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Completely numerical calculations on diatomic molecules in the local-density approximation
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We have carried out completely numerical molecular-orbital calculations (i.e., no linear-
combination-of-atomic-orbitals basis sets or cellular approximations) on 13 first- and second-row di-
mers from H2 to C12 in the local-density approximation. The resulting ground-state bond lengths,
dissociation energies, and vibrational frequencies are reported and compared with experimental
values.

Recent density-functional calculations on the
transition-metal dimers Cr2 and Mo2 strongly recommend
the local-density approximation (LDA) for exchange-
correlation energy in molecular and solid-state sys-
tems. ' The LDA, in combination with an "antifer-
romagnetic" relaxation of spin symmetry, gives excellent
bond lengths and vibrational frequencies in these
transition-metal systems, and reasonable dissociation ener-
gies as well. On the other hand, the popular Xa
exchange-only approximation gives very much poorer re-
sults. Therefore, we feel that a systematic survey of the
local-density approximation in molecular systems is called
for.

The most extensive study so far of the LDA in small
molecular systems has been carried out by Painter and
Averill on the first-row molecules H2 through F2. These
authors use a Gaussian-type-orbital (GTO) basis-set
method which gives fairly accurate spectroscopic proper-
ties. Their method is somewhat similar to the GTO-Xa
scheme of Dunlap, Connolly, and Sabin ' and gives com-
parable results. However, an equally complete survey of
second-row LDA molecular properties has not, as yet,
been published, so we have undertaken to do so in the
present work. Further, we use a completely numerical
computational scheine [i.e., no linear-combination-of-
atomic-orbitals (LCAO) basis sets or cellular approxima-
tions of any kind) which eliminates the basis-set errors in-
herent in the traditional LCAO methods.

The first completely numerical self-consistent computa-
tions on molecular systems were performed by the present
author on first-row diatomic molecules in the Xa approxi-
mation. ' A similar numerical scheme has also been
developed by Pyykko and co-workers with applications to
a wide variety of inolecular-orbital theories such as
Hartree-Fock, Xa, multiconfiguration self-consistent-field
and Dirac-Slater theories. "' In the present work, the
numerical code of Becke ' is used to compute the
ground-state bond lengths, bond energies, and vibrational
frequencies of 13 first- and second-row dimers from H2 to
C12 in the local-density approximation. These calculations
comprise, to the best of our knowledge, the first complete-
ly numerical self-consistent computations of any kind on
second-row diatomic systems (although Pyykko's group
has recently completed a spin-restricted numerical Xa
calculation on the Crz dimer' ).

In the density-functional formalism of Hohenberg,
Kohn, and Sham' ' the total electronic energy of an N-
electron system is given by (in a.u. )

N

E= —,'g f Ip'g;I dr+ fpV, „,dr

+-,' f f P P d'r, d'r, +E„,(pt,pt),p( 1)p(2)
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where the Pt are integrally occupied single-particle orbi-
tals, p is the total electron density,

N

p= X I A I'
i=1

V,„, is the Coulomb potential due to the atomic nuclei,
and the last term F.„, is known as the exchange-
correlation energy. It can be shown'" that the exchange-
correlation energy is a unique functional of the spin densi-
ties pf and pl.

In the local-density approximation (LDA) the
exchange-correlation energy is estimated as follows:

E„,"=f pe„,(pt,pt)d r,
where e„, is the exchange-correlation energy per particle
of a uniform electron gas with spin-up and spin-down
electron densities given by the local values of pt and pt,
respectively. In the present calculations, we use for e„,
(p t,p). ) the electron-gas Monte Carlo data of Ceperley and
Alder' as parametrized by Vosko, Milk, and Nusair. '

The following so-called Kohn-Sham equation for the
single-particle orbitals P; is obtained by applying the vari-
ational principle to the above total energy:

,'v'y, +(v,„,+—v,—i+v„, )q, =., q, ,

where V,i is the Coulomb potential arising from the total
electron density,

V„(1)=f d rz,p(2)

and V„, is the exchange-correlation potential given by the
functional derivative of E„„

5E„,xc

5p
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In the local-density approximation, this functional deriva-
tive is simply

V„,(LDA)= [pe„,(pt, pt)] .
Bp~

Notice that the exchange-correlation potential is spin
dependent, which is important in the present context be-
cause we deal with spin-polarized separated atoms and
some molecular triplet states as well. Our calculations are
therefore completely spin unrestricted (i.e., we use dif-
ferent exchange-correlation potentials for spin "up" and
spin "down" electrons in spin-polarized systems).

We solve the Kohn-Sham equation for the single-
particle orbitals f; and also the Poisson equation for the
Coulomb potential V,~ using the completely numerical
code described in Refs. 8—10. All functions are defined
on a discrete two-dimensional mesh in prolate spheroidal
coordinates (related to the elliptical coordinates familiar
to chemists) and all necessary integrations and differentia-
tions on this mesh are carried out using two-dimensional
cubic spline analysis. This approach has the obvious ad-
vantage over the usual basis-set scheines, that numerical
accuracy is easily controlled by adjusting the number of
mesh points.

In the present calculations, we have used three meshes
containing 14X22, 20X32, and 30X48 points (notation
of Ref. 8) or a total of 308, 640, and 1440 points, respec-
tively. Even for the second-row systems dealt with here,
the difference in bond energies between the 308- and the
1440-point calculations is typically only a few hundredths
of an electron volt. The corresponding typical difference
in bond lengths is less than 0.01 bohr, and for the vibra-
tional frequencies it is less than 10 cm '. In other words,
our results show very satisfactory consistency over a four-
fold increase in the total number of mesh points. Greater
accuracy could, of course, be achieved (at substantially
greater cost) by increasing the size of our meshes even fur-
ther, but this level of precision is quite adequate for the
present purposes.

In computing our dissociation energies, we use exactly
the same numerical code and the same discrete mesh for
both the molecular and the corresponding separated-atom

calculations in order to take advantage of the resulting
cancellation of numerical errors. In this way, one obtains
accurate spectroscopic properties even on relatively coarse
meshes. It should be noted, however, that density-
functional atomic energies have a slight dependence on
ML, the z component of total angular momentum. This
is due to the fact that the degenerate complex spherical
harmonic functions FLM(8, $) do not have equivalent den-
sities. In a fully two-dimensional calculation such as
ours, this MI dependence can only be eliminated by intro-
ducing fractional occupation numbers. In the present
work, however, we restrict ourselves to integral occupa-
tion numbers and assume that Ml ——0 in all of our atomic
calculations (see the Appendix of Ref. 18 for further dis-
cussion of this point).

The bond lengths and vibrational frequencies have been
determined by fitting a cubic polynomial in inuerse r to
eight points in the vicinity of the equilibrium internuclear
separation. This inverse-r fit was used in our previous
Xa calculations and is adopted from the work of Dun-
lap, Connolly, and Sabin.

In Table I we present the LDA bond lengths r„bond
energies D„and vibrational frequencies co, for our 13
first- and second-row dimers from H2 to C12. The experi-
mental ground-state symmetry is assumed in each case.
As indicated above, the numerical accuracy of these re-
sults is 0.01 bohr, 0.1 eV, and 10 cm ', respectively, and
the entries in Table I are therefore rounded appropriately.
Also, we show the corresponding experimental results as
compiled in Ref. 19.

In general, the LDA bond lengths and vibrational fre-
quencies are remarkably good. The rms deviation from
experiment for the 13 molecules in Table I is only 0.05
bohr for the bond lengths and 80 cm ' for the vibrational
frequencies. On the other hand, the LDA dissociation en-

ergies tend to be much too large, with an rms deviation
from experiment of 1.2 eV. These general trends have al-
ready been observed by Painter and Averill and others in
first-row systems and in the recent transition-metal calcu-
lations as well. ' The present work confirms that these
trends hold for second-row systems also. Finally, we
should mention that the first-row results of Painter and

TABLE I. LDA spectroscopic constants.

H2

Liq

82
C2
N2

02
F2
Na2
A12

Siq

Pp

Sq

C12

Expt.

1.40
5.05
3.00
2.35
2.07
2.28
2.68
5.82
4.66
4.24
3.58
3.57
3.76

r, (bohrs}
LDA

1.45
5.12
3.03
2.35
2.07
2.27
2.61
5.67
4.64
4.29
3.57
3.57
3.74

Expt.

4.8
1.1

3.0
6.3
9.9
5.2
1.7
0.8
1.8
3.1

5.1

44
2.5

D, (eV)
LDA

4.9
1.0
3.9
7.3

11.6
7.6
34
0.9
2.0
4.0
6.2
5.9
3.6

Expt.

4400
350

1050
1860
2360
1580
890
160
350
510
780
730
560

COq {Cm )

LDA

4190
330

1030
1880
2380
1620
1060
160
350
490
780
720
570
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Averill agree reasonably well with the present completely
numerical results.

These calculations constitute the most extensive exam-
ination to date of the local-density approximation in dia-
tomic systems. We hope that our results will be of in-
terest to workers in density-functional theory and in quan-
tum chemistry. Having established numerically reliable
LDA spectroscopic properties for first- and second-row

molecules, our challenge now is to improve the LDA re-
sults by considering nonlocal corrections such as that of
Langreth and Mehl. We are currently very interested in
this problem and will publish our preliminary findings in
the near future.

This work is supported by the Natural Sciences and En-
gineering Research Council of Canada.
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