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Evolution of quantum systems driven by a Hamiltonian written in terms
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In this paper ~e exploit the ei-Norman algebraic disentangling procedure to study the evolution of
quantum states driven by a time-dependent Hamiltonian linear combination of the generators of the

SU(1,1) group.

[Ht, H2] = 2XHp, [Ht, H3] = —2A. H3

[H2, H3] = —AHt

(2)

~here ~ and 6 are numbers, depending on the explicit form
of the 0operators.

%hen X =5 = 1, we can recognize the commutation rela-
tion of the angular-momentum algebra when A. = —5= 1,
the algebraic structure is that of the SU(1,1) group, as is
immediately realized by means of the following identifica-
tion:

Jh PL Jh

Hi= 2II 0, H2= K+, H3= —K

The use of rigorous algebraic procedures" to deal with
time-ordering problems has proved a useful tool to treat the
evolution of quantum states driven by a large class of Ham-
iltonians often encountered in quantum optics. ' Even if
these techniques have been developed more than two de-
cades ago and, in many cases, are definitively more power-
ful than the Feynman-Dyson expansion, 4 they are not wide-

ly used as perhaps they should be. The most interesting as-
pects of these methods are their simplicity and generality.
They work indeed for many types of Hamiltonians without
any recourse to specific assumptions,

In this Brief Report we go a step further along the line
developed in Ref. 3, discussing the time-ordering problems
arising in the analysis of the evolution of states driven by a
Hamiltonian written in terms of SU(1,1) generators. ' Ham-
iltonians of this kind have attracted noticeable interest,
within the framework of the evolution of coherent states of
the Perelemov type. Furthermore, it has been recently
shown that (he Hamiltonian of the degenerate parametric
oscillator of nonlinear optics preserves such states under
time evolution. 7

This problem, ho~ever, deserves interest also from the
practical point of view. In fact, Hamiltonians expressed in
terms of SU(1,1) generators are encountered in the analysis
of the so-called squeezed states of the electromagnetic
field. '

In Ref. 3 the following Hamiltonian has been considered:

H= " ' Ht+ f)'(t)H2 —fl(t)H3+p(t) (h'= I)
2

where cu(t) and p(t) are real time-dependent functions, and
O(t) is a complex function. Furthermore, the H operators
are the generators of the real, split, three-dimensional Lie
algebra, with commutation relations

= n "(t)K, + n (t) K (5)

t I

fl(t)=f1(t)exp —i '

t (t') dt'
Jo

In this connection the time displacement operator may be
written

U(t) = U"'(t) U (t),
where

t —is&" (t) = H, (t) irt" (t), ir«&(0) = i ,
dt

i —Ut(t) = Ht(t) Ut(t), Ut(0) = r
dt

The first integration is trivial; the second requires more
care. Ho~ever, according to the %ei-Norman decoupling
theorem (see Refs. 2 and 3), one can immediately write

Ut(t) =exp[2h(t)Ko]exp[g(t)K+]exp[ —f(t)K ]r, (8)

where the functions (h, g,f) are specified by the following
system of linear differential equations:

h(t) = —i6(t)g (t)e'"'"

g(t) = —iQ "(t)e '"'"—g(t)h(t)

f(t) = iQ(t)e2" ', h(0) = f(0) =g(0) =0

(9)

It can be easily shown that the solution of system (9)
depends on the solution of the single Riccati equation'

The evolution of a quantum system described by the
Hamiltonian (I) written in terms of the generators (3) can
be therefore studied by directly applying the techniques dis-
cussed in Ref. 3.

As first step we write

H(t) = H, (t)+ V(t),
Hp(t) = a (t)Kp+P(t)

V(t) = fl"(t)K, + Q(t)K

From the above expression we get an interaction Hamil-
tonian of the type

p( t

Ht =exp +i J Ho(t') dt' V(t)exp —i J Ho(t') dt'
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u(r) =h(i):

i'i(r) —[u(r)]'+p(t)u(t)+q(i) =0, &(0) =0

p(r) = — +i~(r), q(r) = ~O(r) )

D (r)
fi (r)

(io)

ly(r)) = g Ci(r) ~n+ I, —4),
I —n

(12)

where a and a are annihilation and creation operators
([a,a ] = 1) and expand the wave function of the system at
the generic time t in terms of the D (~) representation of
SU(1,1),' that is,

%e can now discuss a more specific physical situation,
namely, the case of the degenerate parametric oscillator dis-
cussed in Ref. 7.

In this case we realize the generators of SU(1,1) as'

It+=~(a )',

n+ I representing the Fock occupation number. To assume
that )Q(0)) = )n, ~) implies for the coefficients Ci(r) of the

expansion (12) the initial conditions Ci(0) = gi p Ac.cording
to what has been discussed so far, the CI coefficients can be
immediately evaluated from the following matrix element:

K =~(a)', C, (r) = (n+ I, T ~
U(r) l, ~i) (i3)

J% ]Eo=T(a a+aa ) Using (6), (8), and (11)-(13),after some algebra we get

' I/2

ly(r)) = X
I —n,

p j
exp ~[1+2(n+ i)] 2h(t) —i ru(t') dt' 4n!(n+ I)!H„'(g(t)f(t))~n+ I,T) (i4)

where H„'(x) is a polynomial defined as follows:

( —1) (x/2)
~-o 2~m!(n —2m)!(I/2+ m)!

The symbol [u] denotes the largest integer ~ v.
An analytical solution of (10) exists in a limited number

of cases only, as, e.g. , for the problem discussed in Ref. 7,
where

Ql(r) = 2hlp

n(r) =2n, e

with ~0 and 00 constants.
In this case Riccati's equation is straightforwardly solved

and therefore the system of differential equations (9) too.
[The explicit expression of the Riccati equation now reads

u —ui+40pi=0, u(0) =0

whose solution is u= —20ptanh(20pt). ] We must, how-
ever, stress that exact solutions can be found for a larger
class of potential, as will be shown elsewhere. In this con-
nection, assuming that the state

~ P ( t) ) evolves from the
vacuum (n =0), the general expression (14) reduces to

(i!i(r)) = X ( —i/2)'I'exp[ —T(1+2I)pipr] ', [l,~)1 (tanh20or )"' J~!

I 0 cosh20pi

The results found in this paper coincide with those of Refs. 7 and 9, where the evolution of coherent SU(1,1) states has
been studied.

In this Brief Report we have followed a different technique based on the %ei-Norman algebraic procedure, which has al-
lowed us to treat the problem from a rather general point of view.

Let us finally point out that the above developed analysis can be usefully applied to the solution of SU(l, l) Raman-Nath-
type ' equations, namely,

iCi'= pi(r)(n+l)Ci+ [Q(t)v'(n+ I+1)(n+ I+2)Ci+2+0 (t)4(n+ l)(n+ I —1)Ci 2]

C(0i=)i,go.
(18)

This last point, the asymptotic limits for large rl and the connection with earlier work, will be discussed in a forthcoming
paper.
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