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Selection of steady needle crystals in the full nonlocal symmetric model of dendritic growth is

considered. The diffusion equation and associated kinematic and thermodynamic boundary condi-
tions are recast into a nonlinear integral equation which is solved numerically. For the range of
Peclet numbers and capillarity lengths considered it is found that a smooth solution exists only if an-

isotropy is included in the capillarity term of the Gibbs-Thomson condition. The behavior of the
selected velocity and tip radius as a function of undercooling is also examined.

I. INTRODUCTION

It is well known that when a solid freezes into a super-
cooled melt the solid-liquid interface can become den-
dritic. The understanding of this process is of great im-
portance to metallurgists since the properties of the solidi-
fied material will depend crucially on the details of the
solidification process. The phenomenon of dendritic
growth is also of great physical interest since it is a non-
equilibrium dissipative process which spontaneously gen-
erates interfacial patterns.

The dynamics of dendritic growth can be viewed as a
nonlinear Stefan problem in which the temperature and
solute satisfy diffusion equations in both the solid and
liquid phases and the motion of the interface is deter-
mined by the conservation of heat and the thermodynamic
effects at the solid-liquid boundary. If one simply as-
sumes that the interface is in local equilibrium, so that the
interfacial temperature is just the melting temperature,
then an exact solution due to Ivantsov' is known. In the
Ivantsov theory the interface is simply a uniformly
translating isothermal parabola. There are, however, two
principal difficulties with the Ivantsov theory. The first
is that for a given undercooling the Ivantsov solution is
degenerate since it predicts only the product of the radius
of curvature at the tip of the dendrite and the velocity.
Experimentally it is known that several properties of den-
dritic growth do not depend on the time history of the in-
terface. In particular, the radius of curvature and velocity
of an advancing dendrite tip are reproducible functions of
the thermal undercooling and the properties of the materi-
al but do not seem to depend on the way in which the den-
drite was generated. In other words, for a given under-
cooling a unique velocity and radius of curvature are
selected. The degeneracy in the Ivantsov theory corre-
sponds to a scale invariance and it is necessary to add
some additional physical information to set the scale and
allow for the solution of both the velocity and radius of
curvature. The second theoretical difficulty is that the
Ivantsov solution is unstable with the growth rate increas-
ing as the disturbance wavelength decreases. This is again
related to the degeneracy of the solution.

It has been suggested that since the capillarity and
molecular attachment effects provide an additional scale,

their inclusion into the thermodynamic boundary condi-
tion should facilitate a prediction of the velocity-
undercooling relationship. The addition of capillarity in
the problem, however, makes it analytically intractable.
There have been several attempts to include capillarity in
an approximate manner. Notable among these are the hy-
potheses of marginal stability and maximum velocity.

The marginal-stability hypothesis uses the Ivantsov
needle as an approximate basic state and examines its sta-
bility in the presence of capillarity. The inclusion of
capillarity introduces a stability length such that distur-
bances with a wavelength shorter than the stability length
are damped. This has the effect of rendering some of the
Ivantsov needles completely stable. The hypothesis states
that the tip velocity is that which is due to the Ivantsov
needle, which is just stabilized by capillarity. For further
details the reader is referred to the comprehensive review
of Langer.

The maximum velocity hypothesis of Nash and Glicks-
man is based on a numerical solution of the full nonlinear
boundary value problem in three dimensions. Nash and
Glicksman derived a nonlinear integral equation for the
shape of the boundary and solved it by Newton's method.
In their calculations the addition of capillarity yields a
state of maximum velocity for a given undercooling and it
is this state that is selected by the dynamics.

Both of these approaches to the problem of velocity
selection are predicated on the notion that the smoothness
of the Ivantsov solution is not affected by the inclusion of
the capillarity terms and that for sufficiently small values
of the characteristic capillarity length the Ivantsov solu-
tion is modified but remains degenerate. 6

The intractability of the full problem has led to the in-
troduction of local models of dendritic growth. These are
evolutionary equations for the interfacial curvature con-
structed so as to model some aspects of the full nonlocal
problem. The obvious advantage of this approach is that
it avoids the complications of solving the diffusion equa-
tion while at the same time retains some of the
phenomenology. Two examples of this approach are the
geometrical model of Brower et al. and the boundary
layer model of Ben-Jacob et al. Both models possess
equivalents of the Ivantsov needle solution and are suffi-
ciently tractable so that it can be shown that the continu-
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um of the Ivantsov solutions does not survive in the pres-
ence of capillarity. Most of the solutions become inad-
missible as they develop singularities at the needle tip.
The velocities and tip radii of those solutions which
remain smooth now form a discrete set. In the numerical
simulations of Kessler et al. the selected steady state is
the member of the discrete set which has the largest tip
velocity. This new selection criterion has been dubbed mi-
croscopic solvability since it is now the solvability condi-
tion that the solution remain smooth at the tip which
fixes the velocity.

Motivated by these findings we have investigated the
existence of steady states in the presence of capillarity for
the two-dimensional full nonlocal model of dendritic
growth. We have followed Nash and Glicksman in refor-
mulating this problem as a nonlocal integral equation but
we have not imposed any conditions on the smoothness of
the solution at the tip. We solve this equation numerical-

ly using Newton's method. Our methodology is described
in Sec. II. We find that nontrivial needle-crystal solutions
exist only in the presence of capillarity which accounts for
crystalline anisotropy. In our calculations we have im-
posed a fourfold anisotropy in the capillarity term. Our
numerical calculations are neither exhaustive nor rigorous
but they nevertheless suggest that anisotropy plays a cru-
cial role in the selection of dendrite-tip velocities and ra-
dii. Detailed results of our calculations are presented in
Sec. III and some conclusions in Sec. IV.

II. MATHEMATICAL AND NUMERICAL
FORMULATION

We consider the motion of a solid-liquid interface z (x),
which occurs due to solidification into an undercooled
melt. The heat budgets in both the solid and liquid phases
are assumed to be controlled by diffusion so that the tem-
perature fields Ts, Ti in the solid and liquid, respectively,
obey

8TI
DpV TL ——

L

v.n=(Dr VTs D—r VTL )'n ~

(2.5)

(2.6)

In order to uniquely fix the shape of the interface we must
also impose a thermodynamic boundary condition. The
thermodynamic condition used here is a form of the
Gibbs- Thomson relation

(2.7)

(2.8)

2 BT
V TL+ — =0,

IL Bz
(2.9)

where li and Is are the diffusion lengths in the solid and
liquid and are given by

where T~ is the melting temperature, a is the interfacial
curvature defined to be positive if the center of curvature
lies on the solid side of the interface, y/L is the capillari-
ty length, and 8 represents the angle between the
outward-pointing normal n and the vertical axis. The
function f(8), which in general depends on the geometric
parameters of the interface, represents a measure of the
anisotropy in the Gibbs-Thomson term. Its explicit form
will be indicated later. As pointed out by Langer the sim-
ple condition (2.7) represents an assumption of local
equilibrium and ignores potentially important effects such
as convection in the fiuid. It is nevertheless an important
first approximation in the study of solidification.

Our interest lies in computing the shapes of steadily ad-
vancing solidification fronts. In a frame of reference
traveling with the front velocity v the diffusion equations
become

~2s
Dp V' Ts ——

S
(2.1) 2as 2DL

lL —— (2.10)

(22)

where Dr and Dr are the thermal diffusion constants.
L

The motion of the interface is determined by the rate at
which latent heat is diffused into the bulk phases. The
normal velocity v n of the interface is determined from
the heat conservation condition

L v.n=(DT Cpsv Ts —DTLcpLV TL).n- (2.3}

(2.4)

Here I is the latent heat per unit volume and cps, c&L are
the specific heats for the two phases. It is understood that
the gradients are evaluated at the interface. If we assume
that c~s ——c~L ——c~ and measure temperature in units of
c~/L, Eqs. (2.1), (2.2), and (2.3) become

We shall further assume that ls ——lL
——1=2D/U. This

corresponds to the symmetric model studied by Langer
and Turski. ' For most substances the diffusion constants
are not equal in the liquid and solid phases but it should
be noted that succinonitrile, a widely used material in the
experimental studies of dendritic growth, does possess
nearly symmetric diffusion constants. In this limit the
temperature fields in the solid and liquid phases are
governed by a single diffusion equation with the conserva-
tion condition

Ts 3TL
D

tl Bfl
=v n. (2.11}

One interpretation of condition (2.11) is that the interface
in the symmetric model acts as a source distribution and
thus the solution in both the solid and liquid domains
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may be expressed as an integral over the interface
boundary of the form G(r

~

r')= exp Ep
1 z(s') —z(s)

2' I
( r(s) —r(s')

~

I

T(r)= I p(s')G(r
~

r')ds', (2.12) (2.14)

V T+ — =0.2 2aT
l a,

(2.13)

The explicit form of the Green's function G(r
~

r') is

where r is an arbitrary vector, r' is a vector directed along
the interface, ds' represents the element of surface area, p
is the source sheet strength, and G(r

~

r') is the source
Green's function for the elliptic equation

in two dimensions, where Ep is a modified Bessel func-
tion of zeroth order. Note that due to the behavior of the
Green's function the temperature field is constrained to
vanish in the liquid phase at large distances from the in-
terface.

Using (2.12) we can rewrite the nonlinear boundary
value problem posed by (2.7), (2.11), and (2.13) and the
definition of the outward-pointing normal n
=[(—dz/ds), (dx/ds)] as a nonlinear integro-differential
equation

u ~, z(x') —z(x) j(x —x') +[z(x)—z(x')] I'i
f(8)E = dx' exp Ep

2mD l
(2.15)

where b, is the thermal undercooling. We now scale all lengths by the diffusion length l =2D/u and find

6—dpfa =—f dx' exp[z (x') —z (x)]Ep( [ (x —x') + [z (x)—z (x')] I
'/ ) . (2.16)

Here dp ——(y/L)(u/2D) is the dimensionless capillarity length. It can be verified that in the absence of capillary effects
(dp =0) Eq. (2.16) reproduces the well-known Ivantsov solution in two dimensions. In our dimensionless variables this is

—Xz(x) =
~+ Peclet

(2.17)

(Mp~~„')'/ exp(Mp~i„)erfc(MP i„)' (2.18)

The Peclet number Mp~i„ is given by Mpz&„——pl /l, where pl is the radius curvature of the Ivantsov parabola.
While it is possible to verify that substituting the parabola (2.17) into the integrand yields a constant b„which obeys

(2.18) through the use of identities among Bessel functions, this result can be seen directly from the derivation of Pelce
and Pomeau" who rewrite Eq. (2.16) using the free-space Green's function for the heat equation. In their formulation
Eq. (2.16) becomes

d'r CO 1 2 2 25—dp Ic=v dx dy exp — [(x —xi) +(y —yi) +(z —zi+u~) ]
4v

(2.19)

After substituting the parabolic solution (2.17) into (2.19), a series of simple variable transformations are used to show
that the integral in two dimensions is a function only of the Peclet number and not of the variable x.

In order to study the effects of anisotropy we have followed Karma et al. and imposed a fourfold anisotropy in the
curvature of the form

f(8)= I+a(1—cos48),

where

(2.20)

cos8= 1
' 2 1/2

1+ dz

GfX

(2.21)

It is also possible to treat anisotropic effects arising from the attachment kinetics of the crystal-growth process but we
have not considered this type of anisotropy here.

The final form of the boundary integral equation to be studied is
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x
b, +do[1+a(8cos 0—8cos |))],. . . i- &&2

———f dx'exp[z(x') —z(x)]KO[(x —x') +[z(x)—z(x')] j'~
—ao

1+
t

(2.22)

Although Eq. (2.22) is a nonlinear nonlocal integral equation it does have the advantage of reducing a problem in two
space dimensions to one in which the shape of the interface determines the solution everywhere. The principal numerical
difficulties in solving (2.22) are the logarithmic singularity of the kernel as x ~x and that the problem is posed on the
infinite interval —ao &x & oo. In addition, numerical experience in the solution of the Hele-Shaw fingering problem in-
dicates that the curvature terms behave as singular perturbations so that high resolution wi11 be required in order to ob-
tain accurate solutions in the hmit do « 1. '

The treatment of these difficulties follows closely the work of Nash and Glicksman. We assume the solution is refiec-
tion symmetric about the z axis. This reduces the interval of integration to 0 & x & oo and Eq. (2.22) becomes

b, +do[i+a(8cos 8—Scos 8)]

d z

dx x' exp z x' —z x Ko x —x' + z x —z x'

+Kot(x+x') +[z(x)—z(x')] j'~ ) .

(2.23)

The integration domain is broken up into two parts: 0 & x' &xz and x~ &x' & ao. The region 0 & x' &xz is further sub-
divided into smaller regions with the solution computed in detail in this region. From thermodynamic considerations it
can be shown that as x'~ co, the solution z(x) approaches the Ivantsov parabola. Thus for x'&xz we assume the solu-
tion is of the form

z(x) =A~+i+8~+ ix +C~+ )x 2 (2.24)

For x~, large enough C~+i will approach —1/~ p;,~„, the Ivantsov solution. In general, the difference between the
computed and expected value of Cz+i serves as a measure of the error in truncating the region of detailed computation.
We select collocation points 0 «x1 «x2 « . «xN and subdivide the region 0 «x «xN into elements where the ith ele-
ment spans the region x; i & x; & x;+ i', the solution z (x) for the ith element is an interpolating parabola of the form

z, (x)=A;+8;x +C;x',
where the A;, 8;, and C; are chosen such that

z(x; i)=z; i, z(x;)=z;, z(xi+))=z;+i .

(2.25)

(2.26)

In other words the solution is spanned by local overlapping parabolas. Each point x; is an end point of the ( i —1)th and
(i+ l)th parabolas and lies in the interior of the ith parabola. We have not imposed any additional constraints such as
continuity of the first derivative. The integral in (2.23) over the region 0 & x & x~ becomes

N —1 z.
Fi(j)= $ f dx'exp[A;+8;x'+Cx' —z(xi)]

i=0

where

&((K I(xj —x') +[A;+8;x'+C~x' —z(x~}] j'
N —1 ]

+Ko((xj+x') +[A;+8;x'+C;x' —z(xj }] j' )= g (x;+i —x;) f GJ(P)dP,
i=Q

(2.27)

Gz ——exp[a;+b;P+c;P z(xj )] [Ko(I [xJ——Px;+& —(1—P)x;] + [a;+b;P+c;P z(x,. )] j }-
+Ko(I[xj+Px;+i+(1—P)x;] +[a;+b;P+c;P z(xj. )] j'~ )]— (2.28)

a;=A;+8;x;+C;x; =z(x;),
b; =(—2C;x;+8;)(x;+i—x;),
c; =C;(x;+i—x;). 2

(2.29)
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zg ]xx;+] ZjXj ]Xj+ ] ZI" + ]X] ]XI
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—x;)(x; ) —x;+)) (x;—x;,)(x; —x;+, ) (x;+,—x; ))(x;+)—x;) '

z; )(x;+x;+)) z(x; )+x;+))8=-
l (x

&

—x;)(x; i
—x i) (x —x &)(x —x +

z;+ ((x; )+x; )

(} (x;+)—x; ))(x;+)—x;)
(2.30)

C;= + +
(x; &

—x;)(x; i
—x;+&) (x;—x; i)(x; —x;+&) (x;+&—x; &)(x;+&—x;)

In order to match to the parabola at x =x~ (2.24} and to account properly for the end point at x=0 we apply the condi-
tions

P =~] &o=] Co=C

~N+1 ~N ~ ~N+ 1 ~N ~ CN +1

(2.31)

The integrands G,J.(p) are well behaved for i&j and i&j —1. The integrands for G;; and G;;+& have logarithmic
singularities at P=O and P= 1, respectively. Although these singularities are integrable they must be isolated so that
standard quadrature rules can be applied. We therefore rewrite these integrands as follows:

1 1 4q;p+ 9p;p+ 36
6;; = 6;; —1+p; +q; 2 ln (2.32}

4q; )
—9P; (+36

6 = 6, —1+p 1
—1+q.] 1

2 ln —1 + (2.33)

where

Pio=b

3b;
qto=ci+ + 4(xi+] —xi)

4

p}[] =6f +2c

q;~=c;+ ,'(b;+2c;)'+—4(x;+~—x;)~ .

The leading-order behavior of the integrand is now 0(P lnP) near the end points. This is sufficiently smooth so that
standard Gauss-Legendre quadrature may be applied.

For the remainder of the region of integration x~ & x & 00 the integral is given by

Fz(x )= f dx'exp[P~+&(x') z(xj)]—
X[Kp(I(x' —x) +[P~~,(x') —z(x )] I'~ )+Kp( Ij(x'+x) +[P~~)(x') z(x )] J'~ )] . — (2.34)

A logarithmic subtraction of the type described ab must be performed for the point xz
——x~. The remainder of the in-

tegral is computed by mapping the infinite domain xz & x & oo onto 0 & t & 1 by means of the algebraic transformation

+XN o

1 —t

The final form of equations (2.23) using the discretization described above is

6+do[1+a(8cos 8J.—Bcos 8J)] =F&(j)+F~j(), j=1,2, . . . , X2 4 2CJ.

[1+(Bj+2x)CJ) ] ~ (2.35)

where

1
cos8j =

[1+(8)+2xJCJ) ]'~

This equation is still invariant with respect to transla-
tions in z. Therefore, in order to render the solution
unique we impose the boundary condition Ap ——0. VAth

8;=0, Cg ——
—1

++Pe@]et

(2.36)

this constraint and in the absence of capillarity (dp ——0)
Eq. (2.35) has the discrete Ivantsov solution

2—&sz(x;)=
~ +Pec]et
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5=V1T(~p ] ) expvVp ],erfc(Mp ] )' (2.37)

The equations (2.35) with the associated boundary condi-
tions (2.31) now constitute a discrete nonlinear system for
the interface nodes (x;,z;) and are solved by Newton's
method. Numerical tests show that with a five-point
Gaussian quadrature used to compute the elements 6;J,
the Ivantsov solution (2.36) is reproduced to eight signifi-
cant digits over the entire range 9~ x g ~.

Note that in our formulation we do not constrain the
slope at the tip to vanish. The diffusional kinetics which
govern dendritic growth would favor solutions that are
smooth at the origin. For this class of solutions the slope
at the tip [from (2.31) the value of 80] should vanish.
Numerical work on the geometrical and boundary layer
models have shown that the equivalent Ivantsov solution
in both models does satisfy a smoothness criterion of this
type but that solutions in the presence of capillarity in
general do not; in these local models the condition that
the solution remain smooth at the tip of the needle was sa-
tisfied only at selected values of the control parameter do.
The existence of cusped needle crystals, while physically
unlikely, would necessitate a modification of our equa-
tions near the tip. In addition, we have not examined the
mathematical issues of existence associated with such
weak solutions.

In our units the parameter do is scaled by the diffusion

length. Thus the smoothness criterion is also a velocity
selection criterion since 10 is linearly proportional to the
velocity. This suggests a numerical strategy for locating
smooth solutions. %'e begin by selecting a Peclet number
and generating the corresponding Ivantsov parabola. As
the parameter do is increased the value of the slope at the
tip (80) is monitored. In general, 80 will not vanish, but
if steady states in the presence of surface tension exist
there will be a set of values do at which 80 ——0. Variants
of this technique have been employed in the study of the
geometrical and boundary layer models and by Vanden-
Broeck' in his study of Hele-Shaw fingering.

Unless the slope at the tip vanishes it is, strictly speak-
ing, undefined, but by symmetrizing about the z axis as
we have done it can be given meaning as a one-sided limit.
In effect we are computing solutions which are singular in
that they have a cusp at the tip. As a result it is difficult
to get estimates for the rate of convergence of the numeri-
cal method proposed above, and we have relied instead on
repeated runs where the number of points N and the cut-
off value x. are varied.

III. RESULTS

In order to investigate the behavior of the slope at the
tip for do&0, we calculated solutions for Mp ],——0.01,
0.1, 1, for values of do in the range 0 & do &2 in the ab-
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FIG. 1. A plot of the slope at the tip vs the capillarity parameter do for {a) Mp- &„=1' (b) ~p~~~=0. l (c) ~p~~~t —O.ol ~ (d)~p' ~= 1 0 Q do Q 1.6. Anisotropy parameter a=0. Note that the slope is 0 only at do ——0, corresponding to the Ivantsov solution.
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sence of anisotropy (a =0). At small values of dp, we em-

ployed a stretching of the variable x so that more points
are concentrated at the tip. The stretching is of the form

I I I I I I I I I I I I I I 1

x =(~I)'~Io(I)+ 'x—.„soIImRx

where

Sip = T' —i tanh[ 4 (i —X/3)]

Spi = -,
' + —,tanh[ ~ (i —N/3)]

(3.1)
LLJ
CL
O
(f) )00

As do~0 the correction due to curvature occurs over in-

creasingly smaller length scales and greater resolution at
the tip is required in order to accurately calculate the
slopes. The largest resolution attainable in this study with
the available hardware (a Digital Equipment Corporation
VAX 11/750 computer) was %=100 points, and this
places a limit on the smallest value of dp for which accu-
rate results have been obtained.

In Fig. 1 we plot the slope measured at the tip versus
the surface tension parameter do for Mp I i=0.01 0.1 1,
for values of dp indicated in the figure caption. The
curves all emanate from the origin corresponding to the
fact that the Ivantsov solution (dp ——0) has a vanishing
slope at the tip.

For Mp I„——1 oscillation of the slope through zero was
observed for values of do&0.002. However, the magni-
tude (10 ) of the slope in this region is of the same order
as the numerical noise and the details of the oscillation
could not be reproduced reliably as the resolution was
changed. The oscillation is therefore attributable to nu-

merical inaccuracy rather than the possible existence of a
steady state.

Note that for do « 1, as shown in Fig. 1 for Mp I i= 1

the slope behaves in an essentially singular fashion as dp
approaches zero. In Fig. 2 we have plotted the logarithm
of the absolute value of the sloPe versus dp for Mp I„——1

on a log-log plot. The results are consistent with an
asymptotic behavior of the form

to-'
i0-4

I I I I I I I II
to'
d0

FIG. 2. A log-log plot of the logarithm of the slope for case
(b) of Fig. 1. The approximate slope of the curve is —0.5 indi-

cating that for sma11 values of do the slope decreases as
exp[ —c /(dp }'~],where C is a constant.

given by (2.20). The results are shown for Mp I,——1,
a =0.225. In contrast to the isotropic case a =0 the slope
increases for small values of do then decreases to cross
zero at do=0.0170. This indicates the presence of a non-
trivial steady needle crystal. The value of dp at which the
slope vanishes was checked by running at different resolu-
tions, and it was confirmed that the intersection point was
insensitive to changes in the number of points used and
the numerical parameters M and x,„[cf.(3.1)]. The re-
sulting new steady state is shown in Fig. 4 along with the
Ivantsov parabola corresponding to Mp ]„——1. The an-
isotropic surface energy increases the curvature near the
tip relative to the Ivantsov solution. In Fig. 5 we have
plotted the relative difference between the anisotropy and
the Ivantsov solution

5-exp[ —c/(dp)'~ ], dp &&1 (3.2)

where S is the slope at the tip and e is a constant. This
behavior is in line with the predictions of Caroli et al. , '

who employed singular perturbation methods for Eq.
(2.19) in the limit b,~ 1 (Mp I„~ac ). A similar
behavior of the slope has been derived by Kruskal and
Segur and by Langer in the context of the boundary layer
model. ' The implication of (3.2) is that there are no
steady states in the limit do~0 with o;=0. The numeri-
cal approximations become very reliable for moderate
values of dp and the behavior of the slope in this regime
implies that no steady states exist in the presence of iso-
tropic surface energy over a range of undercoolings and
surface energies do.

It is, of course, still possible that nontrivial steady states
exist for values of the Peclet number and dp smaller than
those considered here. Further work with increased reso-
lution is necessary to resolve this issue.

We next consider the variation of the slope in the pres-
ence of anisotropy. In Fig. 3 we have again plotted the
slope versus dp for the fourfold anisotropic surface energy

0-
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0 0.0~ 0.02 0.05 0.04 0.05 0.06 0.07 0.08

FIG. 3. A plot of the slope at the tip vs do for Vp. &„——1,
a=0.227. Note that the slope is 0 at do ——0 (the Ivantsov solu-
tion) and at do ——0.0169, indicating the existence of a noniso-
thermal steady state in the presence of anisotropic capillarity.



33 SELECTION OF ST&Q3Y STATES IN THE T%'0-. . .

z
-Q 04—

-0.02—

z

-0.04—

-0.06—
-0.06—

Q.lo 0.20
X

-0.0s
0.40 0 Q.io 0.20

X
0.30 Q.40

FIG. 4. A plot of the interface of the steady state corresponding to (a) Mp' ]„=1,a=0.2247 and (b) Mp~&„——1, a=0.0665. The
vantsov parabola z = —x~/ZrVp &„ is plotted for comparison. Note that the effect of the anisotropy is to enhance the curvature at

the tip. Note also that as the anisotropy is lowered the steady state approaches the Ivantsov solution.

z (x)—( —x /2.W'p~(et)

( —x /2. rVp i„)
(3.3)

as a function of x. The effect of the anisotropic surface
energy is seen to be confined to a thin layer about the tip.
This is also seen in Fig. 6, where we plot the temperature
as a function of x for the case considered above. The
temperature is lowered with respect to the Ivantsov value

by the curvature near the tip and then rapidly recovers to
the Ivantsov value as x.increases. Once the steady solu-
tion is computed the representation (2.12) may be used to
determine the temperature both inside and outside the
solid. In Fig. 7 we have plotted the isotherms for
Mp &,= 1, a=0.225. For comparison the Ivantsov solu-
tion, while possessing a heat boundary layer in the region
exterior to the tip, is isothermal in the region interior to
the solid-liquid interface. ' The solution in the presence
of anisotropy is not isothermal in the solid but the varia-
tion in temperature is small for Mp;,~„——1. In Fig. 7(b)
we have plotted the isotherms for a small region near the
tip of the needle. The numerical solution indicates that
while the temperature drop recovers quickly to the

doMv
d =

2D
(3.4)

where dosr y/L is the i——ntrinsic surface energy length of
the material. Thus do can also be interpreted as a dimen-
sionless velocity. Similarly in our units the radius of cur-
vature at the tip is also scaled by the diffusion length.
The dimensionless radius of curvature p is equal to —2C,
from (2.25) and is related to the unscaled radius of curva-
ture p' by

Ivantsov value along the interface, recovery to the
Ivantsov value in the core occurs at greater distances
along the vertical.

We have also studied the variation of interface velocity
and radius of curvature at the tip as a function of Peclet
number. Our data covers the range 0.01&Mp &„(1. As
discussed in Sec. II, the value of do at which nontrivial
steady states occur is in fact a linear measure of the velo-
city since it is scaled by the diffusion length. For a given
material
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FIG. 5. A plot of the relative difference between the nonisothermal steady state and the lvantsov needle [z(xl —zt„,„, „]/zt„,„&„
for (a) ~p~)~ ——1, a =0.2247 and (b) ~p )~

——1, o,'=0.066S.
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l ( ( ings. In Fig. 8 we have plotted the dimensionless velocity
as a function of undercooling on a linear and logarithmic
scale for various values of the anisotropy parameter a.
As the undercooling decreases the velocity exhibits
power-law behavior. ' The value of the exponent is in-
dependent of the anisotropy as the curves become parallel
in this region. Scaling behavior is also plainly evident in
Fig. 9 where the dimensionless radius of curvature is plot-
ted with respect to the velocity. The value of the slope for
all values of a considered is very close to —,, indicating
that

X
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or

p=F(a)v'~

p'=G(a)v

(3.5)

FIG. 6. A plot of the interfacial temperatures as a function

of interface position x for Mp. ]„——1, a=0.2247. The effect of
the capillarity is to lower the temperature in a narrow region

about the tip. At larger distances the temperature asymptotes to
the Ivantsov value b =0.7578.

UPP=
2D

Of physical and experimental interest is the behavior of
the velocity and radius of curvature at small undercool-

Thus, as the velocity increases the dendrite tip becomes
sharper.

Pelce and Pomeau have shown that (3.5) is essentially a
consequence of the existence of a nontrivial steady state at
low Peclet numbers. In our work we have taken as our
unit of length the diffusion length I. This is a rather in-
convenient scaling at low Mp ~„since / must diverge in
this limit. Following Pelce and Pomeau, if we scale all
lengths with respect to the radius of curvature of the
Ivantsov parabola pl, then Eq. (2.22) becomes

4fp

pl I

1+

d2z

8x
3~z

———mp~t„ f" dx'exp{mp~tet[z(x') —z(x)])Ico(a@~tet{(x'—x) +[z(x')—z(x)] )' ) .

(3.6)

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I t I I I t I5
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I 5
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FIG. 7. A contour plot of the isotherms for the steady state corresponding to Mp. ]„——1, a=0.2247. (a) The exterior of the inter-
face. (b) A magnification of the region near the tip. The asterisks represent the collocation points used to compute the interface. The
jaggedness of some of the contours in (1) is due to imperfections in the contouring algorithm.
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Subtracting from both sides of the Ivantsov solution and evaluating the special functions in the limit Mp 1„~0yields

the result

dZ1+

I /2
1PI ~, X —X+ZX —ZX

(3.7)

Thus in this limit, if a solution to Eq. (3.6) exists,

pgU =COQst,2

and from the Ivantsov relation (2.18)

6=v w(Mps ]eI)'~ exP(Mpcci t)erfc(Mp 1
I)'

it is seen that for Mp I„(&1,

U =Eh

(3.8)

(3.9)

where the constant of proportionality F. depends on the
material properties but not on b, . An examination of the
slope in Fig. 8 shows that the tip radii calculated from
(2.22) are consistent with (3.8).

In deriving (3.7) and (3.8) we have used the Ivantsov ra-
dius as a unit of length, but the scaling relations will ap-
ply equally well to the full nonlinear theory (2.22) at low

Ype I I provided that there is to first order a linear rela-
tionship between the true radius of curvature and pl.
That this is the case can be seen from Fig. 10, where the
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FIG. 10. A plot of the dimensionless radius of curvature p'U/2D vs the dimensionless Ivantsov radius of curvature pqu/2D for
values of the anisotropy parameter as given in the caption of Fig. 8. For comparison we have plotted the curve p=pi.
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dimensionless radius of curvature (effectively the tip
Peclet number) is plotted relative to the dimensionless ra-
dius of curvature of the Ivantsov solution (which is just
the Peclet number Mp ],).

IV. CONCLUSION

%e have used boundary integral methods to derive a
nonlinear integral equation for the shape of a needle crys-
tal advancing steadily into an undercooled melt. The
most important result of this study is a verification that
the selection of steady states is a consequence of a non-
linear solvability criterion as discussed by Kessler et al. '

and Ben Jacob et a/. This conclusion hinges on the as-
sumption that these new states are stable. The examina-
tion of the stability of these states is currently in progress.

Our study suggests in addition that anisotropy is crucial
to the existence of needled crystals. Numerical simula-
tions of geonmtrical models of interface growth have em-

phasized the importance of anisotropy in stabilizing the
tip of the advancing dendrite. ' Numerical and analytical
investigations of the boundary layer model further indi-
cate that no steady solutions (needle crystals) are possible
unless the surface energy is assumed to be anisotropic.
The results of the boundary layer model are presumably
only quantitatively valid for large Peclet numbers but the
numerical results reported here imply that the boundary
layer model may be qualitatively accurate even at
moderately small values of ~p ]!.We cannot, however,

rule out the possibility of the existence of steady states
with isotropic surface energy at still lower values of
w+pe&~et but this is unlikely. Kessler et al. ' have recently
performed an analysis of (2.22) in the limit A p;,)„~0.
Their conclusion is again that steady solutions do not ex-
ist in the presence of isotropic surface energy.

The formulation described here is easily generalizable to
the case of axisymmetric needle crystals. It is also
straightforward to derive an integral equation when the
diffusion constants are unequal. The main modification
of (2.22) is the addition of an appropriate distribution of
heat dipoles. In this way it is possible to calculate needle
crystals in realistic geometries and growth conditions and
ultimately to make contact with the recent experiments of
Glicksman, which measure the anisotropic corrections
to the surface energy.
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