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Transient dynamics of orientational fluctuations in the Fréedericksz transition
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Transient dynamics of spatial fluctuations of the director field in the pure twist Fréedericksz tran-
sition is studied. A nonlinear calculation is presented. Anomalous transient fluctuations are shown.
Different stages of evolution and the domain of validity of linear theories are discussed.

I. INTRODUCTION

Fréedericksz transition in a nematic slab occurs when
the director reorientates in the direction of an applied
magnetic field larger than a critical one H,.. The standard
analysis of the transient dynamics (nonlinear relaxation)
originated when the magnetic field is suddenly changed
from a value H; < H, to a final value H > H, is based on
a mean field and deterministic model.' ~* In this model
spatial inhomogeneities and thermal fluctuations are not
taken into account. However, a proper description of the
decay of an unstable state requires the consideration of
fluctuations. In addition a decay process is accompanied
by anomalously large fluctuations as compared to those of
equilibrium (transient anomalous fluctuation phenome-
non).*> On the other hand, at the transition point a corre-
lation length diverges in the plane in which the director
reorientates, and spatial fluctuations associated with such
two-dimensional-reorientation of the molecules are ex-
pected to be important. The purpose of this paper is to
study the transient anomalous spatial fluctuations that ap-
pear in the dynamics of the Fréedericksz transition. We
calculate the transient behavior of the structure factor of
the director fluctuations.

Experimental work on the dynamics of the Fréedericksz
transition®’ shows the existence of transient spatial struc-
tures. In this context the analogy of the problem at hand
with the problem of spinodal decomposition® has been
stressed.®’ The analysis of Refs. 6 and 7 takes into ac-
count the essential spatial inhomogeneities but it is re-
stricted to a linear theory and neglects thermal fluctua-
tions. These approximations are known to be often unsa-
tisfactory for the problem of spinodal decomposition.?
Partially motivated by these facts we present here a non-
linear calculation of the structure factor of the director
fluctuations which consistently takes into account the
thermal fluctuations of the system. In this paper we do
not address the description of long-lived transient spatial
structures,’ but our calculation should be a useful guide in
more complicated situations, and in particular to analyze
the domain of validity of linear approximations.

Our analysis is based on a model introduced earlier'® to
justify a mean field study of the dynamics of the
Fréedericksz transition in a random magnetic field.!!
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Here we are not concerned with random fields but we go
beyond the mean field description. Our results for the
structure factor exhibit the anomalous fluctuation
phenomenon for the spatial fluctuations. In its evolution,
well-defined time scales can be distinguished. It is found
that the time scale in which the system leaves the unstable
state is reasonably described by linear theory. This time
scale can be large enough to be of experimental relevance.

This paper is organized so that in Sec. II we define our
stochastic dynamical model and we discuss the results of
the linear calculation. In Sec. III we present a nonlinear
calculation based on a Gaussian decoupling.

II. MODEL AND LINEAR THEORY

We consider a twist geometry for a nematic sample
contained between two plates placed perpendicular to the
z axis and separated a distance d. We assume strong an-
choring at z=+d /2. Initially the molecules are, on the
average, aligned along the x axis and a magnetic field
H; <H, (in particular H;=0) is directed along the y axis.
At time ¢t =0 the magnitude of this magnetic field is in-
stantaneously changed to a value H > H_, so that the sys-
tem becomes unstable and the molecules tend to align
parallel to the magnetic field. We focus on the evolution
of the spatial fluctuations during the decay of this unsta-
ble state. The model introduced in an earlier publication!®
contains two main assumptions. The first assumption
consists in neglecting hydrodynamical coupling of the
director and velocity fields. This is reasonable for a twist
geometry and magnetic fields not much larger than the
critical one. Second, the model assumes that the director
rotates in x-y plane

n,(r,t')=cos¢(r,t’) ,

n,(r,t')=sind(r,t’) .

The initial small z component of the director associated
with equilibrium fluctuations remains stable during the
transient evolution, while fluctuations in the x-y com-
ponents become unstable and they are macroscopically
amplified when switching on the magnetic field H in the
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y direction. As a consequence, and in a first approxima-
tion, it seems reasonable to set n, =0 when studying tran-
sient behavior. In these circumstances a dynamical model
of the Ginzburg-Landau type for the evolution of ¢(r,t’)
can be introduced' through

, 1
d,(r,t )=7[K1135¢+K2233¢+K333i¢
1

+XHHb—F))]+n(5,t") . )
Here ¢’ stands for time in the laboratory time scale, v, is
the twist viscosity, K;,,K,,K33 are Frank’s elastic con-
stants associated, respectively, with splay, twist, and bend
deformations, and X, is the anisotropic part of the mag-
netic susceptibility. The random force 7(r,?’) is such that
the stochastic process defined by (2) has a canonical sta-
tionary solution Py, ce (F is the free energy func-
tional) describing equilibrium fluctuations. The process
n(r,t’) is then taken to be Gaussian of zero mean and
satisfying a fluctuation-dissipation relation

, . kgT .
<17(r1,t1)77(r2,t2))=2 ¥ 8(1'1—1'2)8([1 ——tz) . (3)
1

A linear stability analysis of (2) can be easily performed
using a double Fourier transformation

2 cos

Sm(ppt)= 3 €'%0,, (1'). (5)
q

b(p,z,t") em+DZZ ¢ (p,t’ (4)

p is the position vector in the x-y plane, and the first
Fourier transform assures the fulfillment of the strong an-

choring boundary condition ¢(p,z=+d/z,t')=0. It is
found'® that 6,, 4(¢') is unstable for
2
2 | He 2 2
1—-2m +1) H >0, g:(m)>Q*, (6)
where the critical field H, is given by
K n2 172
= |5 %)
X.d
q.(m) is a critical wave number whose significance is dis-
cussed below:
2
H
gim)=¢£72 [1—2m +1)? H ] l . (8)

¢; are magnetic coherence lengths??

2 Kii .
= i=1,2,3 9)

X H?

and Q7 is a wave number which averages the anisotropy
in the x-y plane of the sample

Q= §qu+§3 2, (10)

2

We will consider situations for which H, < H <3H,.
In this case only the mode m =0 becomes unstable. We
study the spatial fluctuations in the x-y plane of the mode
m =0. These are given by the q modes of ¢y( p,?’), some
of which are unstable. Leaving implicit the subindex
m =0, the equation for ¢o( p,t’) reads

, 7
ard(p,t')=— K,,&;¢+K338§¢—K22?¢
+X HAp— 3¢ [+n(p,t"), (11
where
(n(ppti M(patr))
k
—2 % B\ 8(pi—p)blty —13) .  (12)

Fluctuations in the p plane are described by the correla-
tion function Cy(p;—pst')=(d(p1,t")d(ps,t")). The
dynamical equation for C;; follows from (11) and (12):

2 2 m
Kllay+K33ax_K22:i_2"

, 2
3,Ci(py—ppt')=— l
71

+XoH? |Cyi(py—pat’)
1 ,

_5C31(P1“P2yt )

2 kgT

+2|=
d v

S(PI—PZ) » (13)

where C3(py—pa,t')=(d>(p1,t" ) pat’)).
a dimensionless time

Introducing

using the notation introduced after (6) for m =0, and
with
"Rk
1— | = ,

Eq. (13) is rewritten as

2kgT
dX, H?

€=

3,Cii(p1—ppt)=2|1 2§ §232+§§az
2
XCri(p1—p2t)
H 2711
= l—ITC } C1(p1—pa,t)
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Equation (14) is the first of a hierarchy of equations
which couples C;; to higher-order correlation functions.
We first consider the linear theory in which the nonlinear
term Cj; in (14) is neglected. This is the analogous of the
Cahn-Hilliard-Cook theory for spinodal decomposition.?
Introducing the transient time dependent structure factor

C(q,t) defined by the Fourier transform (5) of
C11(py—py,t) the linear equation becomes
Q2
9,C(q,t)=2|1—-"=5 |C(q,t)+2€, (15)
qc
where
€e=—= CYEIE) 5 (16)
S VXaH §2qc 2 Hc
JH | 1— H

S is the surface in the x-y plane and ¥ the volume of the
sample. The solution of (15) is given by

—02/a2
C(q,t):C(q,O)ezu Q2/g2n
—02/a2
4 62 2(ezu Q/qc)r_l). (17)
1-Q%/q;

The same linear analysis can be carried out for H < H..
The solution (17) is also valid in this other situation in
which g2 and € become negative quantities, provided that
a minus sign is included in the time scale. All the q
modes are then stable and the asymptotic solution for
t— o gives the equilibrium fluctuations.'> They have an
Ornstein-Zernique form

€ _ 2kBT/V 1
0%/q2—1 X H?* EXQ*+«?)

where k= —g2. Equation (18) identifies k' as a correla-
tion length in the x-y plane. It diverges at H = H. so that
the Fréedericksz transition is accompanied by divergent
spatial correlations in the x-p plane. On the other hand,
if we use Eq. (17) to describe the dynamical relaxation as-
sociated with a change of the magnetic field from H; < H,
to Hy>H,, Eq. (18) with H =H; may provide the ap-
propriate initial conditions. Indeed, C(q,0) in (17) are the
initial fluctuations at ¢ =0 of the director field in equili-
brium with a field H; <H,. (In particular H; can be
zero.) In fact, if H; is not extremely close to H., equili-
brium fluctuations are well described by a linear theory as
given by (18).

When H > H,, (18) identifies stable (¢ < Q? and unsta-
ble modes (g2>>Q?. The unstable modes grow very fast
without limit. The fastest growing mode is q=0. This is
the only mode considered in mean field theories.! =3 The
stable modes decay to a final finite value €/(Q%/¢2—1).
It is interesting to compare (17) with the result of a linear
but deterministic theory (€é=0). In a deterministic theory,
C(q,t), for the stable modes, decays to zero as f—s oo
while for €40 it has a final finite value reflecting the ex-
istence of fluctuations in the final state. However, the
asymptotic value of (17) as 1— o is not the correct equili-
brium value, because it is associated with a linearization
around ¢ =0. Final equilibrium fluctuations could be ob-

Ceq(q)= ,  (18)
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tained linearizing around the macroscopic final value of
¢. For the unstable modes, the deterministic theory gives
a pure exponential growth. This is not the case in (17).
For instance, an effective amplification factor defined by
(1/1) InC(q,t) is not a linear function of Q2 for es40.

The structure factor C(q,t) given by (17) is shown in
Figs. 1 and 3 for various values of Q and ¢ (Ref. 13). In
these figures it is compared with the results of a nonlinear
theory which we consider next. The domain of validity of
the linear approximation is discussed below in connection
with this nonlinear theory.

III. GAUSSIAN DECOUPLING

We now return to Eq. (14) to take into account non-
linear effects. The solution of (14) requires some approxi-
mation to truncate the hierarchy of equations for the
correlation functions. In a first approximation to this
problem we use here a Gaussian decoupling ansatz in
which

C31(Pl—PZyt)23<¢2(t))cll(Pl‘Pz’t) . (19)

A Gaussian ansatz for the decay of an unstable state of a
spatially homogeneous system has been discussed by
Suzuki.* It has also been used in the problem of spinodal
decomposition.*'“22  The nonlinearity is introduced
through the dynamical evolution of {#%(#)) in (19). The
merit of the Gaussian theory as compared with the linear
one is that (¢*(¢)) incorporates a saturation effect which
prevents the unphysical unlimited growth of the unstable
modes. The theory gives then a good description of the
early stages of the decay of the unstable state and a quali-
tatively correct description of the approach to equilibri-
um.'® Substituting (19) in (14) the equation for the struc-
ture factor becomes

X C(q,t)+2€, (20)

where

(¢*(1))= 3 Clq,t) . @1
q

Equation (20) shows how the Gaussian approximation
leads to saturation. Since (¢*(z)) grows with time, the
range of unstable modes determined by (20) shrinks to
zero as t— c. Equations (20) and (21) form a set of cou-
pled self-consistent equations which could be solved nu-
merically. Instead of this we resort here to an approxima-
tion in which the sum over q in (21) is replaced by the
leading term q=0 (Ref. 16): ($(1))~C(0,t). With this
approximation (20) and (21) become

9,C(q,t)=2 C(q,t)+2e, (22)

2
c

2
-2 3¢,
q

9,Co(1)=2[1—-3Cy()]Co(t)+2¢;, , (23)
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where o el
Colt)=Coloo)t+a|l— |[1+—————|e? ,
Coln=—"C9=08 € _ o) =t )+ F ol @)—Col0)
2[1—(H,/H)* 2[1—(H./H)] o0
The approximation leading from (20) and (21) to (22) and
(23) is based on the fact that q=0 is the fastest growing
mode and that the initial condition C(q,0) has also its where
maximum at q=0, so that q=0 gives the main contribu- 1
tion to (21) for all times. A related approximation based Coloo)=+[14+(1+12¢9)'?], (25)
on the assumption of slow spatial variations of the order
parameter was used,'” but within a deterministic analysis, 1 L
to study the nonlinear relaxation of a spin system when a a=—7(1+12¢) 7", (26)
magnetic field is switched off. Also in this other situation
the main contribution to the initial condition (aligned 8o=2(1+12¢)!?, (27)
spins) is given by the q=0 mode.!® Equation (23) gives a
mean field Gaussian approximation and (22) gives the e (H/Hc)?
first contribution of spatial inhomogeneities within the Col0)=3 "7, (28)
. . 2 1—-(H;/H,)
Gaussian approximation.
The solution of (22) and (23) is given by and
J
a —8yt
_ (a,4+8)e™ —1)—aae™ —e ™)
Clg,)=C(q,0)—1 =8 ot e HT 0 T : (29)
(1—ae 0) al(a1+50)(l—ae )
T
Q? values correspond to typical parameters for a sample of
a=1-2"55-—(1+12¢)"?, (30)  MBBA at room temperature with T~300 K, X,~1077,
¢ K2,~10"%dyn, S=1cm?, d =100 um.
_ Coleo)—Cy(0) : We first analyze the behavior of C(q,7) vs ¢ for fixed q
T (4 12007 —Co0) B (Fig. 1). In the deterministic limit (e=0), (24) essentially'®
6 0 0 reproduces the standard mean field deterministic result
for ¢*(1) (Refs. 1—3). For a finite value of €, (24) gives a
monotonous growth of Cy(t) which saturates at the mac-
. roscopic equilibrium value of the angle ¢. For the other q
H |? modes C(q,?) exhibits a maximum and then decays to a
1 _ 1
Clq,0)=—° e o 32
q,V)= Q2 | - H 2 Q2+K,2 » (32) Cu (T) _ I:!
& 1 ,
92 H, i
0.2 , :
II;
with 0.15F |
: I
. [ H; 01 If:
, XH[(H | - H, , ' I
qc -1 y Ki= 2 qc - I"
K» H, H 1 0. 05k :
H, ’ .’,.
/
D L 1 1 L
33 0 10 20 30 40

The subindex i in (28), (32), and (33) refers to the initial
value H; of the magnetic field. Our solution is thus ex-
pressed in terms of €, H;/H,, H/H,, and gZ2. Plots of
(24) and (29) are shown in Figs. 1—3 for e~2x 1019,
H;/H.=($)"2, H/H,=(3)"?, and ¢?~5x10*. These

FIG. 1. Structure factor C(q,?) vs time. The dotted line cor-
responds to the homogeneous mode (Q=0). Solid lines from top
to bottom correspond to Q=20, 50, and 70. Results of the
linear theory are shown for Q=20 (—.—.—.), 0 =50 (—-—-)
and Q =70 (—-—).

>
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FIG. 2. Structure factor C(q,t) vs Q. (a) t=9.5, (b) t =10;
(c) t=11, (d) t=20; (e) t=060.

value which corresponds to the equilibrium fluctuations in
the final state. The maximum of C(q,t) reflects the
phenomenon of anomalously large transient fluctuations
associated with the decay of an unstable state. In fact it is
possible to distinguish in Fig. 1 three characteristic time
scales. The first stage of evolution is characterized by a
time lag in which the system remains in the vicinity of the
unstable state. This is followed by a very fast evolution in
which the system leaves the unstable state. In this regime
the q=0 mode essentially reaches saturation at a time
tmax- For the parameters chosen here, ¢,,,~12 in our di-
mensionless time scale (see Fig. 1). Also at this time
C(q,t) reaches the maximum associated with the
anomalous fluctuation phenomenon. The time at which
C(q,t) reaches its maximum has a small q dependence
becoming smaller for larger q. In the final regime there is
a slow evolution in which the system attains an equilibri-
um state characterized by the value of the macroscopic
mode and the equilibrium fluctuations for other q modes.

G r \
0.4 \

0.3F \

FIG. 3. Structure factor C(q,?) vs Q for the linear and non-
linear theories. Solid lines correspond to the nonlinear theory.
Times shown from top to bottom are t=11, t =10, t =9.5.
Results of the linear theory are shown at the same times. ¢ =11
(—-—), t=10(—-—-),and t =9.5 (—. —.—. ).

The time t,,, can be identified in order of magnitude,
with a time slightly larger than the time needed by the
system to leave the unstable state. This last time is
mathematically characterized as the mean first passage
time T to leave the immediate vicinity of the unstable
state. This time was calculated in Ref. 11 for the q=0
mode using a scaling theory for the decay of the unstable
state. In the asymptotic limit of small € and in the time
units used here T is given by

I

For the values of the parameters chosen here T~11 in
agreement with our characterization of t,,,. In the origi-
nal laboratory time units

T=+In [26

H
H,

X HV

2 —1
Y1 H
A R ~220 sec .
H, ] H "k, T see

T=——
XGHC

2

In Fig. 1 we also compare the results of our nonlinear
calculation with those of the linear theory (17). It is seen
that although the linear theory lacks the essential satura-
tion effect it gives a rather good representation of the evo-
lution of C(q,t) roughly up to times t <T <t.,,. This
indicates that, as it should be expected, the regime in
which the system leaves the unstable state is dominated by
linear terms. Related analysis of the validity of linear
theory in the problem of spinodal decomposition®*?! give
a time domain essentially unobservable for spin systems
with short-range forces. In the problem discussed here,
linear theory is appropriate in a time scale of experimental
relevance. We finally note that the equilibrium correla-
tion length k! at zero field is d /7. For fixed H and H,,
T grows with d, that is, with the zero field correlation
length. However since H,. depends on d, T becomes
smaller for larger d and fixed H.

An alternative representation of our results useful in the
analysis of scattering experiments is shown in Fig. 2. The
analysis of C(q,t) vs q for fixed ¢ also shows the different
stages of evolution discussed earlier. The second stage of
evolution associated with fast evolution and anomalous
fluctuations is here characterized by a fast growth of the
peak of C(q,?) up to t=~12 where the smallest q modes
saturate. This saturation time coincides with the time
tmax introduced earlier. In the last stage of evolution the
height of the peak of C(q,?) remains essentially fixed, but
the width of C(q,?) narrows with time indicating the de-
cay of fluctuations to the equilibrium value. The max-
imum of C(q,?) as a function of time implies a pulse
structure which gives rise to the crossing of the tails of
the structure function that appears in Fig. 2. Such cross-
ing of tails is characteristic of nonlinear effects.?"?? In
Fig. 3 we also plot the linear results indicating again the
validity of linear theory for ¢ <T <t,,, with larger
discrepancies for small q. No crossing of tails exists for
the linear theory since C(q,?) grows monotonically with ¢
for any q.
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We finally note that the presence of possible dust parti-
cles or defects in wall anchoring might modify the ideal
situation described here. It is also interesting to note that
an important amplification of thermal fluctuations has
been discussed in the related problem of a Fréedericksz
transition involving splay and bend in relating magnetic
field? Such steady-state periodic amplification of the
fluctuations of the amplitude of the most unstable mode
seem, however, to be related to the important combined

F. SAGUES AND M. SAN MIGUEL 33

effect of a periodic driving force and small thermal fluc-
tuations.?*
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