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Two-dimensional hydrogen molecule and the alternant-molecular-orbital approximation
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The eigenenergies of the hydrogen molecule are calculated in the alternant-molecular-orbital ap-

proximation. Emphasis is given to two-dimensional (2D) systems. Results for the 2D and 3D cases

are compared and also with the singlet state of the variational Heitler-London approximation. Un-

like what is observed in 3D, in 2D we found that in the ground-state electrons are highly correlated

and that double occupancy is inhibited.

In this brief report we present our calculation of the en-

ergy levels of a two-dimensional (2D) hydrogen molecule,
considering the nuclei to be separated by a distance R.
We assume the alternant-molecular-orbital (AMO) ap-
proximation, which is briefiy described in what follows.

We start with a Hamilitonian:

H =H"+2/R,

Diagonalizing the above Hamiltonian we obtain the fol-
lowing energy eigenvalues in terms of the overlap S and
the matrix elements 0:

B+'ir B 4AC —2
2A R

where

A =2(1—S )
e] 2 2H' = —Vl —V'2—

~la ~lb r2a

2 2

~2b ~l2
(la)

It describes the motion of two interacting electrons in the
field of two positive charges, fixed at position a and b,
separated by a distance R. H" refers to the electron sys-
tern. We have used atomic units where the energy is given
in rydbergs.

We search for eigenstatm corresponding to combina-
tions of 1-s hydrogenlike wave functions and unpaired
spins (singlet state), namely,

(ri rz)=fisi(ri rz)+fzez(ri rz)+fez(ri rz»CAMO

and

B=(1+S )[Hit+2(Hzz —Hz3)] —8SHiz,

C

=Hi�

] (Hzz +Hz3 ) —2H iz
2

2Ei ——(Hzz —Hz3)l(Szz —Sz3)+—.

The matrix elements HI, S;J and S are defined by

H,,=(y, ~H" ~q, ),

S= 2r~ 2r2 rI —R r2

(8)

(10)

i)('i(ri, rz) =P,"(ri )ttiI,'(rz ) +P,"(rz )4J,'(ri ),
4z(ri rz) =4"(ri)4"(rz»
$3(ri, rz) =yt", (r i )yt", (rz) .

(2a)

(2b)

(2c)

where r is a dimensionless distance (in units of the Bohr
radius) and a is to be obtained by minimizing the ground
energy.

The solution obtained by assuming fz f3 =0 is known ——as
the Heitler-London (HL) approximation.

We solve the Schrodinger equation variationally taking
for the 2D P"(r) (from now on we will omit the super-
script 1s):

1/2

P(r)= — ae8

022 ——Sa +2aJ —16a+ U,

H» —— 2a'S(K+ 4S)+4—aSK +aK',

H „=4a'(4—KS —4S')

+2a(J' —16+2J+4SK+K'),

Hiz ———2a K+2a(L +2K +SJ—8S),

Sii ——2(l —S ),
Sl2 ——2S,

S22 ——1,
S23 ——5

(12)

(13)

(14)

(16)

Next we express the relevant matrix elements in terms
of Slater's integrals:
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FIG. 1. Calculated eigenenergies of the 2D hydrogen molecule as a function of R. E '" is the energy at equilibrium.

J= —8[1—4aRI ~ (2aR )Ko(2aR )],
S=2aR [K~(2aR)+aRKO(2aR)],

K = —16o'RK~(2aR) .

The other integrals are obtained by numerical fitting:

(20)

(22)

The intraatomic correlation energy, U, is equal to 4.71a.
The integrals J, S, E, U, K', J', and I. that appear here
differ from conventional Slater's integrals because they
are calculated for the 2D case and depend on the varia-
tional parameter a. Their expressions in this case are

K'=2(0.415nR+2. 776)S [1—exp( —0.85aR}]/aR,

(23)

L =2.36[8(aR —1.1 }exp( —1.72aR +0.78)

+8(1.1 —uR)exp( —0.65a R —0.3aR)], (24)

J'= 1/aR —exp( —2.36aR )[1/aR —3.1aR

+ 1.1(aR ) —0, 3(aR ) ],
(25)
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FIG. 2. Calculated eigenenergies of the 3D hydrogen molecule as a function of R. The arrow indicates the equilibrium distance,
where E is a minimum.
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FIG. 3. Variational parameter a for the 30 and 20 hydrogen molecule. For each value of R the curve gives the a that minimizes

E . The dashed lines indicate the equilibrium values of a and R.

where I, is the Bessel function of first order and Ko and

Ki are the modified Bessel function of zero and first or-

der, respectively. The integrals I., U, and J' represent the
electron-correlation, S the overlap, E and electron-

hopping energy, and E' the exchange.
For each value of R we have minimized the ground-

state energy E and, with that particular value of a, ob-

tained E+ and Ej. The results are shown in Fig. 1. The
equilibrium distance is obtained to be R,q ——0.36, corre-

sponding to @~=1.29 and F. = —10.5 Ry, in good

agreement with the HL results. ' For the sake of compar-

ison, these values for the 3D case are a,q
= l. 17,

R~ ——1.41, and E = —2.28 Ry for HL and a,q=1. 19,
R,q

——1.43, and E = —2.296 Ry for AMO. Figure 2

shows the eigenenergies for the 3D case. Figure 3 shows

the variational parameter a as a function of R for two

and three dimensions. It is important to observe that the
variational AMO introduces in 2D a minimum of —4.08

Ry in E+ at R =2.20, besides that of E; in 3D the

minimum of E+ is —1.14 Ry at R =4.20.
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FIG. 4. Rate ted=f2/f~ for the ground state E as a function of 8 (details in the text).
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The wave function l(i is generally called the covalent
component, to distinguish from the ionic components $2
and fs. These terms are really not convenient, as pointed
out by Goscinski and Calais, mainly for short distances
R. It is important to mention that, even the smallest de-
viation of R from zero breaks the spherical (circular) sym-
metry in such a way that fzlf i does not approach the
value one for small R, as was pointed out by Chao,
Oliveira, Cerqueira, and Majilis in the 3D case.

Defining

X=H)) —E Sj),
F=H)2 —E S)2,

we have ri =X/2F. Figure 4 shows i) as a function of
R. We can see that i) is practically zero near the equili-
brium distance, differently of ri, which is near a max-
imum, and then shows some ionicity in the equilibrium
configuration. Both ri and ri fall off at large R, as
expected. Since g measures the double occupancy, we

conclude that intrasite correlation is strong enough in 2D,
near the equilibriuin, to inhibit two electrons to be bound
to the same nucleus.

For large separation (R-+ oo ) both problems reduce to
a= I and ri =0 (isolated hydrogen atoms) and the ener-
gies of the systems are E = —2.0 Ry and E = —8.0
Ry, respectively. For the first excited state they are

E+ ———0.945 Ry and E+ ———3.9833 Ry, corresponding
to the ground-state energies of a 8 in three and two di-
mensions in this approximation.

The results shown here can be used to study the forma-
tion of hydrogenic bound states associated with impurities
in the proximity of inversion layers in semiconductors.
These applications are presently in progress.
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