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Coherent properties of the stimulated emission from a three-level atom

Xiao-shen I.i and Chang-de Gong
Department ofPhysics, Nanjing Uniuersity, Nanjing, Jiangsu, People's Republic of Cht na'

(Received 2 July 1985)

First-order correlation functions of the electric field and photon-number probabilities in the case
of a three-level atom interacting with two-mode radiation field are obtained to investigate the

coherent properties of the stimulated emission under different initial conditions. It is found that

double stimulation will cause the field to approach its initial coherent state and the oscillation of the

photon-number probabilities to collapse and revive.

I. INTRODUCTION that for the field is

In this paper we investigate the coherent properties of
the stimulated emission in the case of a three-level atom
excited by two-mode field. We shall consider the case
that initially a "A" structure three-level atoin is in its ex-
cited state and comes into interaction with one- or two-
mode radiation field, of which one mode is coherent but
the other chaotic or both coherent or chaotic, and study
the extent to which the field from stimulated emission
will also be coherent through the comparison between

(E) E)+ ) and (E~ ) (E)+ ) (Ref. 1) and of photon-
number probabilities under different conditions. In addi-
tion, the coherent behavior of the photon-number proba-
bilities beyond the short-time regime is also studied.

II. FORMULATION AND COMPARISON

The "A" structure three-level atomic has a common
upper level ~a) and two lower levels ~b)) and ~bz).
The transition between

~

a ) and
~
b ) ) (

~
b2 ) ) is mediated

by mode 1(2} with frequency 0) (Q2). The Hamiltonian
of this system in the rotating-wave approximation is)

2

H AQ)gs ) ) +15 + (a)gtsg + ) t + ] 0+tjaat )

pF(0) pt;, (0) pt;, (0),

and that for mode 1 is
I

l ~mla) (a))
pF (0)= g, e ' ~m))(m)

~

. (6)
, (m)!m I!)'~

mlml

On resonance 0;=to, —tos, , we can follow the same

procedure as Ref. 2 or 3 and then obtain the first-order
correlation function (E) E)+ ) and the mean electric field
of the positive frequency (E)+ ) and the negative (E) )
for mode 1, respectively.

When initially mode 2 does not exist, i.e.,

~~,(0)=X&n20 In2~(,'n2 I,

we have

(E;E+& (t)

n) +A, ) g (n) + 1)sin (~p()t) W, (n) )/)Mo

2

+))1 g A,;(s);+)a;+H.c. ) .

The electric field operators for mode i ares

E;=5';(a;+a; ) =E,++E, (i =1,2),
in which

E+=g'a;), E, =g!';a t. (3)

( E) )„(t)=8')a) so(t)e

(E)+ ) (t)=8')a)so(t)e

(E; & «+)„(t)=@',n, s.'(t),
where

so(t) =g [cos~ppt cos'}/po) t + (po) /po)

(10)

In what follows we shall consider initially mode 1 in a
coherent state

~
a) ) with mean photon number n,

=
~
a)

~

and the atom in its upper state
~
a ), i.e., the den-

sity operator for the atomic-field system is

pF(0} 0 0

p(0)= 0 0 0 (&)

0 0 0

Xsin(~pot) sin(Qpo)t)] W, (n) ),

!)to=A)(n ) + 1)+}).p,

po) —Xz)(n) +2}+X22,

W', (n) ) =exp( —n, )n ", '/n, ! .

(12)

(13)

(14)

Equations (7) and (10) can be analyzed by means of nu-
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11.0-

105-

p=A i(n, +1)+Xi(ni+1),

pi ——A i(n )+2)+Ap(ni+ 1),
Nl —n2W„(ni, n2)=exp( —ni —n2)n i'n i'/ni!n2!,

Nl N2 N2 1

W«(ni, n2) =exp( ni
—)n i'n 2'/n i.(n2+1) '

(20)

(21)

(22)

(23)
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merical summation. Figure 1 shows the two quantities
(Ei Ei+ &„/8'i and (Ei &«(E+i )~/S'i as a function of

t, for , the case A, i
——A,2 ——A, and n i ——10. For a crude esti-

mate in Fig. 1, the two quantities have the same value in
the "time" Q,t) range between 0 and 0 06ir T. his .means
that in the three-level single-excitation case, a field initial-
ly in a coherent state will stimulate emission which is also
coherent to first order for "times" A, t (0.0&r.

When initially mode 2 is in a coherent or thermal state
with mean photon number n2, i.e.,

p~, (0)= g at'(at) 'e '
~mz&(mz ~/(m2!mt!)'

FIG. 1. (E~ E~+) IS'f and (El ) (El+)~IN'1 as func-
tions of A,t are compared for the case of one-mode stimulation
vrith R~ ——10.

Equations (15) and (18) can also be analyzed by means of
numerical calculation. Figures 2(a) and 2(b) show the
"time" range in which curves of (E i E i+ )„and

ct
(Ei &„(Ei+)„are superposed. By comparing Figs. 1,

ct ct
2(a), and 2(b), we can see that the stimulation of the other
mode (mode 2 here), no matter whether it is coherent or
chaotic, will cause the stimulated emission in mode 1 to
remain in the coherent state for longer times. This will
also be shown in the following.

The photon-number probabilities of mode 1 in single
and double stimulation can be found to be

p ( n i ) = [ cos ( ~jtlpf ) + [(A in i /1l i + A 2) /pp]

X sini(~ppt) I W, (n, ), (24)

110
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pz, (0)= g [n2 '/(nz+1) ' ] ~
mz &(m2 ~,

10.0
&&, &,&E, Pgg

we have

(E;E+&„(i)
ct

ctN ),N2

=8'i ni+A, i g (ni+1) W„(ni, np)
2 — 2 sin'v p, r

p
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(E,+ &„= Na, si (er)'"",
ct

«;&„(E+&„(r)= g ',.—,",(r),
ct ct

(17) 10.0

9.5

CE~ &&8i+g~ps

where upper (lower) symbols cc (ct) refer to mode 2 in the
coherent (thermal) state, and

si(t)= g [cos(v pt cos(~p, t)+(p, lp, )'

0.3 0.6

N l, N2

X sin(v pt) sin(~pit)] W«(n i,nz),
ct

FIG. 2. Mode 1 initially in a coherent state with n l ——10, and
mode 2 (a) in a coherent state, (b) in a thermal state, with mean
photon number n2 ——50.
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The curves numerically calculated form Eqs. (24) and (25)
are shown in Figs. 3(a) and 3(b). Through comparing
these curves we can see that the effects of the stimulation
of the other mode (mode 2 here) will cause mode 1 to ap-
proach the coherent state. The above effects are stronger
by coherent stimulation than by thermal one. This is in

agreement with the above results (see Figs. 1 and 2).
As for the case when mode 1 is initially in a thermal

state, it is easy to show

(27)

no matter what state mode 2 is initially in. It turns out
that similar to the two-level case, ' the stimulated field is
never coherent in this case.

It is also of interest to study the mean photon numbers

at arbitrary time t. Here we may consider there is initial-

ly two-mode coherent field and A, , =A.2=A, . In the same

way, when n i, n 2 » 1, they can be found to be

( n, (t) ) =n, +A, g (n i+1)sin (v pt) W„(n, , n2)/p
nl, n2

=n, +[A, (n, +I)/p, ] y sill (~jut)W„(ni, n2),
nl, n2

(28)

( n2(t)) =n2+A, y (np+ I) sin (v pt)W«(ni, np)/jtl
nl, n2

=n2+[A(n2+ ,I)/P] g sin (@jut)W«(ni, n2),
nl, n2

(29)
where

p=A i(n, +iI)+A (n2+2I) . (30)

0.050

t

10
l

15

FIG. 3. Photon-number probabilities against photon number

of mode 1. Curve 1 represents Poisson distribution of initial
mode 1 with mean photon number nl ——10; curve 2 represents
double stimulation, when t =0.4m/k, mode 2 initially in a (a)

coherent state, (b) thermal state; curve 3 represents single stimu-

lation, when t =0.4m/k.

It is clear from Eqs. (28) and (29) that stronger stirnula-
tion in mode 1 (i.e., larger ni) will result in smaller

(n2(t)) and vice versa. This phenomenon can be called
"mode competition, " which is the competition of the
atomic transition probabilities. However, this "competi-
tion" does not cause the stimulated field to deviate from
the coherent state (as is in the laser), but causes the field
to approach it. This is because the stimulation in the oth-
er mode (mode 2) will decrease the atomic transition prob-
ability from

~

a ) to
~

b i ) and then weaken the interaction
of mode 1 field with the atom, thus causing less change in
this (mode 1) field, i.e., causing the field to approach its
initial coherent state.

p2 ——Aini+Az(n2+I) . (26)

p«(tti)=g [cos

(vivat)+mini

sin (~p2t)/nip2
n2

+A2(n2+1}sin

(vent)/p]W«(ni,

n2), (25)
ct

respectively, where

III. COHERENT BEHAVIOR OF THE
PHOTON-NUMBER PROBABILITIES

Now we proceed to study the photon-number probabili-
ties beyond the short-time regime.

For simplicity, we may consider mode 1 under the con-
dition that mode 2 is coherent initially. When nz ~~ 1 and
A,

~

——A, z ——A, , we can neglect the difference between p and

pz and then obtain

p«(ni)=1 —g A,(ni, nq) sin [(ni+nz+ I)' At]W«(ni, n2), (31)



BRIEF REPORTS 33

where

Wg, (n„np)= W„(n2, n)),
——1 2n]+l+n $ n]

n&+n2+1A, (n&, n2)=

n~+1+n~(1+n ~
')

A, (n~, n2)=
n, +n2+1

where

Using the same method as Ref. 6, we obtain

p„(n &
)=1——,

'
A,(n, n2 )

tc t

X [ 1 —f(t) cos[P(t)]e +"
] W,(n, ),

t
(33)

nl+1
W, (n))=n t'/(n)+1) '

f(t) =[1+(n, kt)'/4Q'(n, )]

P(t) =2Q(n
~ )kt+n2 sin[At/Q(n & )] n—2kt IQ(n

&
)

——,
' tan '[n2k, t/2Q (n~)],

f(t)=2n2f (t) sin [Xt/2Q(n&)],

Q(n, )=(n, +n, +1)'" .

(34)

(35)

(37)

(38)

Comparing (24) with (33), we can see that different from
single stimulation, double stimulation will cause coher-
ence in the time evolution of the photon-number prob-
abilities, of which the initial oscillation period
to n IA——Q(n&), collapse time t, =Q(n& )/A(n2/2)', and
revival time ttt

—2mQ(n, )/)(, .
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