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An analysis of the Rayleigh-Taylor instability in a spherical geometry is presented. Expanding
any initial perturbation at a spherical surface between two fluids in spherical harmonics F~ and
further assuming an exponential time growth of the expansion coefficients, an eigenvalue equation
for the growth rate is obtained. The free-surface and jurnp boundary conditions are obtained from
the eigenvalue equation. The eigenvalue equation is solved for solid spherical targets and analytical
formulas for the growth rate of the instability are presented in the cases where the initial plasma
density profile has a step function or exponential variation in space. An analytical expression for
the growth rate is also presented for the shell targets and its variation with the aspect ratio of the
shell is discussed.

The achievement of desired fusion yields in inertial con-
finement fusion (ICF) requires the compression of the fuel
pellet to up to as high as 10 to 10 times the solid densi-
ty. During the course of the spherical implosion that is
required to achieve this high degree of compression' an
unavoidable departure from symmetry arises. The main
sources of these asymmetries are the pellet fabrication
asymmetry, nonuniformity of driver beam illumination,
and hydrodynamic instabilities. Among the hydrodynam-
ic instabilities, the Rayleigh-Taylor iastability is an in-
herently unavoidable problem during the implosion of the
ICF target. In the classical analysis of semi-infinite,
inviscid, incompressible fluids of constant density, the ex-
ponential growth rate y of the instability is (a Eg)'
where a is the Atwood number given by (pi, —pi)/
(pal+pi), K is the wave number, and g is the acceleration,

pi, and pi being the densities of heavy and light fiuids,
respectively. In the case of a realistic ICF experiment, the
analysis of the instability is complicated by the presence
of density gradients, heat conduction, compressibility,
flow of the ablating material, and spherical geometry.
Recently a number of two- and three-dimensional numeri-
cal calculations ' have been reported where all of these
effects are taken into account, and the general prediction
is a reduction of the growth rate by as much as a factor of
2 compared to the classical value. On the other hand,
there have been some attempts to study a few of these ef-
fects analytically. ' Most of this analytical work is re-
stricted to a plane geometry. Some analysis of the fiuid
instability for a spherical geometry has been considermi by
Hunt ' and Elliot . Kidder used his theory of homo-
geneous isentropic compression to predict the growth rate
for spherical shell targets, and Book and Bernstein have
used self-similar solutions for the analysis of the instabili-
ty in a spherical geometry. Recently, Takabe et al. have
developed a self-consistent analysis of the Rayleigh-
Taylor instability in an ablating plasma, including the
heat conduction and ablative flow.

In this paper we present our analysis of the instability
in a spherical geometry. The initial disturbance at the
density interface is expanded in spherical harmonics

8ll
p +(u V)u = —Vp+gp,

Bt

V u=0, (3)

where p and u are the density and velocity of the plasma,
respectively, while p is the hydrodynamic pressure and g
is the acceleration. The effects due to heat conduction
and viscosity are neglected.

Assuming the fluid to be perturbed from its quiescent
state, we replace p by po+5p and p by po+5p and linear-
ize the above set of equations. For spherical geometry,
the resulting set of equations involves po, 5p, 5p, the radial
velocity u„and a quantity D& ——V~ u&, uz being the com-
ponent of velocity in a direction normal to the radius vec-
tor. The next step is to expand the perturbed quantities
5p, u, ,5p, and Dl in terms of the spherical harmonics as

f( r, 8,g, t) =g fi (r, t) Y( (8,$), (4)

where f stands for any of the perturbed quantities. The
time dependence can be separated by making the cus-
tomary assumption that

1"i (8,$) and the expansion coefficients are assumed to
grow exponentially with time. %e derive an eigenvalue
equation for the growth rate yi, along with the different
boundary conditions which are subsequently used to
derive analytical formulas for solid and shell targets. In
the analysis for the solid targets the initial density profile
is assumed to be either a step function or an exponential
in space. Incidentally, these two are the only density pro-
files which can be analyzed analytically. However, any
realistic density profile that may exist in ICF experiments
can always be approximated by a suitable combination of
these two basic profiles. The analysis of this paper would
therefore be relevant for treating a realistic density profile
as well.

The dynamics of the imploding plasma is described by
the hydrodynamic equations for an incompressible fiuid

Bp +V (pu)=0 (1)
Bt
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d~r 4pp d~r
po(r)

dr dr r dr
l(1+1) g dPo

2 2 dr y dr

2Po 2 dPo+ u +— u, =0, (6)
r r dr

where for the simplicity of writing, we have suppressed
the subscripts l, m. It is clear from Eq. (6) that the
growth rate y depends only on I and not on m. This de-
generacy, with respect to m, has also been observed previ-
ously by many authors. ' ' For a given density profile po
the growth rate y is obtained by solving Eq. (6) under
suitable boundary conditions. We note at first that u„ is
finite as r~0 and vanishes as r ~ oo. Next, at a point of
discontinuity in the plasma density (say at r =R) we re-
quire the jump condition [obtained by integrating Eq. (6)
from R —e to R+e and letting @~0]

dur 25 pp dr R

where h(F) is defined as

b,(F)=F~+ R~—

I (I + 1) g u„(R)h(po)=0, (7)R2 y2

Fz+(Fz ) being the value of the function F just above

(below) the point r =R. Finally, the boundary condition
at a free surface r =R [obtained by setting po(R+) or
po(R '=0 in Eq. (7)] reads as

du, 2 I (I+ 1)g u„(R)=0 .
dr g

(9)

We may also mention here that at a fixed boundary
u„=0. This condition is, however, not relevant in the
cases presented in the paper.

We now consider some density profiles for po leading to
an analytical treatment of the problem. For solid spheri-
cal targets there are two cases of interest where analytical
formulas for the growth rate y can be derived from the
solution of Eq. (6). The first case is that of a stepwise
density profile

(10)

fi (r&)=fi (r)& '

Subsequently eliminating (Di )2, (5p)i, and (5p)2 from
the resulting set of equations, one can derive the equation
determining the growth rate yI

po(r)=de~", 0(r(R, (14)

where A and p are constants. The solution of Eq. (6)
yields the normalized growth rate T'=y/(Kg)'
(K =I/R) given by

y =(I+1) pR iFi(a+1,2a+1; pr)—a—
2 iFi (a,2a; —PR)

(15)

where iFi(a, c;z) is the usual hypergeometric functionzs
and the quantity a is defined as

1/2

a =0.5 1+ (21+1) + y' (16)

We notice that y depends on the product pR rather than
individually on p and R. Also as the product pR ~0, the

'~ Ql

~w 0.99-
II

comparing Eq. (11) with the corresponding plane case we
may, for the purpose of subsequent discussion, introduce a
parameter analogous to the Atwood number as

(1 +1)(pi —pz)

(I + 1)pi+ lpz

We also note that the large value of I implies a large value
of K and hence this limit is equivalent to the short-
wavelength limit of the plane case. Similarly I = 1 (lowest
permissible value of I) corresponds to the long wavelength
limit of the plane case. Thus, in the following we will
refer to the limits I »1 and 1=1 as, respectively, the
"short wavelength" and "long wavelength" limits. In
these two limits the quantity a' takes the form

(p, —pz)/(p, +pz), I » 1
QI (13)

(pi —pz)/(pi+0. 5pz), 1=1 .

Note that a' for I »1 is identical to the Atwood number
for the plane geometry while for I =1 it is somewhat dif-
ferent.

The second case is that of a density profile with an ex-
ponential variation in r,

where the solution of Eq. (6), with appropriate boundary
conditions, leads to the growth rate given by O 09'

pR = O.os
PR=O ~ 3------

1(1+1) —17 =g(pl —P2) [Pi+1(Pi+P2)]R

Note in passing that for a sphere of radius R with a uni-
form density po and a free surface at r =R, the growth
rate y is equal to (Ig/R)' . Comparing this result with
the corresponding result in plane geometry, where
y =Eg, we may introduce an equivalent wave number for
the spherical case by K =I/R. With this definition for K,

Xl
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FICr. 1. The normalized growth rate y as a function of I for
various values of PR.
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respectively. We observe from these figures that for a
given value of I the growth rate y decreases as the aspect
ratio 5 increases. Further, for a given 5 the growth rate y
asymptotically approaches the classical value of
(pi —pq)/(pi+p2) for the large value of I, as noted earlier.
Also note that the variation of the growth rate y with 5 is
much slower for higher harmonics. This implies that
shell targets with high aspect ratios are more sensitive to

short wavelength perturbations.
The analysis of this paper can be generalized to study

the effects of a more realistic density profile generated
when a ICF pellet is ablated by a 1aser beam. In particu-
lar, the effects due to density steepening may be evaluated

by approximately treating the density profile as a coin-
bination of step functions and exponentials.
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