(r). Our main
results, ho~ever, have more extensive applications. For ex-
ample, they do not depend on the divergence of the correla-
tion length near the critical point. Notice, however, that, as
was shown by Langer, the statistical-mechanical approach
to a metastable state may, strictly speaking, be handled only
in the vicinity of the critical points. The reason is that the
theoretical consideration of metastable states requires some
additional constraints, say the coarse-graining procedure,
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i.e., an introduction of a minimal length. The correlation
length g is the natural minimal cutoff length near the critical
points. Accordingly, we consider nuclei with radii r, satisfy-
ing the condition (( r ( r, . The critical radius r, tends to
infinity as one approaches the coexistence curve. Hence, by
assuming g'/r, ( 1, we restrict ourselves to some region on
the phase diagram which is located near the coexistence
curve, but is not too close to the critical point.

We are interested in the time-dependent solution of Eq.
(1). For this, we use the form

W(r, r ) = W„+g A„X„(r)e

where W„(r ) is the steady-state distribution function. The
nonstationary flux J(r, t) is described by similar expansion.

The initial conditions are of fundamental importance in

our considerations. Immediately following the quench, the
system is in a state of incomplete equilibrium characterized
by some characteristic length A. such that a steady-state dis-
tribution after a quench has been achieved only for nuclei

A„ = — X„(r)dr4 )t.
(5)

It turns out that the integrand in (5) is a monotonically
decreasing function of r. Thus, the main contribution to the
integrand comes from its lower limit, i.e., A, , which accord-
ing to Eq. (4) depends on the speed of the quench. Only in

the case of a slow quench does the main contribution to (5)
come from the vicinity of r, so that one can use the method
of steepest descents, just as is usually done for the steady-
state case.

For slow quenches, an integral obtained by substituting a
solution of Eqs. (I) and (2) has been calculated by the
method of steepest descent in Ref. 1. The final result is

of size r ( A. . Therefore, the initial conditions are

W(r, 0) = W„(r )O(h. —r)

where O(X —r ) is the unit step function. For "slow"
quenches h, —r, and for "fast" quenches X —(.

The coefficients A„ in Eq. (3) are determined by the ini-
tial conditions. One readily finds that

( —I)" +'2 ' (ADO) ' r, W,',/ (g)(1 —X /r, )(n!) '/ [(n —1)!!]exp( —r, /6DO), n =even
~n. s)0

='
,0, n =odd

By contrast, the results for fast quenches are significantly different from those for a slow one. The main contribution to the
integral (5) comes now from nuclei of radii far from r, and we found that'

1

( I )I + hi ( 3
) (2D ) 1/2 —n/2 —1/4m —1/2 W 1/2 (g) (n!)

—l/2 exp
0

(7)

I

quench, the series in n are very slowly convergent, and one
has to take into account the terms with large n. It is hard,
however, to find these terms by simple methods. ' The
terms of higher order in n are important for the small times
t. Therefore, one has to perform a cutoff at small t in
W(r, t) and J(r, r) for the case of slow quench. On the
other hand, for fast quenches all calculations are much
more precise, and one needs no cutoff for this case.

We bring here the results of calculations for the noncon-
served order parameter. The time dependence of the nu-
cleation in systems with conserved order parameter looks

where I (X) is the gamma function.
The expressions for A„[Eqs. (6) and (7)1 for slow and

fast quenches have been used in Refs. 1 and 2 for the calcu-
lation of the observable quantity N (r ) =I J(r„r)dr, the

0
so-called integrated flux, i.e., number of critical nuclei ap-

pearing during the time t. Consideration of the integrated
flux allo~s an answer to the following important question:
%'hat is the duration of the transient regime until the sta-
tionary state appears? A schematic plot of N(t) is shown
in Fig. 1. Only after some characteristic time lag 0 does the
integrated flux start to be linear in time, N(t) = J„r We.
bring here the final formulas for 0 obtained in Ref. 1, for
the slow and fast quenches.

0, = r2/4cl
' —3/4

fq
0/ = 0,v, v = 21 ( —)

4Dp

2
fc

24D0

(8)

As is to be expected, v && 1, and the time lag exponentially
increases for the fast quenches.

However, for a comparison with experiments, one has to
calculate the distribution function W (r, r ) and the flux
J(r, t) during the transient period. With expressions (6)
and (7) for A„and A.„, one can find' both the transient dis-
tribution function W(r, t), given by Eq. (3) and the flux
J(r, t). The general line of calculations is the same as in

Refs. 1 and 2. We bring here only final results, subject to
the following important comment. In Eq. (3) one has to
perform summation over n, which turns out to be different
for slow and fast quenches. For the case of the slow FIG. 1. Time dependence of the integrated flux N(r, t).
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similar.

,/, exp( —2cI t/r 2)
W, ~ „(r,t ) = W„—2f (r, ) [r W„(r ) ]'/

2cI t r,' '"
ex —2cI't r ~

J„,„(r,t ) =J„+f (r, )cI Do2'/'[r ' W„(r ) ]'/'g (r ) 2crt r,' "'
where

(10)

+Do

' |/2

W,',/ (g) exp—
0

1 r r f2 r4
g(r) = —+ +

Do Dor, %2Do %2Dor,'
(12)

As was mentioned above, one has to make the cutoff of small t in Eqs. (10) and (11), which behave nonphysically in this
region.

Wfast ( r. t ) = Wss

&/4

W"'( ). ' '[W (.).]'" p—
r,

r —r,2 2 '2

, 2r, J2Do

2cr r, -r 2cr2 2

x exp ——,t exp
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4cl
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t
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(13)
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with g(r) defined in Eq. (12).
Notice that for both slow and fast quenches W(r, t) and

J(r, t) show the same time dependence. In addition, the
general form of the r dependence for W,],„and &[-„& is very
similar.

For comparison of the theoretical results (10)-(14) with

experiment and numerical simulations, it is convenient to
present these results graphically. For all numerical esti-
mates we use the typical value of the diffusion coefficient
cI of liquids far away from the critical point, cI =10
cm2/sec. Two additional parameters, the radius of the criti-
cal nucleus r„and Do which is of the order of the square of
the correlation length, (', are crucially dependent on the
thermodynamical state of a metastable system immediately
after a quench. Although all of our approach is correct only
if the condition r, ) ( is fulfilled, the magnitudes of r, and

( might be changed within reasonable limits. One can as-

sume, for example, 10 8 cm ( g ( 10 6 cm; 10 7 cm ( r,( 10 " cm, provided that r, )(.
The time lag 0 as a function of a radius of the critical nu-

cleus r, [Eqs. (8) and (9)] is shown in Fig. 2. In the con-
struction of Fig. 2 it is assumed that g is equal to 4.10
cm. From Fig. 2 it transpires that an appreciable difference
in the time lags for slow and fast quenches occurs only for
r, ~4.10 6 cm (or from r, = 10 6 cm for /=10 ' cm).
Therefore, for small r„as is commonly used in the comput-
er simulations, the difference between slow and fast
quenches cannot be observed, at least from the time lag
measurements.

Immediately following a quench, the distribution function
of nuclei W(r, 0) is described by Eq. (4), which is quite dif-
ferent for slow (X—r, ) and fast (X—g) quenches. On
the other hand, after a time of the order of H, the distribu-
tion functions in both cases approach the steady-state value
for all nucleus radii smaller than the critical one.

In Fig. 3 we depict the distribution function H vs t for

bee.'
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FKJ. 2. Time lag H as a function of radius of the critical nucleus
r, (the solid line, slow quenches; the dotted line, fast quenehes).

f

some typical radius of nucleus r =5.10 ' cm (r, =8.10
cm, )=4.10 ' cm). This typical form of the graph is the
same for all radii of nuclei and bears a resemblance to those
obtained in numerical simulation. '

As distinct from the distribution function, the time
dependence of the flux of nuclei J (r, t ) is significantly dif-
ferent for small and large values of the radius of the critical
nucleus r„especially for fast quenches. For small r„J(r,r)
manifests maxima before the transient fluxes reach the
steady-state values ("over shooting") which have been seen
in computer simulations. However, in addition to such
maxima, our calculations show up a minima of J(r, t) for
large r, . All this nonmonotonic behavior takes place solely
for fast quenches, while for slow quenches J(r, t) (for not
too small times) is a monotonic function of time.
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FIG. 3. Distribution function vs time for some typical radius of
nucleus, r - 5 && 10 ~ cm (,slow quench;, fast quench).

To the best of our knowledge, there are no experiments
or numerical simulations concerning nucleation for different
rates of quench. In numerical calculations one usually as-
sumes that only nuclei of a minimal size are in equilibrium
immediately after a quench (and, in fact, during all the nu-
cleation process). This means, in our language, that X= g
in Eq. (4), i.e., all numerical simulations are performed for
the fast quench. Unfortunately, the number of particles
used at present in numerical simulations is comparatively
small, so that r, is of order of 10 ' cm. ' According to Fig.
2, we predict that the time lag will drastically increase with
increasing radius of the critical nucleus. Another new
feature, which will become apparent at larger r„ is a transi-
tion from maxima to minima in time dependence of the
transient flux of nuclei J(r, r). It would be of interest,
therefore, to increase as much as possible, r, in the numeri-
cal simulation or maybe to perform them in two dimen-
sions.

We have recently performed the Monte Carlo simula-
tions for the three-dimensional 168&168&168 Ising lattice
in the framework of the Glauber dynamics. For the dif-
ferent fast quenches, in agreement with the theoretical pre-
diction (9), the time lag is found to be exponentially, rather
than linearly, dependent on the squared radius of the critical
nucleus.

A real experiment is quite the opposite to numerical

simulations with respect to the size of r, . It is very hard to
observe very small nuclei, not to mention the speedy com-
pletion of the decay of a metastable state for small r, .
While larger values of r, /g increase the differences between
slow and fast quenches, they also lead to a drastic (ex-
ponential) decrease of the steady-state nucleation rate, J„.
The rather small value of J„ for such quenches indicates
that the lifetime of a metastable state is large, We are in-
terested, however, in the length of the time interval
between the end of the quench and the beginning of the
steady state regime, rather than a complete decay of the me-
tastable state. The beginning of the steady-state is deter-
mined experimentally by the linear increase of N (r„r ) with

time. In order to check this linear dependence, it is
enough, in fact, to see only a few droplets larger than r, .
Then one has to perform a "fast" quench, finding thereby
the time lag Of. The next step is to measure the time lags
0, for different "slow" quenches. The duration of such
quenches is limited, of course, from above by Of. In princi-

ple, one can measure the transient distribution function
W'(r, t) as well.

Numerical estimates of both Of and J„are extremely
sensitive to the values of r, and g, i.e., to the distance of
the quenched state both from the coexistence curve and
from the critical point. Note, however, that experimental-
ists can perform a quench into a state with known r, /g
(equal to 7, 10, and 20 in Ref. 10) and reasonable value of
J„. Our estimates can provide only a general guide for ex-
perimental setups. For example, for r, /(=15, the differ-
ence between fast and slow quenches is considerable
(0&/8, = 130) while lnJ equals zero (i.e., one nucleus per
second is produced in 1 cm') for r, = 4, 5.10 6 cm, and is
—20 for r, =2.10 cm. If r, /)=12, then Of/0, =15 and
J = 1 (cm3 sec) ' for r, = 2.10 cm.

Both regimes of slow and fast quenches can be realized
experimentally. Very fast quenches, of order of a few msec,
can be obtained by pressure jumps, " along with slow

quenches achieved by temperature changes.
In addition to liquids considered above, the transient

processes in nucleation are even more profound for the
solid systems.

We are looking for experimental manifestations of the in-

fluence of different quench rates on the nucleation
processes, both in numerical simulations and in laboratory

experiments.
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