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D2-Di phase transition of columnar liquid crystals
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The D2-Di phase transition in columnar liquid crystals of the HAT series [e.g. , HAT11 {tri-
phenelene hexa-n-dodecanoate)] is discussed within the framework of Landau theory. The order pa-
rameters which describe the transition are abstracted from a tensor density function, and are associ-
ated with two irreducible representations of the symmetry group of the high-temperature D2 phase.
A mechanism for a first-order transition is then suggested in accordance with both theoretical con-
siderations and the experimental result for the D2-D] transition. Two possible arrangements of the
herringbone structure of the D~ phase are obtained, each of which gives six orientational states in

the low-temperature D] phase.

I. INTRODUCTION

In the preceding paper' we investigated the possible
low-temperature phases which may be obtained from the
symmetry breaking of the D2 phase by means of a
second-order phase transition. The conclusion is that no
herringbone structure can be obtained which is associated
with only one irreducible representation (IR) of the high-
temperature symmetry group Gp (this is supposed to be
necessary for the ordinary second-order phase transition
according to Landau theory). Thus the results from the
previous paper cannot be immediately used for discussing
the D2-Di transition which is the subject of this paper.
As we will see in the following, the order parameter which
can be used to describe the symmetry breaking through
the D2-Di transition is composed of two IR's of the sym-
metry group Gp, and therefore is associated with a reduci-
ble representation of Gp. As pointed out by Bak and Mu-
kamel, in this case, the phase transition is generally first
order. We will give a possible way to realize such a first-
order transition. The six orientational states we obtain
here can be compared with those suggested by Safinya
et a/. Two possible arrangements of the herringbone
structure are just as predicted by Levelut. For the sake
of completeness, we briefiy review some of the results
from the preceding paper in the very beginning of Sec. II.

II. ORDER PARAMETERS
AND SYMMETRY PATTERNS

By making use of the transition mechanism suggested
by Safinya et al. , the present authors suggested' that the
symmetry change through the D2-D& phase transition can
be described by a symmetric second-order tensor density
function Q(r) which can be defined as

Q(r)=+5(ri —ri)q(r, ) .

Here ri gives the location of ath column; and q(ri) gives
the average orientation of the molecules in the ctth
column and is a symmetric second-rank tensor.

In the D2 phase, Q(r) =—Qp(r). The symmetry group of
D2 phase can be identified as Gp —P6/mmm (Dst, ).
Then Qp(r) is an invariant under all the symmetry opera-
tions g&GO. In the low-temperature phase, the tensor
density function takes the form

Q(r)=Qp(r)+5Q(r) . (2.2)

(2.4)

where the ~; denote the IR of the group of ki. For a
second-order transition, only one of the IR is relevant to
the expansion in the free energy. The possible second-
order phase transitions and the corresponding symmetry
patterns at the low-temperature phases induced by

I '' ', I '' ', and I '' ' have been discussed by the
present authors. ' The results indicate that the herring-

Each component of 5Q(r), which describes a phase
transition from the D2 phase to a rectangular columnar
phase with the size of the unit cell doubled, can be ex-
panded as'

3

5Q;, (r)= g T~,'cos(k~ r), (2.3)
p=1

where kp &kt =
I —,

'
bi, —,

'
12, ——,

' bi+ —,
'

b2 I with bi, bi being
the basis of the reciprocal lattice of the Dz phase. The
free energy used in discussing the phase transition can be

considered as a functional of TJ'. ' For a second-order
transition, or a transition which is nearly so, the free ener-

k
gy can be expanded as a power series of TJe, which in
each order consists of all the possible invariants of Gp.
With respect to the index kp, the T~~ transform as the IR
I" of Gp where r, is the unit IR of the group of k, ,

Ik(, ~)I

and with respect to the indices i and j, they transform as a
syinmetric second-order tensor. So, the Tz~ transform as

k~], v]the direct product of I '' ' and a second-order tensor.
k,

Generally, the Ttj give a reducible representation of Gp,
k(I . Suitable linear combinations of TJ will reduce I in.to

a direct summation of the IR's of Gp. We found'
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F'= ,
' r g rI,'+—u g rl,

' +u g i),'+ ,
' r' g—g,'.

3
'2

+u'
i=1

3

+u' g g';

3 3
2 2 2 2+ci g i)ig~+ci g i)i(i i (2.5)

where all the coefficients are functions of temperature and
pressure (T and P). The basic idea which yields a possible
first-order transition is that, in some range of T and P,
u +u {or u'+u') may turn to be negative, so that the IR
of I '' ' (or I' '' '

} alone will lead to a finite jump ofIk],w3 I Ik

g (or g) through the transition, and the coupling [the c,
and c2 terms in Eq. (2.5)] gives rise to a nonzero jump of
g (or il) simultaneously. Therefore, above the transition
temperature both g and g are zero, and jump to finite
nonzero values through the transition.

In the following, we suppose that, near the transition,

r, r'&0; u, u'&0; u+u &0; u'+u'&0; and c2,cl+c2 &0.
Because u +u &0, a stable state with nonzero g requires
the addition of sixth-order terms in il; to the free energy
F . %e will simply take the sixth-order invariant to be

isotropic, i.e., w( g,. , il; )~ with w & 0. And

'3 '3
F=F'+w

i=1
(2.6)

bone structure cannot be induced by only one IR of Go.
As noted in Ref. 1, the herringbone structure can be real-

ized if the order parameter is composed of two IR's of

g PI 1 3~ d P 1 ' 5 or P I 3 fk), ~7I

suggests that the D2-D1 transition is induced by a reduci-

ble representation of Gu, so the transition is usually first

order (a second-order transition associated with more

than one IR of Go only corresponds to some isolated

points in the phase diagram ).
The construction of the free energy is based on the fol-

lowing considerations.
{1)For the Di-Di transition, the appearance in the free

energy of the variables being used as the order parameters
is restricted to those which are associated with suitable
IR's of Go, and which induce the correct symmetry of the
D 1 phase as determined experimentally.

(2) A first-order transition mechanism requires suitable

assumptions for the coefficients which appear in the
power-series expansion of the free energy.

Let us first assume that the Dz-D, transition is associ-

ated with IR's I '' ' and I '' '. Then, up to theI k~1, ~3 I I k), ~5 j

fourth-order terms, the free energy F' can be expanded as

the possible orientations of [i);) and {g, ) which may give
the extreme minimum value of F are

[I)' ) [r')1=[+1*o*o'+1o 01 *

[I)' );[)'')l=[o +1 o o +1 0)

[Ir ) tr'))=[00+100+Il .

(2.7a}

(2.7b)

(2.7c)

F=ap+ 2L bp2+ 3 dp3+ 2
b'p. 2+cpp (2.9)

The first-order phase transition appears when p and p'
take the nonzero values p and p' which minimize F at
F=O (F is continuous through the transition). That
means

F =a+bp+dp +cp'=0,2

Bp

dF
, =a'+b'p'+cp=0,

Bp

(2.10a)

(2.10b)

F=ap+ ,
'
bp + —,

'
dp—+a'p'+ ,

' b'p' +cpp'=—0, (2.10c)

with the condition p,p' g 0.
By eliminating p and p' from Eqs. (2.10a) through

(2.10c), one can obtain a relation

f(a,a ', b, b ',c,d ) =0 . (2.11)

Equation (2.11) gives the first-order transition line in the
T-P plane. The tilde variables indicate the values of these
coefficients on the transition line in T-P plane.

With all the coefficients defined by Eq. (2.11), any two
of the equations in Eqs. (2.10) will give a set of solutions
for p and p':

a c
p ib' b'

e—b+ +
I

2

b—
I

—4d a—
I

(2.12a)

We should notice that the other possible combinations of

[y;) and [y';) are excluded by the existence of the cou-

pling term cig,.g;g;.
In each case, we have

F=ay + ,
' br) —+,'dg +—a'g + ,

' b'g —+colg, (2.8)

here

a= ,'r (&—0), a'= , r' (—&0),

b=2(u+u) ((0), b'=2(u'+u') (&0),
d=3w (&0}, c=ci+cq ((0) .

By introducing p=il and p'=g, Eq. (2.7) can be further
written as

The reason for neglecting the anisotropic sixth-order in-
variants is the assumption that the orientation of the pa-
rameter I il;) in its IR space is determined by the aniso-
tropic fourth-order invariants only.

Now, we define that q; =ily; and (;=gy,' subject to the
conditions g,. ,y;=1 and g, ,y,

' =1. Here [y;) and
[y';) represent the orientations of Ii);) and [g;) in their
own IR spaces. It is easy to see that for nonzero rl and g',

(2.12b)

(Note: b and c are supposed to be negative. )

The second term on the right hand -side of Eq. (2.12a) is
positive, and the first term is negative. If —cp&a', p'
will be positive. Then, it is not difficult to prove that Eqs.
(2.12) give a stable state which minimizes the free energy
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as shown in Fig. 1. On the other hand, if —cp&a ', P'
turns out to be negative which requires g to be imaginary

(g =p'). In this case, Eq. (2.10b) should be replaced by
p'—:0 (that is because (=0 is also a solution of BF/B(=0)
and Eqs. (2.10a) and (2.10c) immediately reduce to

a=0

a+bp+dp =0,
ap+ —bp +—dp =0 .

(2.13a)

(2.13b)

Equations (2.13) essentially mean that in this case, the two
parameter sets tel;) and tg;I are decoupled from each
other. The transition line is now simply determined by

g'(a, b,d)=16ad —3b =0 (2.14)

(2.15)

It will be interesting if there exists a point on the transi-
tion line determined by Eq. (2.11), in which P =0.
Beyond this point, the transition line should be given by
Eq. (2.14), and the symmetry pattern in the low-
temperature phase will be that given in our previous work
[i.e., Fig. 2(b) of Ref. 1]. A possible phase diagram is
shown in Fig. 2. Px and P3 are so-called tricritical points
beyond which the first-order transition changes to the
second order. Phase I is the high-temperature D2 phase
with the symmetry group P6/mmm. Now, we discuss
the symmetry of phase III and phase II. To do this, we
need the explicit expressions of the linear combinations of

k
T~J~, which give Ii};I, [g;], and the other parameters
transforming according to their IR's [see Eqs. (7) in Ref.
1]. Let us consider the orientational state corresponding
to [Iy;I, Iy,')]=[1,0,0;1,0,0] first. This requires

i}i——ri =(p}', i)p ——0, rli ——0;

The nonzero tensor components we obtained are

v6 ~, W6 i, v2
T11 9 ~ T22 9 ~ T12

4 ' 4 ' 4

and

v6( ~, V2(
4

(2.16)

(2.17)

Substituting Eqs. (2.16) and (2.17) to Eq. (2.3) we have

'W3ri —g Wag
'

2
5Q(r) = —ri —~3' g cos(k, r) . (2.18)

4 v3( g 0

It is not difficult to check that the remaining symmetry
operations of Go (P6/mmm) which keep 5Q(r) invariant
are

P

FIG. 2. Phase diagram in the T-P plane. The solid lines

represent first-order transition lines, and the dashed lines,

second-order transition lines; phase I is the high-temperature D2

phase with P6/mmm {D6I,) symmetry, and phases II and III
are the low-temperature phases with Pbam (D2q) and P2I/a
{C2I, ) symmetries, respectively.

and the rest of the parameters, which give IR's 3I Ik

I k)+, v7 Iand I '' ', are equal to zero.

g=(h
~
cr +ka+Ib),

where

(2.19)

0 if a=1,25

if a=2, 26
2

FIG. 1. The first-order D2-DI transition appears when p and
p' take nonzero values p and p' which minimize the free energy
Fat I' =O.

and a and b are the unit basis vectors of the low-

temperature [1,0,0;1,0,0] state as defined in Ref. 6. The
h~'s are the rotational operations (including reflection
and inversion} defined with respect to a rectangular coor-
dinate system (the x and y axes coincide with a and b,
respectively) as given by Kovolev. One can identify that
all g s form the P2~/a space group. The symmetry pat-
tern is shown in Fig. 3(a) and fits the herringbone struc-
ture. For the [Iy;J; [y,'I]=[—1,0,0;1,0,0] state, we will

essentially have the same results as for [1,0,0;1,0,0]. This
only corresponds to a different way of choosing the unit
cell.

For the solution [Iy; j; I y,
'

J ]= [1,0,0; —1,0,0], the
symmetry group in the low-temperature phase is again
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(b)

parameter, we already gave the spontaneous strain vari-
ables and the coupling of the order parameter to the strain
variables in Ref. 11. Now, we have both {rl;J and {g;J as
the order parameters and the low-temperature D& phase
has the point symmetry C2I, which is lower than that in
the Drd(pbam) phase (Dzi, ). Fortunately, the allowable
spontaneous strain variables are still Xi and Xz (see Ref.
11) which give the distortion of the two-dimensional lat-
tice structure. Another possible spontaneous strain vari-
able is the shear deformation in the plane perpendicular to
Cq axis. Ho~ever, this corresponds to sliding the column
axis which in a columnar system costs no energy. In oth-
er words, such a shear deformation cannot be supported
by sliding the column axes. The coupling between {g;)
and IX; J has the same form as that between {rl;I and

{X;I. Therefore, the total free energy F„, is

FIG. 3. Symmetry patterns of the low-temperature D~ phase
(P2i/a) in the orientational states (a) [1,0,0;1,0,0] and (h)

[1,0,0;—1,0,0]; a and 1 are the basis vectors of the two-

dimensional rectangular lattice structure. (a) and (b) can be

mapped from one to another by a mirror reflection in the x-y
plane.

P2i/a. But the matrix structure of 5Q(r) is different. By
rotating the coordinate system to diagonalize local tensor
5Q(0} at r=0, we find that molecular orientations in this
state [Fig. 3(b)] are different from those in Fig. 3(a). Fig-
ure 3(b) can be obtained from Fig. 3(a) by a mirror refiec-
tion in the plane perpendicular to the column axis. So, in
the sense of Aizu, s' Figs. 3(a) and 3(b) refer to two dif-
ferent orientational states. The other four orientational
states correspond to [{y; J; {y,' ) ]=[0,1,0;0,+1,0] and

[0,0,1;0,0,+1]. Their symmetry patterns can be obtained
by rotating Figs. 3(a) and 3(b) by 60' and 120' about the
x 3 axis. Therefore, we have six orientational states in the
low-temperature phase.

If we assume that the symmetry breaking is associated

with I ' ' ' and I ' ' ', then by following similar pro-I k~), ~3 I I k), ~7 I

cedures, we can obtain a low-temperature phase with the
symmetry P2iib which just exchanges the positions of
the two glide planes with the two screw axes as shown in
Fig. 7 of Ref. 4.

Phase II is obtained by the symmetry breaking associat-

ed with I alone, so that the low-temperature sym-I k+1,~3 I

metry pattern will be the same as our previous work'
which gives I'ham symmetry. According to Fig. 2, the
transition may be first or second order depending on the
different temperature and pressure ranges. For the transi-
tion from phase II to phase III, one should take I'ham as
the high-temperature symmetry group and follow the dis-
cussion in Ref. 10.

Finally, we take spontaneous strain effects into account,
i.e., the homogeneous elastic distortions which have been
measured experimentally. Taking only {g;] as the order

—p+p

F, = —,D (Xi+X2),

F.=5i[Xi(2t)i —rli —rli)+i 3Xi(nz —rli)]

(2.20)

(2.21)

+52[Xi(2$—gi —g3}+W3Xg(gg —g3)] . (2.22)

The rest of the discussion is the same as in Ref. 11. For
example, the spontaneous strains in [1,0,0;+1,0,0] states
are

Xi ——— (5ir1+5ig),0
DO

(2.23a)

72=0 . (2.23b)

III. CONCLUSION
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We have taken two IR's of the symmetry group of the
high-temperature D2 phase as the order parameters for
the D2 D, phase tra-nsition in the HAT columnar liquid
crystals. By minimizing the free energy we constructed,
we have shown that the herringbone structure in the low-
temperature Di phase can be obtained by crossing a first-
order transition line, /=0 (transition between phases II
and III in Fig. 2}. Two possible arrangements of the her-
ringbone structure and six orientational states for each are
just as previously pointed out by other authors. ' A pos-
sible phase diagram was also given. This suggests that, in
some range of temperature and pressure, the two IR's may
be decoupled from each other so that the transition turns
out ta be associated with only one IR and the induced
symmetry pattern in the low-temperature phase will be
the same as our previous work. '
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