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Orientational order and phase transitions in columnar liquid crystals
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An orientational order mechanism, which may lead to a symmetry change from a higher-

temperature hexagonal columnar phase to lower-symmetry phases with two-dimensional rectangular
symmetry, is considered. A tensor density function is invoked to describe the symmetry change
through the phase transition. For a transition corresponding to a symmetry breaking in the plane

perpendicular to the column axes, the molecular orientation in the plane at the lo~-temperature
phase is determined. Transitions in which there is a symmetry breaking out of the plane are briefly
discussed.

I. INTRODUCTION

The existence of Di and D2 (or D~ and Dsd) phases in
hexa(n-alkanoyloxy)triphenylene (HAT) series has been
reported by several authors. ' If the molecular core and
the attached chains are in a plane perpendicular to the
column axes in both the Di and D2 phases, the symmetry
change through the transition from the Di to the Di
phase can be considered to appear only in the plane per-
pendicular to the column axes; i.e., only the in-plane sym-
metry breaking needs to be considered. In this case, the
seventeen two-dimensional space groups are suitable to
describe the symmetry change. ' Based on these con-
siderations, the authors have suggested a possible mecha-
nism to realize the phase transition corresponding to the
symmetry change from P6mm to P2gg due to the rear-
rangement of the molecular chains. This procedure gives
the symmetry patterns suggested by Destrade et al. in
their early classification of the mesophases of disclike
mesogens.

However, qualitative optical observations and a syn-
chrotron x-ray study of freely suspended discotic strands'
in triphenylene hexa (n-dodecanoate) (HAT 11) disclosed
that the average orientation of the normal to the molecu-
lar planes in the Di phase is not parallel to the column
axes, but tilted away from the column axes to give a her-
ringbone structure. 5' Safinya et a/. found that the
molecular core was tilted even in the D2 phase at an angle
of about 28' with respect to the column axis and remained
almost the same across the transition to the D& phase.
They suggested that, in the Di phase, the orientations of
the molecular cores in each column mere randomly distri-
buted around the axis without lang-range order. Here, me
will start from a high-symmetry Di phase, and search for
the possible lom-symmetry phases with a tmo-dimensianal
(2D) rectangular structure due to an orientational order
mechanism. Since the symmetry properties under reflec-
tion in the plane perpendicular to the column axes, as well
as in-plane symmetries, may be different in the high- and
low-temperature phases, the seventeen 20 space groups
are not sufficient. For example, the symmetry of the D,
phase was assigned to be P2&/a, which is one of the 80
space groups which have been suggested to describe meso-

phases in three-dimensional space with Z &&a transla-
tional structures. 9 Correspondingly, the symmetry of the
D2 phase can be assigned to be P6/mrnm. To include
orientations in a discussion of the transition, we introduce
here a second-order tensor density function instead of a
scalar density function. The Landau free energy can then
be expanded as a power series in the independent tensar
elements, according to irreducible representations (denoted

by IR's hereafter) of the P 6/mmm space group. We find
that one of the IR's which corresponds to in-plane sym-
metry breaking will lead to the same results as our previ-
ous work. However, the tensor density function makes
possible the determination of the in-plane molecular
orientation with respect to the 2D lattice structure in the
low-temperature rectangular phase. This result may be
compared with experiment. The lattice distortion in the
lom-temperature rectangular phase can be explained as a
spontaneous strain effect. '

In Sec. II, we will introduce the tensor density function
to describe the orientational symmetry breaking. All the
irreducible representations are given by following con-
siderations similar to those used in magnetic systems. "
In Sec. III, we will consider the in-plane symmetry break-
ing which leads to the determination of the in-plane
molecular orientation relative to the 2D lattice structure.
Finally in Sec. IV, we will give a brief discussion of our
results.

II. TENSOR DENSITY FUNCTION

%e first consider a uniaxial nematic liquid crystal. The
anisotropic properties of such a system can be described
by a constant second-order tensor, Q. In the principal
Cartesian coordinate system, it has the form:

Qi 0 0

Q= 0 Qi 0

0 0 Qii

The D2 phase (the disordered hexagonal columnar
phase) can be imagined being condensed from the above
uniaxial homogeneous system by locating the molecular
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centers randomly along the discrete column axes to give a
two-dimensional lattice order. The orientational anisotro-

py in the D2 phase can then be described by a tensor func-
tion Qo(r), which has the form

Q, (r)

Qo(r) = g, (r)

0

Q(r) =Qo(r)+5Q(r) . (2)

The components of 5Q (r), 5Q 1(r},can be expanded as

5Q;J(r)=g TJ' 4„(r),
n, a

(3)

/

/

/

0 l I

iI'

/

/

Here, Qq(r) and Q~~(r) are only nonzero when r is very
close to the column axes.

The symmetry group of the D2 phase is one of the 80
space groups which are suitable for describing Z2XR
mesophases as suggested by Goshen et al. We identify it
as Gz ——P6/mmm. The symmetry operations gEG care
denoted as g =(lt

~
mai+la2}, where the h 's (a= 1

through 24) are the 24 rotational operations as defined by
Kovalev also, ai and a2 are the basis vectors of the 2D
hexagonal lattice; and m and l are arbitrary integers. We
choose the Cartesian coordinate system so that the x3 axis
is parallel to the column axes, with respect to which the
tensor components are defined (Fig. 1). Now, Qo(r)
should be invariant under all g EGo, i.e.,

D '(h~)gp(g 'r)D(h~) =Qp(r),

where D(h~) is the matrix corresponding to the transfor-
mation of coordinates x =D2(h~)xj (i and j run over the
three Cartesian indices). Near the transition in the low-

temperature phase, the tensor function is

For a second-order phase transition (or a first-order
transition with small latent heat), near the transition, the
Landau free energy can be expanded as a power series in

k
T;~, and each expansion term is invariant under Go. A11
such invariants can be obtained from the transformation

k
properties of Tj~. In Eq. (6), the cos(kz r) are the basis

of an IR I ' ' ' of Gz. In contrast to the case of a scalar

density function, here the coefficients Tz~ themselves
transform like the components of a second-rank tensor.
Thus, we need the direct product of the representation

k] y PII ' and the representation formed by the components
of a second-rank tensor. The direct product representa-
tion space is usually reducible. It can be reduced to a
direct summation over several irreducible subspaces, la-
beled by an index ~, for fixed ki, by taking suitable linear

k
combinations of the TJ~. These linear combinations are

k kl
91 ~ (Tii + T22) ~~2

kl
ni = -(-, Tii ——, T22+~3Ti2) ~v2

(7a)

where 4„(r) is the ath basis function of the nth IR of
60.

For each space group, different n's can be distinguished

by two indices, a star of a wave vector, k*, = I ki, . . . I, and
an IR of the group of ki, ' ' r. Not all ki are associat-
ed with the transition of interest. The only wave vector
star which may give the rectangular lattice structure in
the low-temperature phase is

ki ——tki, k2, kiI =—I —,bi, —,b2, ——,bi+ —,b2)

as shown in Fig. 1 of Ref. 6. Here bi and 12 are the basis
vectors of the 2D reciprocal lattice. So,

3

5QJ(r) = g g T~" @i', (r), (4)
p=1

where @i, (r) are the basis functions of the IR IT Ik)~, rI

which is three dimensional. The real forms of the Ni', are
P

4t (r)=ui, (r)cos(k~ r)
P P

where, ui, (r) is the basis function of the IR of the group
1

of ki, and the ui', (r)'s are invariant under the translation
P

t=mai+la2.
Since the distribution of the molecular centers is the

same in both the high- and low-temperature phase, only
the unit representation ~1 needs to be taken in the summa-

tion over ~." So, we have

3

5QJ(r)= g Tj~cos(k~ r) .
p=1

FIG. l. a& and a2 are the basis vectors of the two-
dimensional hexagonal lattice structure (dotted lines), with
respect to which the symmetry operations hl through h24 are
defined; xl, x&, and x3 define the Cartesian coordinate system
with respect to which the tensor component g;, is defined; x& is
along the direction perpendicular to the plane of the paper.

II
kl

91 T33

~32' 2'11 22 12

(7c)
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1 k) kI
/1 ~ (~~T13+T23) ~o'2

k) k)
( —T13+v 3T23) .

2

(7e)

The superscript ~ labels the IR of the group of k, and
is the same as that of Kovalev. ' In (7a), (7b), and (7c), rl,
~'1, and wl' refer to the identity representation. For a given

~, q2 and q3, which are associated with k2 and k3, are ob-
tained from alt by the action of h2 and h3. '3'4

Now we are ready to discuss the symmetry breaking
through the phase transition.

3 '3 '2
3

F= ,'r g rl,'+—u g rl,
' +u grl,' (8)

which has the same form as Eq. (12}of Ref. 6.
By minimizing F in the low-temperature phase, we find

that the six solutions for [rl1,212, rl3] are [+rl,0,0],
[0,+rl,0], and [0,0,+rl] for u &0 and u +u &0. Their
orientations in the irreducible space are [+1,0,0], [0,+1,0],
and [0,0,+1], respectively. Let us consider the [1,0,0]
state. According to Eq. (7), this requires that

73 T3 73rll(=rll')=rl, rl2(=rl2')=0, 213(=r)3')=0,

7'j kl k)
and the rest of rl s are equal to zero. So, Tll, T22, and

k) 73 TJ
T12 can be determined by putting rll (=—rll)=rl, rll ——0,

I

and g1' ——0. Thus,

III. THE IN-PLANE SYMMETRY BREAKING

According to Landau's theory, ' an ordinary second-
order phase transition is only associated with one of the
IR's from which the free energy is constructed. The low-

temperature phaSeS induCed by ~1, v1, and ~1' Will have
higher symmetry than the phase in which we are interest-
ed. Thus we begin by considering the symmetry breaking

3due to ~3. For compactness, g; is simply denoted as q;.
The Landau free energy will be

g=(ha
l
cru+ka+lb), a=1,2, 3,4,25, 26, 27,28, (13a)

where

(a +b)/2, if a=2, 3,26, 27

0, if a=1,4, 25,28. (13b)

We can verify that all the symmetry operations g E-G

belong to space group Pbam. The existence of h2s in Eq.
(13) [or h, 6 in Eq. (12)] means that the out-of-plane sym-

metry is not broken in the low-temperature phase. This
result is the same as our previous work, except that we
use the space group notation Pbam instead of the 2D
space group notation I'2gg. However, the equilibrium
form of the tensor density function Eq. (11) has the in-

plane molecular orientation with respect to the 2D lattice
structure included. To see this, we only need to check the
local orientation near a given column, say at r=0, which
gives

v3 —1 0

5Q(0) = rl —1 —v 3 02

0 0

By rotating the coordinate system about the x3 axis by
an angle lt), we find a new reference system in which
5Q(0)' is diagonal. It is not difficult to find that

v3 —1 0

5Q(r)= rl —1 —3/3 0 cos(k, r) .2

4
0 0 0

It is easy to check that the remaining symmetry opera-
tions of P6/mmm which keep 5Q (r) invariant are

g EG CGo with

(h
~
2mal+la2), a=1,4, 13,16

(h~ i
(2m+ 1)a,+la2), a=7, 10,19,22 .

Now we choose a=2a1+a2, b= —a2 as the basis vec-

tors in the low-temperature phase, and define h 's in this
rectangular reference system. ' Equation (12) can then be
rewritten as

v3 1, v32' 2'11 22 (9a)
and

= 15'

- (T»+ T22) =0
&2

kl & kl kl
( 2 Tll 2 T22+~3T12}v'2

%e obtain

11 9~4

kl
T22 ——

kl
~12

v6

v2
4n

Inserting this solution into Eq. (6), we have

(9b)

(9c)

2 0 0'
5Q'(0)= il 0 —2 02

4
0 0 0

(15b}

as shown in Fig. 2(a).
The new coordinate system x'1 —xz is now the princi-

pal system, so that x'1 and xz are along the longer and
shorter axes of the ellipselike molecular pattern. Taking
the lattice distortions in the low-temperature phase into
account, we find that the angle P [Fig. 2(a)] is not equal to
60', so that P will deviate from 15' and can be determined
by simple geometric considerations to be

/=45 —arctan —.b

Q
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X2

FIG. 2. The symmetry patterns of the low-temperature phase induced by r3, (a) and (b) correspond to [1,0,0) and [—1,0,0] orienta-
tional states, respectively; xI —x2 represents the principal coordinate system in which the local orientational tensor 5Q~&(0) is diago-
nal; a=2a~+aq and b= —a~.

Up to now, no measurement of this (() has been reported,
so this is a prediction to be compared with experiment.

For the [—1,0,0] state, similar procedures will give the
low-temperature pattern shown in Fig. 2(b). Figure 2(b) is
essentially the same as Fig. 2(a). The two figures corre-
spond to different ways of choosing the unit cell. So,
[—1,0,0) gives the same state as [1,0,0]. Two other states
can be obtained by rotating Fig. 2(a) [or 2(b)] 60' and 120'
about x3 axis. These correspond to the solutions [0,+1,0)
and [0,0,+1], respectively, and are the so-called three
orientational states. ' ' They may coexist in the low-

temperature system. Each state forms a single domain

3 3 3

F= ,'r g rI,'+—u g q,
' +U g rj,'

+ —,
' D'(&f+&z)+&P'i(2nf —nz —r13)

+~~~2( 92 93)1 (17)

and is separated from the others by domain walls. '

We can take the spontaneous strain into account as in
Ref. 10. So, we write down the total free energy as:

(b)

FIG. 3. (a}and (b} correspond to the symmetry patterns of the lo~-temperature phases induced by ~5 and ~7, respectively.
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where Xi and Xz are the strain variables. '

Note that, in obtaining Eq. (24), we have already rotat-
ed the reference frame xi —x2 in Fig. 1 by 60' about the
x 3 axis, so that the spontaneous strain variables 7 &

and X2
have the same definition as in Ref. 10. The equilibrium
values of Xi and Xi in the given orientational state, e.g. ,
[1,0,0], are

p 25i)X)=—,X2=0.
Do

(See Fig. 1 of Ref. 10.)

IV. DISCUSSION

A. Out-of-plane symmetry breaking

In Sec. III, we discussed only the in-plane symmetry
breaking. This led to a state with Pbarn symmetry.
Among the six IR's (see Sec. II), only r& and ri can be in-
voked to describe the out-of-plane symmetry breaking.
Using procedures similar to those in Sec. III, we can ob-
tain low-temperature phases with Pmna symmetry as
shown in Figs. 3(a} and 3(b) (in the [1,0,0] state), both of
which are different from the Di phase (P2i/a). In fact,
the herringbone structure with P2ila symmetry can be
only obtained in our work if the symmetry breaking is as-
sociated with two irreducible representations, ~3 and ~5 or
~3 and ~7. For these two cases, the symmetry patterns are
the same as Fig. 7 of Ref. 16. However, according to

Landau's theory, ' if a phase transition is associated with

two IR's, it either corresponds to an isolated point in the
phase diagram if the transition is second order, ' or corre-
sponds to a first-order transition. ' The former is ap-
parently not the case experimentally, and the latter will be
discussed in the following paper. '

B. Order of transition

The results obtained in the previous sections are based
on the framework of Landau's theory. According to Eq.
(8), the phase transition is continuous (there is no cubic
term in g;). Theoretically, the correct answer as to
whether the transition is first order or second order can
not be given until the problem is worked out in the frame-
work of the renormalization group, in which important
fiuctuation effects near the transition are included. We
will not present the renormalization group calculation in
this paper, but simply note that a strong coupling between
the order parameter and the spontaneous strain variables
may give a possible mechanism for driving the transition
to be first order. ' '
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