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Rydberg states of helium: Nuclear-recoil corrections

APRIL 1986

Richard J. Drachrnan
Laboratory for Astronomy and Solar Physics, Goddard Space Flight Center,

Rational Aeronautics and Space Administration, Greenbelt, Maryland 20771
(Received 21 November 1985)

The nuclear-recoil terms contributing to the fine-structure splitting of 1sXI. Rydberg states of
helium are calculated. A great simplification resulting from the use of nonsymmetric Jacobi coordi-
nates makes it possible to write the corrections to all terms in the asymptotic optical potential
without additional computation. The isotope shifts between He and 3He are displayed and evaluat-

ed.

In two previous papers' the effective optical potential
acting on the outer Rydberg electron in helium has been
derived and applied to the fine-structure splitting for
states of high angular momentum, as an extension of ear-
lier work. The somewhat surprising observation was
made that the lowest-order correction for the nuclear
recoil (mass polarization, specific mass effect) is propor-
tional to the dipole polarization potential. As derived in
Ref. 1 this appears to be a coincidence, and higher-order
recoil corrections would need to be calculated one by one.
In fact, the similarity between the dipole part of the per-
turbing potential and the recoil term in the perturbation
has been noted recently, while Martinis and Pilkuhn'
made the same observation as the by-product of a calcula-
tion of relativistic effects. In this report the use of a
slightly different coordinate system simplifies the recoil
calculation greatly and explains the apparent coincidence.

Ordinarily, in calculations involving two-electron
atoms, it is convenient to use as coordinates the vectors
r; —rst describing the positions of the two electrons
(l =1,2) relative to the nucleus of mass M. This choice
makes it easy to satisfy the Pauli principle, since the sym-
metry of the Hamiltonian is explicit, but it introduces the
mass-polarization operator Vs' ———2/M V ~ Vq, which
must be treated as a separate perturbation along with the
usual perturbing potential. ' For highly excited Rydberg
states, where the outer electron does not overlap appreci-
ably with the ls core electron, it is not necessary to use a
symmetric coordinate system. Instead we may use the
Jacobi coordinates defined as follows (we use Rydberg
atomic units with the electron mass set equal to unity):

Mr~+ rl+r2 Mr~+rlR= r'=rl —r~, x'=rz-
M+2 ' M+1

mass (which may be taken at rest) and further scale the
coordinates as follows: r'=r/m and x'=x/m, where m
is the reduced mass. The Hamiltonian is
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in reduced Rydberg units 8 =mR „,where rn = 1 —K/2,
1/ls =1 K /4, a—nd K=2/(1+M). The first set of
parentheses in Eq. (2) is the atomic Hamiltonian of the
core while the second set is the Hamiltonian of the shield-
ed outer electron, with a slightly modified mass p. Since
both m and K are less than unity we can make the usual
multipole expansion of the potential for r ~x,

1

V= g m —2 —— Pt(x. r) .K 2r

X1=1

Notice that this expansion differs from the conventional
one' only because of the square bracket appearing as a
factor in each term; for that reason it is trivial to rewrite
every term in the optical potential to include the finite-
mass effects. In addition, however, one must rewrite
every expectation value appearing in the energy to account
for the modified mass ls,

(x ')~ls'(x ') . (4)

(3)

Thus the apparently accidental proportionality of the
leading mass-polarization correction to the dipole polari-
zation term is easily understood, and it is obvious that
every term in the long-range optical potential will have its
nuclear-recoil counterpart. For example, the lowest term
in the expansion of Eq. (3) corresponds to l = 1,

Here R is the position of the center of mass of the atom,
r' is the position of the inner electron relative to the nu-
cleus, and x' is the position of the outer electron relative
to the center of mass of the core; the new feature is the
definition of this last coordinate. The Hamiltonian in this
form does not contain any cross terms in the momenta;
the effect of the finite nuclear mass will appear in the po-
tential. We next drop the kinetic energy of the center of
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In the same way, we find that the quadrupole potential,
falling off like x, is to be multiphed by 1 —2K, to first
order. To the same order in I%', the third-order potential
term, falling like x, is unmodified; since it contains two
dipole terms and one quadrupole term it is multiplied by
the factor (1+K) (1—2K) =1+0(K ). Simply by noting
which multipole terms contribute to each term in the opti-
cal potential, one can derive the mass-polarization correc-
tion of any desired order in 1/x. As a practical matter,
no terms of higher order in K than the first need to be re-
tained at the present level of accuracy of the experiments
(about 10 kHz). The main theory itself has conservatively
estimated errors, ' based on the observed rate of conver-
gence of the asymptotic expansion in 1/x, which are al-
ways of the same order of magnitude as the x term in
the mass-polarization correction. Thus, until further
terms in the expansion have been evaluated only the di-
pole correction is of observational significance.

It is possible, however, to calculate the isotope effect on
the fine-structure intervals for comparison with future ex-
periments. The L-dependent shift in the NL level correct
to first order in K iss

X,L —X,L+1
66-6H
76-7H
8 G-8H
96-9H
106-10H
116-11H

Isotope shift

81.4
53.1

36.4
25.9
19.1
14.5

7H-7I
8H-8I
9H-9I
10H-10I
11H-11I

15.5
10.8
7.8
5.8
4.4

8I-8K
9I-9K
10I-10K
11I-11K

3.4
2.5
1.9
1.5

TABLE I. 'He—He isotope shifts in kHz for selected fine-
structure intervals, defined as [E3(XL+1) E3(X,L)]
—[E4(N,L +1) E—4(X,L)].
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5(N L)= —4. 150X 104F4(N, L)+2.47 X 10sFs(N L)

125.7

N (2L +1)(2L +3)
where ai, a2 are dipole and quadrupole polarizabilities, P,
is the first nonadiabatic correction parameter, FJ(N, L) is
the expectation value of x 1, and the last term is the
usual correction for the relativistic increase of mass in-

volving the fine-structure constant a. Let b,M(N, L)
E(N, L + 1) —E(N, L) be t—he level splitting for the iso-

tope of mass M, and 5(N, L)= b, 3(N L) 64—(N L) be tile
shift between the two isotopes of helium in MHz. Then

where

FJ(N, L) =FJ(N, L + 1) FJ(N, L) . —

[In this expression we have used the values
K( He)=3.6384X10 and K( He)=2. 7415X10 ]. In
Table I the isotope shifts for selected transitions are
displayed; some of thein are large enough to be measur-
able.
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Note that only terms falling more slowly than x ' have been
retained here.
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