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Molecular theory for freezing of a system of hard ellipsoids:
Properties of isotropic-plastic and isotropic-nematic transitions
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The theory for isotropic-nematic transition at constant pressure described in an earlier paper is ex-

tended to include isotropic-plastic transition. The transition is located from the structural informa-
tion about the liquid using the first-principles order-parameter theory of freezing. This theory
makes the role of the structure of the medium explicit and the role of the intermolecular interaction
implicit. For the plastic phase, order parameters are the coefficients of a Fourier expansion of the
spatially varying single-particle density p(r, Q) in terms of the reciprocal lattice of the plastic. For
the nematic phase, order parameters are the coefficients of a spherical harmonic expansion of an
orientational singlet distribution. The theory predicts that the equilibrium positional freezing (plas-

tic) on fcc lattice takes place for the value of coo [=1—1/S{
~

G
~

), where S(
~
G

~

) is the first

peak in the structure factor of the center of mass] =0.67 [or S{
~
G

~

)=3.07]. The equilibrium

orientational freezing (nematic) takes place when the orientational correlation c~~-4.45. For a
simple model of hard ellipsoids of revolution parametrized by length-to-width ratio Xo, we find that
the plastic phase stabilizes first for 0.57&XO&1.75 and the nematic phase for X0~0.57 and

Xo g 1.75. These values are in reasonable agreement with the computer-simulation results. We also
find, in agreement with computer simulation, a remarkable symmetry between the systems with in-

verse length-to-width ratios.

I. INTRODUCTION

In a previous paper' hereafter referred to as I, one of us
developed a density functional description of liquid crys-
tals and obtained formally exact expansions for thermo-
dynamic functions and single-particle density distribu-
tions in terms of direct corre!ation functions The pro. per-
ties of the uniform nematic phase including the isotropic-
nematic phase transition at constant pressure were dis-
cussed. In this approach, the properties of the ordered
phase (liquid crystals, plastics, and crystalline solids) on
its transition (melting} line are related to the direct corre-
lation function of the coexisting isotropic liquid. The or-
dered phase is regarded as a calculable perturbation on the
liquid at the transition. ' The purpose of this paper is to
present and discuss the numerical results obtained for sys-
tems composed of hard ellipsoids of revolution con-
veniently parametrized by the length-to-width ratio

Xo ajb, whe——re 2a and 2b denote lengths of major and
minor axes of the ellipsoids. This model includes as limit-
ing cases the hard-spheres, hard-platelets, and hard-
needles systems. All these systems are of physical interest
because they represent primitive models for real liquids,
solids, plastics, and liquid crystals. Constant-pressure
Monte Carlo simulation has recently been used by Frenkel
et al. to study some of these systems.

The potential energy of interaction of a pair of hard el-
lipsoids of revolution is represented as

ao, r(2 (D (Q)2)
U(r]2, Q(,Q$)=

0, r&2&D(Q, 2),

where D(Q~2) [—:D(r», Q&2)] is the distance of closest
approach of two molecules with relative orientation Q&2.
For D(Q&t) we use the expression given by the Gaussian
overlap model of Berne and Pechukas,

D (Q)2) =D (r |2,Q |2)

(r&2.e&) +(9|2 e2) —2X(f~q.e~)(r~2.eq)(e& et)
=Dp 1 —7 1-X (e).e2)

' —1/2

(1.2}

Xp —1
2

X=
2Xp+1

(1.3)

and 7~2 is a unit vector along the intermolecular axis.

~here el and e2 are unit vectors along the symmetry axes
of two interacting hard ellipsoids, Do 2b, ——

We focus attention in this paper on the jump in order
parameters, density, and change in density at the
isotropic-nematic and isotropic-plastic transitions. The
nematic and plastic phases are characterized, respectively,
by order parameters I'L and p~ which appear in the
single-particle density distribution p(x) in the following
way:
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p(x) =p(r, Q)

=po g Qz „(q)exp(iG» r)D „(Q)

with

(1.4a)

tional, and mixed positional-orientational order parame-
ters. At constant pressure the transitions are accom-
panied by change in density. %'e will, therefore, use the
following expression for singlet distribution:

Qz „(q)= f dr f dQp(r, Q)e ' D *„(Q),

p(r, Q)=pop'ggz, m()qe
'

PL, (cos8),
L q

(1.5)

where the prime on the summation indicates the restric-
tion that only even L has to be considered. The odd terms
vanish because molecules do not distinguish "up" from
"down. " P'(cos8) is the Legendre polynomial of even or-
der L. From (1.4b) we get

Qooo(0) =1 (1.6a)

Qppp(q)=p»= —f f p(r, Q}e ' drdQ (1.6b)

Qz~(0) =gz o=(2L+1)P~
2L +1 f dr f dQp(r, Q)P~(cos8),

and

(1.6c)

Qgpp(q) =Qg» ——(2L+1)i'

J dr J dQp(r, Q)

Xe ' PL(cos8) .

(1.6d)

Here pq, &L, , an«L„q are, respectively, positional, oIjenta-

(1.4b)

where po is average number density and Gq are reciprocal
lattice vectors of the crystalline phase. The Q~ „are the
order parameters and the D „(Q) are the Wigner rota-
tion matrices. For economy of notation, we use vector x
to indicate both the location r of the center of a molecule
and its relative orientation Q described by Euler angles g,
q), and)':

dQ= sinfdfdydg.1

8

Integration in (1.4b} is extended to the sample volume V
for position and to the usual domain of 0&/&m,
0&/ &2m, and 0(/&2' for angles. The orthogonality
condition for the Wigner rotation matrices is

f dQD '„(Q)D ~ „(Q)= 5gg5- 5„„.
21. + l c.,L m, m n, n

For a uniaxial ordered phase with a symmetry plane
perpendicular to a director (Dao' symmetry) and com-
posed of cylindrically symmetric molecules, the singlet
orientational distribution must depend only on the angle 8
between the director and the molecular symmetry axis.
Accordingly, we have

p(r, Q)=pi 1++'+g'g'Qz»e ' Pz(cos8) . (1.7)
L q

The primes on the summations indicate the condition that
L is even and that L and q both cannot be zero siInultane-
ously.

For a plastic which has a crystalline lattice for the
center of mass of molecules but orientational distribution-
like liquid, L =m =n =0. Thus

p(r, Q) —=p(r) = 1+By'+g p»e (1.8)

f(Q) =1+ g '(2L+1)PL PL, (cos8)
Lp2

(1.10)

is an orientational singlet distribution normalized to unity

f f(Q)dQ=1.

Here dQ= —,
' sin8d8 and

P~= f p(r, Q)Pz(cos8)sin8d8
2pI

is the orientational order parameter of the nematic phase.
The isotropic-plastic transition is strongly first order in

three dimensions, marked by large discontinuities in the
entropy, density, and order parameters. On the other
hand, the isotropic-nematic transition is weakly first or-
der, characterized by small entropy and density change
and latent heat.

We believe that the isotropic-plastic transition, like the
isotropic-solid transition, occurs when liquid (translation-
al) correlations attain a particular size. This is to say that
the Hansen-Verlet rule, which states that any (atomic)
fluid system will crystallize when the first peak of its stat-
ic (translational) structure factor reaches a height of 2.85
(to within 15%%uo) independent of the nature of the interac-
tion potential, also holds good for the plastic transition.
The fact that the transition is structural in nature is used

to make quasiuniversal predictions. For this, the ap-
proach we adopt here is a generalization of the method of
Ramakrishnan and Yussouff for molecular systems.

The theory of isotropic-nematic transition has been

where bp'=(po —pi)/pi is the fractional change in densi-

ty due to transition (at constant pressure), po is the mean
number density of the plastic phase, and pi is the density
of the coexisting isotropic liquid. The Fourier coefficients

p» are the order parameters of the isotropic-plastic transi-
tion and measure the amplitude of the spontaneous densi-

ty waves set up in the system at the transition. Both hp*
and p» depend upon the type of crystal lattice I G» j.

For a uniaxial nernatic phase with cylindrically sym-
metric molecules,

p(r, Q) =pi[bp'+ f(Q)],
where
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developing in three major directions. One uses the
phenomenological theory of Landau and de Gennes, in

which the Helmholtz free energy is expressed in powers of
the order parameters and its gradient, requiring in the
process five or more adjustable parameters to be deter-
mined by experiments. %bile this theory is physically ap-
pealing and mathemati. cally convenient, it has many
drawbacks, including a lack of quantitative predictive
power about the phase diagram. In another approach,
mainly developed by Faber, the nematic phase is treated
as a continuum, in which a set of modes involving period-
ic distortion of an initially uniform director field is
thermally excited. All orientational disorder is assumed
to be due to mode excitations. For a system of N mole-

cules, 2E modes are counted corresponding to all rota-
tional degrees of freedom. This theory works well near
the solid-nematic transition but fails close to the nematic-
isotropic transition.

In the molecular field theories' " one begins with a
model in the form of molecules or intermolecular poten-
tials and proceeds to calculate the solvent mediated aniso-
tropic potential (effective one-body potential or pseudopo-
tential) acting on each individual molecule. Such calcula-
tions need full knowledge of the pair-correlation func-
tions. '

The mean-field method adopted in this paper is based
on a density functional approach, which allows writing
formally exact expressions for thermodynamic functions
and one-particle distribution functions in terms of the
direct correlation functions. Through a perturbative ap-
proach, the free energy and the one-particle density distri-
bution of the nematic phase are related to the correlation
functions of the coexisting isotropic liquid. Thus the
same approach is adopted here to study both the
isotropic-plastic and isotropic-nematic transitions, differ-
ing only in computational details. The following condi-
tions lead to the following phases: p«+0, Pr ——0, i.z «

——0,
plastic phase; p« ——0, PL&0, «'J

«
——0, nematic phase; and

p«&0, PL. +0, «L, «&0, crystalline-solid phase. The smec-
tic phase, which is obtained when density waves set up in
one direction, is not considered here.

This paper is organized as follows. In Sec. II we dis-
cuss the basic formalism of the density functional theory
applied to study phase transition in a molecular system of
arbitrary symmetry. Final expressions for the order pa-
rameters and the difference in the grand thermodynamic
potentials of the isotropic and ordered phases are given in
terms of the direct correlation functions of the coexisting
isotropic liquid at the transition. The approximations in-
volved for numerical enumerations are elaborated in Sec.
III. The results are presented and discussed for the
isotropic-plastic and isotropic-nem. atic transitions in Sec.
IV.

~ pp+c(x)
p(x) =

A
(2.1)

where P is the inverse temperature, p the chemical poten-
tial, and A the cube of thermal wavelength associated
with a molecule. —kTc (x) is the solvent mediated poten-
tial field acting at x. The one-particle direct correlation
function c(x), which is a functional of the single-particle
density distribution p(x), is related to the direct pair-
correlation function by the following relation

5c(xi)
=c(xt, x2) .

p X2
(2.2)

5p(x;) =p(x;) -pi . (2.5)

In writing the above equations we have indicated by curly
brackets the functional dependence of the quantities on
the single-particle distribution.

By a functional Taylor expansion we find that

c(xi,x2,'[pi+a [5p(x) j ] )

= c (xt, xz,'p&)+a f c (x&,xi, x3,'p&)5p(xi)dx3+

(2.6)

Combining (2.4)—(2.6) and (2.1) we get

ln[p(xt)/pi]= f c(x&,X2,pi)5p(X2)dxi
1+ T C X),Xp, X3ypf

x 5p( x2)5p(x3 )d xpdx3 ~ (2.7)

This is a nonlinear equation and relates the single-particle
density distribution of the ordered phase to the direct
correlation functions, assumed known, of the coexisting
liquid.

The Hdmholtz free energy A of a system of X mole-
cules contained in a volume V with temperature T is writ-
ten as

The Ornstein-Zernike (OZ) equation relates the direct
pair-correlation function (DPCF) c(xt, x2) to the total
pair-correlation function h (xi,x2) =g (xi,x2) —1:

h (x»xi)=c(x»X3)+ f p(x3)h(x»x3)c(x2, x3)dx3 . (23)

The functional integration of (2.2) from some initial den-
sity pi (of isotropic liquid) to final density p(x) (of the or-
dered phase) gives

c(x» [p(x) [ ) =c (x~,pi)+ f c(x»x2 p(x) )5p(xi)dxi,

(2.4)

where
1

c(xi,x,;p(x))= f, dac(x), X2,[pi+a[5p(x)]])

II. GENERAL THEORY PA = f p(x)[lnp(x)A —1]dx+H, (2.8)

We begin by summarizing and reformulating some of
the results of I which are relevant to our present study.

In the absence of external field one formally writes for
the single-particle density distribution

where 0, the excess reduced Helmholtz free energy aris-
ing from the interparticle interactions, is related to the
direct one-particle correlation function c(x) by the rela-
tion
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H = —c(x; Ip(x)I) . (2.9)
5p(x)

The functional integration of (2.9} from pl to p(x) and
use of the relations given by (2.4)—(2.6) lead to

H = —f dxc(x,pl)5p(x)

f f dXidX2C (xi, xz~pl )5p(xi)5p(xz)
l dxi f dxz f dx3C(xi, xz, x3,'pl)

x 5p(xi)5p(xz)5p(x3) +
(2.10)

The grand-canonical thermodynamic potential

—W=PA —P f p(x)p, dx

is given as

—W= —Wl —f Sp(x)dx

+ 2 xi dx2 p xi +p~ p x2 c xi, x2,'pI

+ 6 x~ x2 x3 2p x~ +p~ p x2

X5p(x3)c (x it xz& x3&pl ) +
(2.1 1)

where —FI is the grand-canonical thermodynamic poten-
l

tial of the isotropic liquid.
Equations (2.7) and (2.11) are the basic equations of the

theory of freezing and of interfaces of ordered phase and
its melt. ' One attempts to find solutions of p(x) of (2.7)
which have symmetry of the ordered phase. These solu-
tions, inserted in (2.11), give the grand potential difference
between the ordered and liquid phases. The phase with
the lowest grand potential is taken as the stable phase.
Phase coexistence occurs at the value of pl which makes
—6W=O for the ordered and liquid phases.

Because of translational invariance in the isotropic
phase, the correlation functions depend only on the rela-
tive distances and not on individual position vectors.
Thus

c(xi,xz,pl)=c(riz, Q1, Qz,pl),
C(X1 X2 X3 Pl) C(r12 r13 r23 Q1 Q2 Q3 Pl)

etc. Since our knowledge of the direct three-body correla-
tion functions are meager even for atomic fluids, we use
the following relation to simplify the terms involving
them:

Bc(riz, Q1, Q2', pl )

f c (r12 r13 r23 Qi Q2 Q3 Pl )«3dQ3 .

Substituting (1.7) into (2.7) and (2.11) and integrating and
using (2.12) results in, respectively,

1+&p'+ g' g' QL qe ' 'PL (cos8, )
L q

= ~p [Coo(81)+ 2'g~p Co'p(81)]+ g pqe ' '[CI%0(8, )+rlbp C)'0(81)]
q+O

+ r PL[CL,0(81)+&~P Ci 0(81}]+y y rL, «e ' '[C'Lo(81)+rl&p'O'Lo(8})]+A,
Lg2 L)2 q~O

p + 2 p'[(2+Ep*)c 0 0+ ,'rl+'(3+2—bp')co'0]+ g 'PL(1+hp')(c L, o+rlbp c L, o)
L~0

+ z 2 Ilz« I [c(,0+rl(1+2'')C3%,'0]+ g ' g pqrL«[cL0+rl(1+2hp )c fp]
q+O L) 2 qgO

+ —, g g 'PLPL [cLL +rl(1+2bp )cL'L ]+ & g g ' g ~L«rL ~ «[c $L +7)(1+2bp')c'LL, ]+Il,
Lp2 L'&2 L) 2 L'&2 q~O

(2.13)

(2.14)

C]t p(81) =(2L +1}pl f c(r,z, Q1,Q2)e ' "PL (cos8z)dr, zdQz,

c LL'=(2L + 1 )(2L '+ 1 )pl c (riz, Q1,Qz)e ' "PL (cos8, )PL (cos8z)drizdQidQz

are structural parameters related to the Fourier transformed direct correlation functions of the fluid phase:

GO ——0,

(2.15)

(2.17)

Ck, o(81)—1 ~
(Cf.,o(81)~9) C LL'= 1 ~

(C LL'~ l)

etc. Here
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2 s i(G r2+Q -r3)A = —,p~ g' g'QL, ~QL, e dr2 dr3 dQ2 dQ3PL(cos82)PL (cos83)e ' ' c(r&2, r&3, r33 Q& Q2 Q3)
qq' L L'

(2.18)

g ' g '
Qc e QL q Qc- q-

L,L', L" q, q'q"

~ f dr, f dr3 f dr3 f dQ( f dQ3 f dQ3PL (cos8&)PL (cos82)PL ~ (cos83)

l+G~ I'~+0ye c(r», r», r», Q, ,Q„Q3)+ ~

Equations (2.13) and (2.14) are expansions in increasing
nonlinearities, with respect to the order parameters, as
well as in increasing order of the direct correlation func-
tions.

III. APPROXIMATIONS AND DERIVATION
OF WORKING EQUATIONS

The correlation functions appearing in (2.13)—(2.19) are
in general not known. The solutions of integral equations
such as the hypernetted-. chain equation, the Percus- Yevick
(PY) equation, the mean spherical approximation, or the
optimized random-phase approximation are difficult to
obtain. This is because the solutions of these equations in-
volve, even for axially symmetric rigid molecules, repeti-
tive sixfold numerical integration and require the calcula-
tion of the full anisotropic pair-correlation function —a
procedure that is numerically very complicated but can be
accomplished by spherical harmonic expansion. '

For hard spheres, the OZ equation (2.3}has been solved
analytically by %ertheim' and Thiele' in the PY ap-

proximation. The solution

(2.19)

c(r/dp)=a+b(r/dp)+ ,'aq(r/dp) —forr/dp ~ 1

=0 for r/dp&1,
where dp is the diameter of a hard sphere,

(3.1)

a = —(1+2')'/(1 —g)',
(3.2)

and g=pu, U (= —,'mpdp) being the molecular volume, is
found to yield quantitatively good results for the proper-
ties of fiuids for q(0.40 and qualitatively good results
for densities riy0. 40. The PY c(r) is found to be too
negative for all values of r. ' Further, the PY radial dis-
tribution function g(r) is found to present two major de-
fects. ' First, the value at contact is too low, i.e., the PY
approximation underestimates the height of the first peak
and g (r) oscillates slightly out of phase with the comput-
er results. These defects of the PY theory are removed by
using the Waisman -Henderson-Blum (WHB} ' expres-
sion for c(r):

1 —exp( —Zr ldp)
c (r/dp) =catv(r/dp) Ea ( +i)(r/—dp)+ —,

'
ria )(r/dp)'+u)

Z r/dp
for r/dp &1

exp[ Z(r /d p 1)]- —
=K for r/dp~ 1,

T dp
(3.3)

and

ai=Z 'fi(n» bi=Z 'fz(n»
—24'(1+6q+ 123}'+83}3)

(1—3})(1+23}—3q —4q +43} )

( 1 —83}—2q )( 1+6q+ 12' + Sg )

(1—q)(1+2q 3g' 4q3+4q')— —

",[fi(n)l '
Z (1 —g)

rC = ",——[(1+—,
'
g)f, (q)+f,(g)] .

2(1—3}) Z

There is no such analytic or semianalytic solution for
the system of hard ellipsoids. We therefore approximate

the DPCF for this system by using the PY or WHB re-
sults for hard spheres with the hard-spheres diameter dp
replaced by the distance of the closest approach
D(r&3, 0~3). Thus

c(r/$, Q],Q2) =c(r/3/D(Q/2)) =c(r'), (3.4)

where r'=r, 2/D(Q, 2) and c(r*)=catv(r') or cwHB(r').
Such an approximation has already been used by Pynn
and Wulf. As will be clear below, this approximation
completely decouples the orientational and positional de-
grees of freedom and is referred to as the decoupling ap-
proxlm ation.

Though the decoupling approximation introduces an-
isotropy in the pair correlation and is exact at very low
density, since c(r&2/D (Q&3) ) -exp[ —pu (r~2,D (0~2) }]—1, it cannot be exact at liquid density. It is easy to see
that when two molecules are parallel, c is most anisotro-
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pic, and the surfaces of constant c are prolate spheroids of
axial ratio Xo, with the long axes of the spheroids point-

ing along e, and ei [Eq. (1.2}]. When eileen, c is most iso-

tropic, the surfaces of constant c are then oblate spheroids
with the symmetry axis along e1 Xe2, and the axial ratio
of this spheroid is [—,

' (1+Xo)]' &Xo.
» order to check the accuracy of the relation (3 4), we

calculate compressibility factor PP/p of the isotropic
liquid using the compressibility equation

c ( ri2 ri3 r23', Qi, Q2, 03}

12 r13 r23

D(Qi2)
'
D(Qi3}

'
D(Qpg)

When (3.4) is substituted in (2.15)—(2.17) we get

C 3,o(8i}=c 3,o

C II o(8i }=PL ( cos8i )c II I,

(3.8)

(3.9)

(3.10)

a(PP) =& —P & r12 1 2 r12 1 2
P

(3.5) C 3,'o(8i }= (C)o(8i)/ri},
'9

and the PY c(r) W.hen (3.4) and (3.1) are used and in-

tegration is performed, one gets

pP
1

4q) 2q} +ri P (X)
p (1—g)'

where

Fi(X)=(1—X ) (1—6X —4'oX —„,X — ' ) .

» writing (3.6), use has been made of the excluded
volume

cfo=
etc., where

(e 3%,o/il ),

c ( o=24qJFi (X)I(Gq ),
c i, I —— 24qFL(X—)I(Gq),

sin(G r')
I(Gq)= f c(r )(r ) dr

Gqr'
with

(3.1 1)

(3.12)

(3.13)

1

Vexed T D (~l2~ Qi2}ttri2

=gv(1 —X )
' (1—X2cos 8 (3.7)

F (X)=—,'X (1—X') ' (1+—„X + —„X +,'„X + ),
(3.14)

40.0-

35.0"

30.0"
X =300

25.0-
P

20.0-
X I.O

15.0-

10.0-

0.0 l

00 025 050 075 100 I 25

Pj

FIG. 1. Liquid phase reduced pressure (I' ) is shown as a
function of the reduced density (pI }for three values of Xo——1.0,
2.0, and 3.0. Here pi =pi V„and P =PPV„, where

V„=sab =SXob . , results from Eq. (3.6); , Monte Car-

lo values of Frenkel et al. (Ref. 4); 0, computer-simulation

values for hard-spheres (Xo——1.0) system [J. A. Barker and D.
Henderson, Mol. Phys. 21, 187 (1971)].

The results obtained from (3.6) for Xo=1.0, 2.0, and 3.0
are compared with the values obtained by machine simu-
lations as a function of pi in Fig. 1. The agreement is
very good and justifies the use of the decoupling approxi-
mation for the DPCF for a system of hard ellipsoids.

For the direct three-body correlation function we use
the following relation:

(3.15)

etc. It may be noted here that owing to the decoupling
approximation (3.4), the contribution arising due to orien-
tational degrees of freedom, Fr (X), is separated from that
of the positional degrees of freedom, I(Gq).

There is little knowledge about the numerical values of
A and B even for such simple systems as that of hard
spheres. The preliminary molecular-dynamics calcula-
tions near the triple point, however, indicate that even

around the first peak of the structure factor, S(Gq),
which is a Fourier transform of the pair-correlation func-
tion, the numerical values of A and B are very close to
zero. For the remainder of this paper, both A and B are,
therefore, set equal to zero.

Fourier decompositions of (2.13) give the following im-

portant relations:

1+~p' = f f «id 8i »n8i J(r$, 8$), (3.16)

pz ——f f drid8i sin8ie ~ 'J(ri, 8,), (3.17)

P~ ——f f drid8i sin8iPL (cos8, )J(r„8,), (3.18)
etc., where

1 io -r,J(ri,8i)= exp QB(q)e q '+ g 'B(L)PL (cos8i)
2V L&2

+ g g 'B(I.,q)e
q+0 L &2

&&Pl (cos8i)++'Bo

(3.19)
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AO [ +P {)80 ——coo+, pe coo (3.20)

8 (q) =p»(c ) 0+ rib p'c $,o) ~

8(L)= PL (c L L, +g+'c r'I ),
8 (L,q) =rI »(c L r. + pe'c I. L ) .

(3.21)

(3.22)

(3.23)

Equations (3.16)—(3.18) are highly nonlinear and com-
plicated. They are solved numerically to find regions of
temperature and density for which a periodic solution (in
position and/or in orientation) has bifurcated from the
uniform liquidlike solution. In principle, there are an in-
finite number of order parameters p, », PL, and»'r, » so that
solving these equations and (3.10) could be very difficult.
The following simplifications are, however, possible.

The c
N% 0 has a sharp peak at 6» =

~
G~

~

which can be
identified as the smallest reciprocal lattice vector G of the
crystalline lattice. This mode produces the largest
response potential and most strongly affects the free ener-

gy balance. Other order-parameter modes play signifi-
cantly smaller roles and can be approximated by the per-
turbative method. Indeed, satisfactory results have been
found by retaining only one order-parameter mode corre-
sponding to the smallest reciprocal lattice vector set

t G I in the study of the transition of isotropic atomic
liquid to the body-centered-cubic (bcc) lattice or to the
two-dimensional hexagonal-closed-packed structure. For
the face-centered-cubic (fcc) lattice it is enough to retain
two order-parameter modes, namely, I G» I

=(2n/a)(+ I, +1,+1) and I Gr I =(2n/a)(+3, +1,+1)
(here a is lattice parameter). The effect of other modes,
which are small, on freezing parameters has been found

by the perturbation method.
Though we cannot say very much about the rate of con-

vergence of expansion (1.10) in general, close to the transi-
tion, where P2-0.45, the series converges rapidly and can
be truncated after the term with L =4. The two —order-

parameter theory should, therefore, be adequate to study
the isotropic-nematic transition properties.

Another simplification arises from the possibility that
at small values of Xo (&1.5) the plastic phase with

PI ——0, wL» ——0 stabilizes first, whereas at large Xo
(&2.5) the nematic phase with p» ——0, ~L» ——0 occurs
first. We therefore take Pr ——0, ~1» ——0 in calculating the
properties of the isotropic-plastic transition and p»=0,
».i »

——0 for the isotropic-nematic transition. This simpli-
fication, however, excludes us from predicting the proper-
ties of the isotropic-solid transition for which
p, +0,»i. »+0 and from finding the upper and lower values
o Xo for plastic and nematic transitions, respectively.
This will be one of the subjects of a future paper.

IV. RESULTS AND DISCUSSIONS

a = (4/po) ' ', pa= pi(1+ ~p" ) (4.1)

In preferring the fcc lattice, we were guided by the fact
that in computer-simulation studies, the hard-spheres
system is found to crystallize on the fcc lattice. Though
such a choice a priori is not needed, it simplifies the com-
putational work considerably. The possibility of getting
other types of thermodynamically-more-stable lattices
(i.e., the possibility of a plastic-plastic transition) as we
change Xo is not explored here. Because of the existence
of only a small number of Bravis lattices, it will simplify
the matter considerably if we first look for freezing of the
fluid into a prescribed plastic lattice and defer the prob-
lem of the relative thermodynamic stability of the dif-
ferent plastic lattices to a later study.

A. Isotropic-plastic transition

Calculation has been done by assuming the crystalline
lattice of the plastic phase to be fcc with lattice parameter
a determined self-consistently by the relation

TABLE I. Isotropic-plastic transition parameters in two —order-parameter theory. For each Xo, the first row indicates the values
calculated from cp~(r) and the second, from c~H~(r).

Xo

1.0 1.000 0.943
0.951

0.064
0.068

0.966
0.971

0.770
0.775

—59.019
—55.271

coo

0.666
0.663

—2
t- o,o

0.276
0.277

1.017 0.930
0.938

0.067
0.072

0.969
0.974

0.772
0.778

—56.157
—52.596

0.667
0.663

0.275
0.276

1.056 0.904
0.911

0.074
0.079

0.97S
0.981

0.777
0.784

—50.849
—47.649

0.668
0.664

0.272
0.273

1.75 1.109 0.873
0.880

0.081
0.087

0.982
0.988

0.782
0.789

—45.766
—42.930

0.671
0.667

0.268
0.269

2.00 1.170 0.844
0.849

0.089
0.095

0.988
0.995

0.786
0.793

—41.610
—39.090

0.675
0.672

0.264
0.264

2.25 1.238 0.816
0.821

0.09S
0.102

0.993
1.000

0.788
0.796

—38.39S
—36.134

0.682
0.678

0.258
0.259
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FIG. 3. Structural parameters coo vs coo for isotropic-
plastic transitions. Values of Xo for each point are indicated in
parentheses on the curve.

0.7
1, 0 0.06

2.0
X

FIG. 2. Isotropic-plastic transition parameters obtained from

two —order-parameter theory, using PY values of c(r), are
shown as a function of Xo.

of the density pi" change in density, bp', and order pa-
rameters p~ and p2 are in excellent agreement with the
values reported by other workers ' and with the values
obtained from computer simulations. 6

B. Isotropic-nematic transition

The results obtained from two order-parameter approx-
imations are listed in Table II. For each Xo, the first row
lists the value of the quantities obtained from the PY c (r)
and the second, from the WHB c(r). Again we find that
these two sets of c(r) give almost identical values for all
the quantities characterizing the transition. The general
trend is that the WHB c(r) gives slightly higher values
(almost negligible except for pi ) for all the quantities at
the transition under investigation. This behavior is simi-
lar to that found in the case of the isotropic-plastic transi-
tion. This leads us to conclude that the PY c(r) is good
enough to study the properties at the transition.

In Fig. 4 we plot the variation of pi' and other order pa-
rameters with Xo. The general features of these quantities
are in agreement with the experiment. The value of the
ratio P4/P2 is found to depend weakly on Xo. It varies
between 0.29 and 0.39 as the value of Xo changes from
1.5 to 4.0. We also find that the one —order-parameter ap-

wp wp
proximation gives values for pi, P2, e 00, c 2 q, and bp
which are very near to those found from the two —order-
parameter approximation. This suggests, though indirect-
ly, that the effects of higher order parameters on these
quantities at the transition are negligible.

An interesting feature can be noted from Table II: the~ pc q 2 (-4.45) remains almost constant at the transition as
Xp is varied from 1.5 to 4.0. This value is somewhat
lower than that found from the Maier-Saupe theory. It
should, however, be noted that the Maier-Saupe theory is
the one —order-parameter theory and neglects the change
in volume at the transition.

There is, however, a tendency of decreasing c 2 2 as Xp
is increased. This is shown in Fig. 5 in which we plot c & 4

%e retain only two order-parameter modes correspond-
ing to I Gs I mentioned in Sec. III. The first mode has 8
members and the second 24. Further, following HaymetiG.r ~
the value of the series g pse (c f'0) is taken equal to
zero. The computational method adopted ' ' here is
described in detail elsewhere. Results for several values of
Xo are listed in Table I. For each Xo, the first row lists
the values of quantities obtained using the PY c(r) and
the second, the WHB c(r). The difference in the values
of the two sets is very small. The variation of order pa-
rameters and the density of transitions are plotted in Fig.
2 as a function of Xo.

We note that coo ——1 —1/S(G ) [=0.674 or S(G )

=3.07] is very nearly constant to within +5% at the tran-
sition as we vary Xo from 1 to 2.25. This shows that the
Hansen-Verlet criterion holds well for the isotropic-plastic
transition. We also find that the second peak in the struc-
ture factor attains a value equal to 1.36 to within +2% at
the transition for 1&XO &2.25. We, however, note that
c p p tends to increase and c p p decrease as Xp is increased.
This is shown in Fig. 3 in which a cp p versus cp p graph
is plotted. The values of Xo for which points are plotted
are indicated in parentheses on the curve. An interesting
feature of this graph is that it has a negative slope show-

ing that if c oo increases (with Xo), then freezing occurs
for a smaller c 00, and vice versa. This curve can be con-
sidered as a freezing line described in terms of the
structural correlation. For a given Xp, above the line the
plastic phase is more stable due to strong structural corre-
lations in the centers of mass, while below the line the
fluid phase is more stable. We further note that the im-
portance of the second peak in the structure factor lessens
as Xo is increased, implying the possibility of transition
on the bcc lattice for large Xo.

For Xo—1, i.e., for the hard-spheres system, the values
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TABLE II. Isotropic-nematic transition parameters in two —order-parameter theory. For each Xo, the first row indicates the
values calculated from cpy{p') and the second, from c~a(r).

Xo

1.50 1.056 0.055 1.003
1.027

0.005
0.005

0.447
0.447

P4

0.131
0.131

co,o

—86.531
—86.532

C 2, 2

4.525
4.526

c4,4

0.062
0.062

1.75 1.109 0.106 0.003 0.880
0.899

0.010
0.010

0.462
0.462

0.140
0.140

—47.223
—47.225

4.511
4.512

0.113
0.113

1.170 0.164 0.793
0.808

0.016
0.016

0.480
0.480

0.151
0.151

—32.151
—32.151

4.495
4.496

0.166
0.166

2.25 1.238 0.011 0.725
0.738

0.022
0.022

0.498
0.498

0.163
0.163

—24.592
—24.594

4.480
4.480

0.215
0.215

2.50 1.311 0.290 0.017 0.671
0.683

0.028
0.028

0.515
0.515

0.175
0.175

—20.189
—20.191

4.464
4.465

0.260
0.259

2.75 0.356 0.024 0.628
0,638

0.034
0.034

0.532
0.532

0.186
0.186

—17.366
—17.367

4,450
4.452

0.298
0.297

3.00 1.467 0.422 0.032 0.591
0.600

Q.Q40

0.040
0.547
0.547

0.197
0.197

—15.43Q
—15.432

4.437
4.439

0.332
0.331

3.25 0.488 0.040 0.560
0.568

0.046
0.046

0.562
0.562

0.208
0.208

—14.037
—14.039

4.425
4.426

0.362
0.361

3.50 1.632 0.554 0.048 0.532
0,540

0.052
0.052

0.575
0.575

0.218
0.218

—12.997
—12.998

4.414
4.415

0.385
0.384

3.75 1.718 0.620 0.057 0.508
0.515

0.057
0.057

0.587
0.588

0.226
0.226

—12.197
—12.199

4.404
4.405

0.406
0.405

1.805 0.686 0.066 0.487
0.493

0.062
0.062

Q.598
0.599

0.235
0.235

—11.567
—11.569

4.394
4.396

0.424
0.423

l.08 - -0, 7 - 0, I2

0.46-

0.98 - -0.6
0,36-

0.88- - 0.08

0.78 - -0.4 0.26-

0.68 - -0,3

0.58 - "0.2

-0.04
O. I6-

48, 0:I
I. O I 5 20 25 30 35 40

X

FIG. 4. Isotropic-nematic transition parameters obtained
from two —order-parameter theory, using PY values of c(r), are
shown as a function of Xo.

I.50)0.06
438 4.43 4.48 4.53

~C
2, 2
~ oFIG. 5. Structural parameters c44 vs c ~& for isotropic-

nematic transitions. Values of Xo for each point are indicated
in parentheses on the curve.
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versus c z z. The value of Xo for each point on the graph
is given in parentheses. The graph is very nearly a

straight line with a negative slope showing that if c & 4 in-
creases (with Xo), orientational freezing occurs for small-

er c 2 2. This line can also be regarded as an orientational
freezing line described in terms of the structural correla-
tion. For a given Xo, above the line the nematic phase is
more stable due to strong orientational correlation, while
below the line the isotropic phase is more stable.

We wish to emphasize in conclusion that the values of
A. ( Ap Ao

the structural parameters c i'i o, c o o and c z i,c 4 4 found by
us for the isotropic-plastic and the isotropic-nematic tran-
sitions, respectively, are "universal" and do not depend in
any appreciable way upon the approximations used for the
c (r). The decoupling approximation only affects the indi-
vidual values of the contributions arising from orienta-
tional and positional parts of the DPCF. As argued in
Sec. III, the decoupling approximation appears to overem-
phasize the anisotropy in the DPCF for the parallel con-
figurations and underestimates it for the perpendicular
orientations. This may lead to overestimation of the
orientational contribution to c L, L, which is expressed as

F~(X},and underestimation of the positional contribution
slI(Ge). This may exPlain why the values of Pt' found by
us at the transition are somewhat lower than those es-
timated by the computer simulations.

For the range of Xo considered here we find complete
symmetry between the systems with inverse length-to-
width ratios. This is in agreement with computer-
simulation results. We find that in the system of hard el-

lipsoids of revolution, the plastic phase stabilizes first for
0.56 &Xo & 1.75 and the nematic phase for Xo ~ 1.75 and
Xo &0.56. As mentioned earlier, we have not explored in
this paper the range of Xo for which a crystalline solid is
found to stabilize first. Calculations for the phase dia-
gram of a system of ellipsoids with a suitable approxima-
tion for the DPCF are in progress and will be reported in
a future paper.
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