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of the logistic model
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The statistical dynamics of the response of the logistic map, x„+&
——rx„{1 —x„),towards additively

and multiplicatively coupled fluctuating forces is studied analytically and numerically in quantita-
tive detail in the range of control parameter r where the unforced system shows the first transcriti-
cal and the first pitchfork bifurcation.

I. INTRODUCTION x„+, rx„(1——x„) (2.1)

Nonlinear dissipative systems that undergo a transition
under quasistatic variation of the driving stress can show
peculiar response behavior when also time-dependent
forces are applied. Hydrodynamic and laser instabilities,
bifurcations in "simple" nonlinear (model) systems, and
discrete maps that are perturbed by time-dependent forces
coupling additively or multiplicatively to a state variable
of the system in question are examples.

Studies' of the effect of "time"-dependent forcing on
systems with discrete dynamics seem to have been concen-
trated on uncorrelated forces coupled to the logistic map
(see, however, Refs. 8—11 for other forced discrete sys-
tems and Ref. 12 for time periodic forcing of the logistic
map). This research is mostly aimed at understanding
within qualitative and sometimes semiquantitative terms
the influence of noise on the period-doubling-bifurcation
sequence' in the control parameter range beyond the first
simple bifurcations.

The effects of additive or multiplicative random forcing
on the very first bifurcations of the logistic map, on the
other hand, have not yet been investigated properly. Since
an incorrect statement' about the equivalence of additive
and multiplicative noise might have misled people into
believing that the response at small control parameters to
noise is well understood and uninteresting, we undertook
the investigation reported here.

We shall present detailed quantitative, analytical, and
numerical results on the statistical dynamics of the logis-
tic maps response to additively or multiplicatively cou-
pled time-dependent forces that fluctuate according to
various prescribed statistical properties.

In Sec. II we give the basic formulas for a statistical
description. Section III contains analytical and numerical
results on the behavior of the map under additive and
multiplicative forcing in the control parameter range r & 3
of the first transcritical bifurcation. In Sec. IV we investi-
gate analytically and numerically the first noisy pitchfork
bifurcation. In Sec. V we summarize our main results.

and unit covariance

(2.2b)

in a range of the control parameter r where the first bifur-
cations of the unperturbed system are located as shown in
Fig. 1. The forces couple to the variable x either multipli-
catively,

xn+1 rnxn—(1 xn) ~

via a fluctuating control parameter

r„=r(1+b,g„),
or additively,

x„+) rx„(1—x——„)+b g„.

(2.3a)

(2.3b)

(2.4)

Here b measures the noise intensity or, alternatively, the
coupling strength between g and x.

A. Averages

The statistical properties of the noise are prescribed by
the path probability density H[g] for a particular se-

~ ~ ~ 0 ~ I I ~ ~ I IIII ~ ~ I I ~ I ~ I ~ ~ I & I I ~ ~ I ~ ~
1

towards statistically stationary stochastic forces g„with
vanishing mean

(2.2a)

II. THE SYSTEM

%e shall investigate the statistical dynamics of the
response of the logistic map

FIG. 1. Bifurcation diagram of the logistic map (2.1).
Hatched area shows the basin of attraction of the fixed point at
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quence [g]=. . .,g„,,g„,. . . of forces. Thus we use en-

semble averages over noise realizations [g] weighted by

&[0]:
&~[g]&= g J dg. +[(]&[(] (2.5)

An example of a function F[g] depending on the noise is

x„+i which is determined by the history of the forcing up
to "time" n and by the initial value x„,at time no.

Therefore, noise averages (2.5) of functions of x still de-

pend on the starting value x„,. However, if no lies in the

distant "past, " no~ —oo, and if the noise amplitudes are
sufficiently large to overcome the "potential barriers" that
restrict the dynamics of the unforced system to a subset of
its phase space (e.g., to a period-2 cycle), then the forced
system will have "forgotten" its initial condition x „at
any finite time n. We shall discuss these points further
later on where we compare our analytical results for en-
semble averages with numerical results obtained as time
averages and, in addition, for some cases, as ensemble
averages.

B. Some general statistical properties

Before we investigate the statistical dynamics of the
forced map in detail we want to mention some general

properties. First of all, any average evaluated for system
(2.3) or (2.4) is an even function of b, if, as in our case, the
forces are distributed symmetrically around zero. This re-
sult holds for arbitrary statistical dynamics of the forcing
since only the combination hg„enters the equations of
motion (2.3) and (2.4). This property also implies that any
average evaluated for small noise amplitudes to second or-
der in b, depends at most on two-point correlations of the
random forces. Higher cumulants of g enter only via
higher orders 6 "for k & 1.

Thus the statistical dynamics of the response of the
logistic map (2.1) towards small-amplitude noise is up to
order b, universal in the sense that it is independent of
the detailed statistics of the forcing (i.e., higher-order cu-
mulants) and depends only on its two-point correlation

(2.6)

This dependence, however, is in general different for mul-
tiplicative and additive forcing.

Other general results are relations between moments
and correlation functions of x with itself or with g that
may be derived from the equations of motion and that are
particularly simple as long as time translational invari-
ance is not broken. An example is the relation

r —1 b, & g„x„(1—x„)& (multiplicative forcing)
N

0 (additive forcing)

(2.7a)

(2.7b)

which follows from averaging the equation of motion
with multiplicative forcing (2.7a) or with additive forcing
(2.7b) if time translational invariance, &x„+,& = &x„&,
holds. (That, by the way, is violated if x„always diverges
for large enough n as in the case of additive forcing at
r= 1.)

From the above relation (2.7) one can draw some in-
teresting conclusions for &x„& and &(5x„)&, the mean
square of the fluctuation

5x„=x„-&x„&. (2.8)

In order to derive them simultaneously for both forcing
types let us assume for the moment that the g„in the
multiplicatively forced system are uncorrelated (the addi-
tive forces need not be specified for the following discus-
sion). Then the last term in (2.7) vanishes also in this
case, & g„x„(1—x„)& =0, since g„and x„are
uncorrelated —x„depends only on (J. with j & n and one-
obtains in both cases

&(5x„)'&= &x„&
r (2.9)

Thus if &x„&=0, &(5x„)& =0 also. Furthermore,
& (5x„)& being positive semidefinite enforces at r =1 that
&x„&=0=&(5x„)& (provided that time translational in-
variance holds). For r & 1 one infers 0« x„&& 1 —1/r so
that forcing suppresses the mean of x„with respect to the

I

fixed point x'=1 —1/r of the unforced system. Finally,
for r & 1 one finds 1 —1/r «x„&&0 so that &x„&is ei-
ther zero or negative.

III. BEHAVIOR NEAR THE FIRST INSTABILITY

In the absence of noise, b =0, the system shows a
transcritical bifurcation at the threshold value
r =r, (b, =0)=1 of the control parameter. The fixed
point x'=0 (x'=1—1/r) being stable (unstable) below
threshold becomes unstable (stable) above.

A. Additive versus multiplicative noise

From the equations of motion (2.3) and (2.4) for the
perturbed systems it is clear that x'=0 remains a fixed
point only for multiplicative forcing. Only in this case
will there be as a function of control parameter r a sharp
bifurcation from x'=0 to a time-dependent orbit with
nonvanishing amplitudes x„.

For additive forcing one might expect at first sight the
order parameter (&x„&)' to show a rounded, imperfect
bifurcation with a gradual growth as r increases towards
r =1. However, the system's response to additive pertur-
bations near the static, 5=0, instability at r =1 is more
dramatic (ef. Sec. III D). Right at r =1, for example, any
additive noise, Ag„,however small b, may be, drives the
system towards —00, independent of its initial condition.
The reason, shown in Fig. 1, is that the basin of attraction
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of —Do (marked by the hatched area) touches the fixed
point shown by the solid line just at r= 1. Furthermore,
additive noise will eventually kick the system into the
basin of attraction of —ao also for r&1 unless the size of
the forcing is specifically bounded from above and below
with the restrictions becoming more and more severe as
r~ 1 Thus additive forcing changes the static, b, =O, bi-
furcation structure of the system completely while multi-
plicative noise does not change the bifurcation behavior of
the system near r = 1 qualitatively.

8. Stability threshold of x =0 for parametric forcing

The fixed point x'=0 of the parametrically forced sys-
tem (2.3) is stable against perturbations [g] if an infini-
tesimal initial deviation xo decays to zero in the long time
limit, i.e., if

P(g) = —,
' [6(f—1)+5(/+1)], (3.5a)

or which are distributed with equal weight over a finite
interval,

universal stabilization of the basic state was found' for
the parametrically modulated, damped Duffing oscillator,
i.e., a continuous system showing a pitchfork bifurcation
for static restoring forces. Also, there the shift of the sta-
bility threshold induced by modulation with small ampli-
tudes grows proportional to the mean square of the
forces "'

(4) Large forcing amplitudes can cause stabilization
[r, (h) ~ 1] or destabilization [r,(h) & 1] of the fixed point
x' =0 depending on 6 and the form of the stationary dis-
tribution P( g) of the amplitudes. Consider as two
representative examples modulation with forces that take
on only two values,

Bx~ = »m II &I 1+~4.
I

~

N~re Bxp ~0 —0 N~eo

At the stability threshold r, (b, ) defined by the equality in
(3.1) one has

1 if I(I &v3
P 0 otherwise.

The resulting stability thresholds

(3.5b)

N —1
' 1/N

1= lim g r, (b )
I
1+kg„IN-+ ao „O

or, equivalently,

r, (b, ) = exp( —
& ln

I
1+6,g I

) ) .

(3.2) and

(3.3)

(3.6a)

(3.6b)
e 1 —Q

1+~

The average in (3.3) comes up as a time average, but since
the forcing is ergodic we have

N —1

I +~4. I
=& lnl 1+

N-+ ce n=0

and statistical stationarity allows one to drop the time in-
dex on the right side.

Some remarks are in order to elucidate the richness of
the formula (3.3) for the stability threshold.

(1) It holds for arbitrary statistical dynamics of the
forcing [with the appropriate interpretation of the aver-

age, formula (3.3) also applies to periodic forcing'i'4].
(2) The threshold r, (h) does not depend on the correla-

tion properties of the forcing. To evaluate (3.3) one needs
to know only the stationary distribution P(g) of the am-
plitudes of [g]. Thus parametric inodulation with period-
ic or quasiperiodic forces having the same distribution of
amphtudes as a stochastic series of forces entails the same
stability threshold r, (h ) of x' =0. It is amusing to check
this result on a computer, e.g., with uncorrelated se-
quences of /=+1 (dichotomous noise} versus determinis-
tic sequences of various periodicity lengths.

{3) Any forcing whatsoever with sma11 amplitudes,
b «1, causes stabilization of the trivial state x =0 since

050.0 0.5 1.0 ~
1.5

shown in Fig. 2 by curves a and b, respectively, lie partly
above and partly below r, (b, =0).

The stability threshold (3.6a} diverges at
I
6

I

= l.
With g„=+1the probability that r„=r(1+bed„}ap-
proaches zero for

I
b,

I
~1 is just —,', and so x is (eventual-

ly} forced for any value of r towards the attractor x' =0.
That holds, by the way, for any starting value xo. So for
b, -1 this kind of forcing destroys any dynamics whatso-
ever of the logistic map. For forces that are distributed
according to (3.5b), on the other hand, the probability of
finding g in an (infinitesimal) interval dg around 1/b
such that r(1+kg) is (infinitesimally) close to zero is too
small [being only -dg/(rh)] to force x towards x'=0

r, (b, )=1+—,b, '+0(b, ') (3.4)

is bigger than the critical value, r, (b, =O)=1, in the ab-
sence of forcing. Moreover, the threshold shift,
r, (b, ) —r, (5=0), of the stability boundary of x'=0 in-
duced by parametric modulation grows proportional to
the mean square of the forcing amplitudes. The same

FIG. 2. Stability boundaries (3.6a) and (3.6b) of x =0 in the
presence of multiplicative forcing. Curve a is for forces that
take only values +1. For curve b the forces are distributed ac-
cording to (3.5b) with equal weight over a finite interval. The
fixed point x =0 is stable for all r, h below the respective
curves.
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for large values of r. Thus the stability threshold (3.6b)
does not diverge.

%e should like to mention that the stability curve of
the x=0 state of a Dufflng oscillator subjected to a
(sinusoidal) parametric modulation is qualitatively simi-
lar' to curve a.

(5) The stability threshold r, (b, ) of x'=0 for the gen-
eralized version, x„+i——x„g(x„;r„),of the map (2.1) and
(2.3) is given by the solution of ( ln ~g(0;r)

~

&=0 with
r =r, (b, )(1+bed).

(6} The "critical slowing down" behavior of the relaxa-
tion towards the stable fixed point x' =0 can be obtained
for r=r, (b, )(1—e) shortly below the stability threshold

r, (b, ) from the hnearized version of the map (2.3) togeth-
er with (3.2). One finds that the time n during which an
initial (infinitesimal) deviation decreases by a factor e
does not depend on the forcing,

0.2

0.1

0.0

r, {h=OI

1,0 1,1

(;{~I

1.2 1.3 1.4
r

FIG. 3. Bifurcation diagram. Thick solid lines are for
parametric noise with a white two-point correlation spectrum
and the box-shaped stationary distribution (3.5b} with 5=0.5.
Thin solid lines denote the unforced system, 5=0. The stability
thresholds r, (h =0.5}= 1.188 (3.6b) and r, (h =0)= 1 are
marked by arrows.

n =[—ln(1 —e)] '=e (3.7)
(3.8)

C. Statistical dynamics for small multiplicative noise
above threshold

into the equation of motion (2.3) one obtains a sequence of
linear, inhomogeneous difference equations. Their solu-
tions are

In this subsection we discuss the statistical behavior of
the logistic map with random parametric forcing above
threshold, i.e., for combinations of the parameters r and 5
such that r~r, (h}. Then the fixed point x"=0 is no
longer stable according to (3.1)—(3.3).

1. Bifurcation behauior

x„' '=x'=1 —1/r,
n —1x„"'=x'g (2—r)'g„),
i=0

n —1

x„' '= g (2—r)" ' 'x;"'[(2—r)g; rx;"'] . —
i=0

(3.9a)

(3.9b)

(3.9c)

From some (unsystematic} numerical tests we found
that x„tends to diverge quite rapidly when 5 is large even
when r is supercritical by only a small margin. Also,
when the gs are bounded,

~ g„~(g,„,as in (3.5) the tra-
jectory escapes to —oo whenever the supercritical control
parameter exceeds

4/(1+bed,

„).Then the peak height
(1+kg„)r/4of the parabola (2.3a) exceeds 1 whenever g„
is close to g,„.Thus there is a good chance that x„+i ) 1

with a subsequent attraction towards —m.
For small 5, on the other hand, and not too large a dis-

tance r —r, (h} above threshold, the system responds to
the forcing with finite, statistically stationary fluctua-
tions. We are interested in the statistical properties of the
latter. As an example of such a property we show with
thick solid lines in Fig. 3 the numerically determined
behavior of the order parameter ((x„&)'~ and of the
mean (x„&.The stationary distribution of the noise had
the box shape (3.5b) with b, =0.5 and the two-point corre-
lation spectrum was white, (g„g & =5„.The stability
threshold (3.6b) of the x' =0 fixed point is for this noise
r, (b, =0.5)=1.188 while the small-5 expansion up to
second order (3.4) gives 1.125. Figure 3 is quite represen-
tative since other types of noise generate for small 5 close
to threshold very similar behavior of the first moments
(x„&and (x„'&.

Here we have used the fixed point x' = 1 —1/r of the un-
perturbed system as the initial value, i.e., xo ——xo ' ——x',
so that xI)

' ——0 for k p 0. This choice is not necessary but
analytically convenient since it eliminates those transients
that would otherwise appear in (3.9) and that decay any-
way in the long time limit. The factor (2—r) in (3.9) is
the derivative ax(0+)i /ax(') of the unpe~ur~ map at
x'.

3. Stationary mean (x(h) &

From (3.9) one finds that (x„"'&=0 in accordance with
the symmetry properties discussed in Sec. IIB and that
(x„(b,) & is determined up to second order in b by sums
containing only the two-point correlation (2.6) of the
noise. For an arbitrary spectrum of this correlation func-
tion the formulas for most averages are rather involved.
So for the sake of greater transparency we restrict the fol-
lowing discussion to forces with a Brownian two-point
correlation spectrum, ' i.e.,

(3.10)

with the white-noise case being included in the limit
y~ ao. Then one finds for n ~ oo the stationary mean

2. Small-5 perturbation theory

To elucidate this behavior analytically we shall use in
the following a small-5 expansion. Inserting the decom-
position of the fluctuating orbit above threshold,

(x(b, ) &
=x' — [1—(r —1)M]+O(b, )

r(3 —r)

with

(r —2)eM=
1+(r 2)e—

(3.11a}

(3.11b)
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a(x(a))
dr

=1—b, 4[1—iM(r=l)]+O(h ), (3.12)

being determined by the system's "memory" of previously
applied forces. M vanishes for white-noise forcing,
y —+00, where the position x„attime n and the forces

J at earlier times n —j are uncorrelated. The same
holds true with finite y for r =2 where M (3.11b) changes
its sign. This interesting point will be investigated further
below. The significance of the factor (3—r) appearing in
the denominator of (3.11a), which thus restricts the radius
of convergence of the expansion (3.8} to values r &3, will
be discussed in Sec. IV.

The mean (3.11) of the fluctuating trajectory above
threshold lies for all r & 3 below the fixed point of the un-
forced map as discussed in Sec. II B (see also Fig. 3). As
an aside we mention that (x(h)) is bigger (smaller) for
Brownian noise than for white noise if i )2 (r & 2}.

The small-6 expression (3.11) vanishes at r=r, (b, )
= 1+6 /2, i.e., it is consistent with the stability threshold
of the x =0 fixed point derived in Section III B. The ini-
tial slope si(b, ) with which (x(b, ) ) grows above r„

ai(5)= —,4 +O(b, ),
a2(h)=1 ——,b +O(b, ) .

To derive (3.16) we had to evaluate the coefficient

(3.17a)

(3.17b)

1 8 (x(b, ))
Qr 2

= —1+—', b +O(d ) (3.18)

([5x(h)] ) =[r—r, (b, )]b, (5)

+[r r, (b, )] bi—(6)+O((r r, ) ), —

bi(h)= —,
'

b, +O(b ),
bi(b, )= ——,b +O(b, ) .

(3.19)

(3.20a)

(3.20b)

of the next term in (3.13). Note that with increasing noise
the growth behavior of the order parameter [(x (b, ) ) ]'~
above threshold changes from -(r r, ) a—t b =0 to
—(r r, }'~ at—finite b (cf. Fig. 3).

From the relation (2.9) one finds the supercritical
growth of the mean-squared fluctuation to be

(&) & =[ —,(&)] (&)+O(( —,)') . (3.13)

is smaller than the slope [sl(b, =0)=1] of the fixed point
of the unforced system at r, (b =0). That can also be seen
in Fig. 3. So in the immediate vicinity of r, (b ) one has

5. Stationary distribution 8'(x )

W(x ) = lim ( 5(x —x„}) . (3.21)

The stationary distribution of the fluctuating positions
x„is given by the average

4. Order parameter and mean square offlucruau'ons

For the stationary square of the order parameter one
finds

(x (Q)) =(x') —Q
z [1+2(2—r)M]+O(& )

r (3 r)—
(3.14)

and thus the mean-squared fluctuation is given by

([5x(g)]2)=&i [1—2M]+O(b ) .
r (3 r)— (3.15)

(x (5))=[r—r, (b, )]ai(b)

+[r—r, (b, )] a2(b, )+O((r r, ) }—(3.16)

The square brackets in (3.14) and (3.15) are positive for
1&r &3 and so the order parameter ((x ))' is always
below the fixed point x' of the unforced map (see also
Fig. 3). The memory term M enhances the fluctuations
(3.15) for r &2 and depresses them for r ) 2 in compar-
ison with white noise.

To determine the growth behavior of the order parame-
ter and of the mean fluctuation shortly above threshold
we shall restrict ourselves to white noise. In that case the
relation (2.7), (x (b, ))=(x(b, ))(r —1)/r, is most con-
veniently used together with the form (3.13) to obtain

To evaluate it one can use a cumulant expansion. To
second order in b, the cumulants of x„aredetermined bgx' and the statistical properties of x„'"(3.9b) and x„' '

(3.9c). The latter are given by sums over n fluctuating
quantities multiplied with weights (2 —r)J. Since for

~

2 r~ =1 the—above fluctuations enter the sums with
ual ~eight one can expect for ii Oo that

as well as x„' ' are roughly Gaussian distributed indepen-
dently of the forcing statistics. Hence truncating the cu-
mulant expansion after the second cumulant suggests it-
self as a reasonable approximation.

Doing that one obtains for W(x) a Gaussian distribu-
tion centered at (x ) (3.11) with a variance ((5x) ) given
by (3.15) and (3.19). Therefore, W(x) becomes a 5 func-
tion for 6~0 and, for finite b„when r approaches the
threshold r, (A) from above. For control parameters r
such that

i
r —2

~

)0.7 the Gaussian approximation to
W(x) agrees very well with x histograms that we evaluat-
ed numerically for various stationary distributions P(g) of
the noise.

However, as
~

r —2
~

decreases, the initial Gaussian dis-
tribution W(x) changes if P(g) is not Gaussian. The
reason is obvious from (3.9). For example, right at r=2
the actual value of x„'"at time n no longer depends on the
history of the previously applied forces (inemory effects
vanish as discussed already in Sec. IIIB3) but only on

i. Then the statistics of x"' and g are the same since

with the growth coefficients
I1) for r=2. (3.22)
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2 2 1W(x)= P——x ——
2

(3.23)

A similar formula was found by Frazer et al. at the first
superstability point of the cubic map in the presence of
additive white noise by using different methods. We have
numerically confirmed the validity of (3.23) at r =2 for
small 5 with various stationary force distributions.

To summarize, W(x) is approximately Gaussian for
any stationary distribution of small amplitude noise if

~

2—r
~

is close to 1. For r =2, however, x is distributed
like g. In between there ia a gradual change from one
form to the other if P(g) is non-Gaussian.

Therefore, one expects for small (5 and r =2, where ac-
cording to (3.9) x„=(1+6,g„()/2,the stationary distri-
bution of x to be identical (up to scale factors) to that of

of the unforced map. Then the equation of motion (2.4) is
decomposed up to second order in b, into the system

(1) (1)xn+(=qxn +En i

(2) (2) (&) 2x~+i =qx~ —r(x~ )

with

(3.27a)

(3.27b)

r for 0&r &1
2 r for —1&r &3. (3.27c)

Its solution is

n —].

1. Small-6 expansion

In close analogy to a previous subsection we perform a
small-b, expansion (3.8) of the orbit x„(A), this time
around the stable fixed point

r

0 for 0&r &1
X

1 —1/r for 1&r &3 (3.26)

6. Taboo-point correlations

The stationary two-point correlation function of the
fiuctuations

xn = gqkn —(-(i
n —1

(i) ~ n —1 —
(( (1()2x„——r~q i

i=a

(3.28a)

(3.28b)

C(n) = (5xk+„5x(,)

is given up to second order in b, by

C(n ) =(2—r )"C(0)+N(n )

(3.24)

(3.25a)

2. Stationary averages

For our representative noise with a Brownian two-point
correlation spectrum one finds for the stationary mean

with n &0 being implied. Here C(0) denotes the equal-
time correlation (3.15). The term

—PN 2 II

N(n)=h (x")
1+2(r—2) coshy+(r —2)

(3.25b)

represents a "memory" effect of the forcing on the corre-
lations of the fluctuations (see also the discussion in
Secs.IIIC3 and IIIC4). If it is small„y» 1, then the
correlations decay towards zero monotonously for r &2
and in an oscillatory manner for r &2. This behavior is
enforced by the topology of the map. It causes in the ab-
sence of parametric modulation these two different
dynamics for the approach to the fixed point x*=—,

' at
the peak of the logistic parabola.

Correlations decay fastest for r=2. There the time
dependence of C(n ) is identical to that of the noise corre-
lation D(n) (3.10):

C(n;r =2)=5„0C(0)+ (1—5„O)e
+2

(3.25c)

Thus at r =2 not only the stationary distribution W(x) of
the response x but also its (two-point) correlation dynam-
ics C(n) are the same as the respective quantities P(g)
and D(n) of the forcing.

D. Small additive noise

Here we discuss briefly the statistical dynamics of the
response of the map for control parameters 0&r &3 In
the presence of small additive noise.

(x(b, )) =x"—6
(1—q) (1+q)

—y
X 1+2 +O(b, ') . (3.29a)

1 —qe

The square of the order parameter

(x (b, )) = x'+b,
r (1—q) (1+q)

X 1+2 +O(h'}
1 —qe

(3.29b)

follows immediately with relation (2.7).
According to (3.29a) the stationary mean is negative for

0~ r g 1 with its absolute size increasing as r approaches
1. There the small-b, -expansion formulas (3.29) lose their
validity. Note, however, that (3.29) agrees very well with
numerically determined averages as long as the latter ex-
ist, i.e., as long as x„doesnot diverge. That in turn is the
case whenever the distance

~

r 1~ is so la—rge that the
noise cannot kick the trajectory into the basin of attrac-
tion of the fixed point x = —00 of the system (2.4}. As an
aside we mention that a "smallest possible distance" can-
not be defined properly except maybe as a mean quantity
since the orbit depends on the forcing sequence [g] real-
ized in one particular numerical experiment.

In Fig. 4 we show with thick solid lines the numerically
determined stationary average (x(b ) ) and the order pa-
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0.4

tudes and uncorrelated forces (3.31) yields

0.2

4&x2&

0.0 I

I
10 &x&

ikrF ii —x )) +2lt

Factorizing the numerator and approximating

r (x„(1—x„))=(x„+i)=(1—1/r)

(3.32)

'
0.0 O. S 1.0 1.5 2.0

FIG. 4. Order parameter and mean orbit (thick solid lines) vs

r for additive dichotomous noise of amphtude 6=0.05. Thin
solid lines show the bifurcation for b, =0. For 0.69&r &1.45
the orbits escaped in our numerical simulations to —ee. (x)
and [(x2) ]i~i are identical within a pencil's width for r & 1.45.

rameter [(x (b, ))]'~ as a function of r for dichotomous
noise of amplitude b, =0.05. For r values within the gap
of the solid curves the orbits escaped to —eo. Except for
this gap which increases with growing 5 the order param-
eter shows the typical characteristics of a rounded, imper-
fect bifurcation of a system that without the perturbation
displays a perfect one (thin solid lines in Fig. 4}. That the
fixed point at —eo becomes so strongly attracting near
r= 1 is in a sense only an annoying complication of an
otherwise simple bifurcation behavior. The agreement of
the solid curves with the small-b, result (3.29) for white
noise, y = te, is perfect.

r —l
~additive~ ~multiplicstive ~

r
(3.30)

We checked the validity of (3.30) for r & 3 as well as for
r &3. We found that numerically determined stationary
distributions W(x ) resulting from additive and multipli-
cative forces [g] with the same statistics agreed much
better with the scaling (3.30) than with the one derived by
Crutchfield et a1. ' with rather ad hoc approximations.

As an interesting aside we mention that (3.30) can also
be derived from the requirement that the moment generat-
ing functions ( exp(ikx„+i)) and ( exp(ikx „+i))are the
same, i.e.,

( exp[ikr(1+bed„)x„(1—x„}])
=( exp[ik[rx „(1—x „)+bg,j] ) . (3.31)

Here the tilde refers to additive forcing. For small ampli-

3. Equivalence ofadditive and ntultiplicative noise

So far we have seen that the response of the map to-
wards additive and multiplicative noise is totally different
for small values of r, say, up to the stability threshold
re(h) (3.3) of x' =0 under parametric forcing. If, howev-
er, r &r (be, ) is sufficiently far above 1 so that the fixed
point at —ao does not attract the additively perturbed or-
bits, then, for small b„multiplicative and additive noise
causes similar response behavior: A comparison of (3.9b)
with (3.28a) shows that the orbits x„(lent)=x'+du&„' '

up
to first order in b, are the same if one uses the same noise
sequence [g] and scales the noise intensity b. for the two
forcing types according to

IV. THE EFFECT OF NOISE ON THE FIRST
PERIOD-DOUBLING BIFURCATION

In this section we discuss the effect of small-amplitude
noise on the first period-doubling pitchfork bifurcation of
the unperturbed map at r=3. %e shall concentrate on
the additively forced map (2.4). The multiplicatively
forced system (2.3) shows for small b, in the vicinity of
r =3 similar behavior that can be related quantitatively to
the statistical dynamics of the response under additive
forcing by scaling the noise according to (3.30).

A. Noisy pitchfork bifurcation

In the absence of forcing, 5=0, the fixed point
x'=1 —1/r of the system (2.1) loses its stability at r =3
by generating a period-2 limit cycle and thereby breaks
time translational invariance. From the bifurcating limit
cycle (n~oo) of

d„=x„+i —x„~(—1)"d' (4.1)

one identifies the value of the order parameter above the
threshold r =3 as

d'=+ —v'(r —3)(r+1) .
r

(4.2)

Its magnitude is the separation of the pitchfork branches,
which grows initially with the square root of the control
parameter's distance above threshold. The phase of the
order parameter depends on the initial condition xo.. at
fixed time n (~ oo ) either d„=+

~

d'
~

or d„=—
~

d'
~

.
In the presence of small noise the branches of the pitch-

fork bifurcation are broadened. ' In Fig. 5(a) we show as
a function of r all positions x„between time n = 1000 and
1150 for uncorrelated noise (b, =0.01) with the box-
shaped stationary distribution (3.5b) of amplitudes.

Note that the pitchfork topology is still visible in Fig.
5(a). In fact, small noise perturbs the dynamics of d„
only slightly if r is suNciently above threshold so that the
overlap between the broadened pitchfork branches is
small —)d„~ is still roughly of size ~d*

~

—and, more
importantly, the sequence of signs d„/

~
d„~ is still (most-

ly) alternating as for b.=0. This is the situation where the

leads then to (3.30).
Since most results presented in Sec. IIIC are strongly

dominated by x„'",one merely has to use (3.30) to find ap-
proximately the corresponding small-5 statistical proper-
ties of x„in the presence of additive noise. For example,
the discussion on the different shapes of the stationary
distribution W(x) for r &r, (b, ) in Sec. IIIC5 applies
equally well to additive noise. Thus also for additive
noise coupled to the system at r =2 the stationary distri-
bution W(x ) has the same form as P(g).
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noise that generated the fiuctuating x„shown in Fig. 5(a)
with the square of the order parameter in the absence of
noise (thin solid lines). The rounded imperfect bifurcation
shows that in the presence of noise, time translational
symmetry is broken everywhere with d(r, b) being finite
for all r For the large-r values in Fig. 5(b), noise restores
partly time translational invariance in comparison with
the unforced system, i.e., d &

~

d'
~

.
At smaller r, on the other hand, noise enhances or even

induces the symmetry breaking. For example, right at
r=3 we found the order parameter d(r=3, b, } to grow
proportional to Y

~
b,

~
for small b, . In particular, for un-

correlated noise with the box-shaped stationary distribu-
tion (3.5b), the rounding of the perfect b =0 bifurcation
grows as

d (r =3,b, )=0.62
~

6
~

. (4A)

3.00 3.05 3.10

FIG. 5. The first pitchfork bifurcation in the presence of un-

correlated additive noise with a box-shaped stationary distribu-

tion and 5=0.01. (a) shows as a function of r the resulting po-
sitions x oooo up to x ~~50. The thick solid line in (b) is the square
of the stationary order parameter d'=((x„+~—x„)')for the
above noise. Thin lines show the bifurcation diagram of d in

the absence of noise, 5=0.

internally generated period-2 dynamics of the unforced
map dominates the infiuence of the external noisy forces
With d„and similarly x„still being strongly correlated
with the initial value do or xo, numerically determined
ensemble averages over different noise realizations as well

as time averages depend strongly on the initial value.
On the other hand, immediately above threshold where

the smeared pitchfork branches still overlap, the internal
period-2 dynamics is disrupted more effectively by the
external forcing. (A mechanical analogue might consist
of a double-well potential with the minima becoming shal-
low for r~3 so that external forces becoine more and
more successful in disrupting an internally generated
periodic motion between the wells. The acousto-optical
bistable system studied by Vallee et al." or the driven
electrical circuit of Perez and Jeffries' seem to display
these characteristics. )

The appropriate order parameter describing the time
translational symmetry-breaking bifurcation in the pres-
ence of noise is'

d =(&d„'&)'"=[&(x. —x„)')]'". (4.3)

%e have evaluated d by ensemble averaging over up to
30000 realizations of noise histories as well as by time
averaging for various initial conditions and control pa-
rameters. %'e found thai the results were the same, that
(d„)becomes rapidly stationary, and that it is every-
where practically independent of the initial condition.
This, by the way, is not at all the case for (d„),as dis-
cussed already if r is sufficiently far above threshold.
[There, ensemble averages, e.g., yield (d2„)= ~

d'
~

{=—
~

d'
~

) if x, is cime to the lower (upp r) br~eh of
the unperturbed pitchfork where do & 0 (do & 0).]

In Fig. 5(b} we compare d2 (thick solid line) for the

The theoretical problems associated with this nonanalyti-
cal small-5 behavior are discussed in Sec. IV B.

B. Theoretical attempts

In Secs. IIIC and III D we found that the small-b, ex-
pansion of (x) and ((5x) } breaks down near the first
period-doubling bifurcation of the unperturbed map at
r =3. There the expansion coefficients of the lowest non-
trivial order b, diverge -(3—r) ' for both moments and
for both types of forcing, additive [cf. Eqs. (3.11a) and
(3.15)] as well as multiplicative [cf. Eqs. (3.29)]. The
reason for this divergence is the nonanalytical growth
—

~
5,

~

of these two moments at r =3. We did numerical
simulations with our standard uncorrelated noise with a
box-shaped stationary distribution and found in the am-
plitude range 5&(10 (b &10 the following power
laws for the first four stationary moments at r =3:

(x}=-,' —O.24~x~,

((5x)'&=0.16
~

b,
~

„

((5x) )=—0. 126

((5x)')=0.06'' .

They give rise to the linear growth (4.4) of

d =((x„+,—x„)}=((r 1 —x„)—x„}+6

{4.5a)

(4.5b)

(4.5c)

(4.5d)

(4.6)

u„:=(x„},v„:=((5x„)'),

iv„:=((5x„)},
(4.7a)

for the map (2.4) with additive perturbations by uncorre-
lated forces:

at r =3 and small b. With increasing distance
~

3 r~, —
however, there is a crossover of the 6 dependence of
(4A)—(4.6) to an analytical behavior.

A perturbation theory with a finite-order Taylor expan-
sion in b, cannot reproduce (4A) and (4.5). Thus one is led
to investigate as a theoretical alternative approximations
to the infinite hierarchy of equations of motion coupling
moments of increasing order with increasing complexity.
We write down only the equations for the first three mo-
ments,
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2
un+i ="(iin —un un) ~

u„+i ——b, +r [(a„—u„)u„—2a„w„+( (5x„))],
w„+,=r Ia„(a„6u„—)w„+3a„[u„—((5x„))]

+3a„((5x„))+3u„((5x„)) —2u„

Here we used the abbreviation

an = l —2~n

(4.7b)

(4.7c)

(4.7d)

(4.7e)

points that grow for finite but small 5 out of the relevant
ones, (0,0,0) and (1—1/r, 0,0), at b, =O (cf. below). But,
having done so, we were unable to incorporate into their
stability analysis the restriction imposed by the constraint
to only those deviations from the fixed points that lie on
trajectories starting from (u0, 0,0). We therefore checked
numerically to which of the analytically determined fixed
points the initial values (u0, 0,0) were attracted.

At r=3, e.g., one finds to lowest nontrivial order in

~

b,
(

the fixed point

In analogy to the "quasinormal" approximation in the
statistical theory of turbulence, the "closure" 3 2v6' 3v 6' 6

(4.9)

&(». )'& =3u„', &(»„)'& =0, ((5x„)') = 15u„' (4.8)

suggests itself as a simple but ad hoc approximation.
Comparing (4.5d) with (4.5b) one sees that the Gaussian
approximation to ((5x„)) is only off by about 30% at
r =3 and small A. Moreover, it monotonously improves
there with increasing A.

Note that in view of (4.5c) it is inconsistent, at least at
the bifurcation threshold r =3, to neglect w„in (4.7c) and
to truncate the moment hierarchy at the v level. That has
bam done recently by Napiorkowski. /This author inves-
tigated the system y„+i——1 —iuyn+b, g„which can be
mapped onto (2.4) by p =r(r —2)/4, 5=46, /(r —2),
y=4(x —1/2)/(r —2).] But even his truncated version
[w=0; ((5x) ) —u2=0] of (4.7b) and (4.7c) yields at
r=3 a fixed point u —

~

6
~

that is inconsistent with his
assumption v —b,2.

With the approximation (4.8) the infinite system of
equations of motion for the moments is "closed" to a non-
linear discrete three-dimensional map in (u, u, w) space.
However, it is very important to keep in mind that the
dynamics generated by this map [(4.7) and (4.8)] is con-
strained by a restriction of the initial values (uo, uu, wo)
that is imposed by the basic equation of motion (2.4): If
the forces [g„]start acting upon the system at time 1 with

gu, then xu is not a fiuctuating quantity (unless one uses
randomly chosen initial conditions which we shall not do)
and thus uo ——O=wo. Therefore, of the ~arious fixed
points, cycles, and so forth of the 3d map [(4.7) and (4.8)],
one has to select just the relevant ones, i.e., those which
can be reached from start values (uu, 0,0) on the u axis.
The others are irrelevant for the (approximate) description
of the statistical dynamics of the original system (2.4).

However, even with the constraint the dynamical
behavior of (4.7) and (4.8) is very rich, in particular for
r &3. Since we feel that many of these partly unusual
higher bifurcations of (4.7) and (4.8) are artifacts of the
quasinormal truncation of the infinite moment hierarchy,
we shall concentrate in the following on the small-6 limit
in the immediate vicinity of r =3.

But even in this narrow parameter range where we
found numerically only fixed points, problems caused by
the complexity of the map and by the constraint on the
initial values did not allow a full analytical treatment: To
evaluate all fixed points of (4.7) and (4.8) analytically re-
quires finding the zeros of a polynomial of degree seven.
However, we could determine analytically those fixed

which grows out from ( —', ,0,0) to be stable in the above

described sense. The other six fixed points are irrelevant
and will not be discussed further. The coefficients of the
b, powers in (4.9) agree within about 25% with the values
in (4.5a)—(4.5c) that were determined from a numerical
simulation of (2.4). The stationary order parameter (4.6)
corresponding to the fixed point (4.9) of the 3d map is
given for small b by

1 (r=3,b)=
3 6

(4.10)

Also, that compares rather well with the numerically
determined linear growth (4.4) of the squared order pa-
rameter; the slope is off by about 10%.

These small-b, results obtained at r =3 from the quasi-
normal approximation to the moment hierarchy are satis-
factory. But we do not think that a pursuit of this ap-
proach, e.g. , to higher r and/or larger b„is promising.
The problems involved in (4.7) and (4.8) or in an extension
thereof do not seem to be smaller than those arising in a
more direct description of the original system (2.4).

V. CONCLUSION

We have investigated the statistical dynamics of the
response of the logistic map towards additively or multi-
plicatively coupled time-dependent fluctuating forces b,g„
for control parameters in the range of the first transcriti-
cal and the first pitchfork bifurcation. Our main results
follow.

(1) Additive noise destroys the transcritical bifurcation
at r= 1. There, any additive forcing with zero mean
drives the trajectory towards —oo. For sufficiently large

~

r 1~ the response of the—map to additive forcing is sta-
tistically stationary, and averages evaluated for small 6
via a perturbation expansion agree with numerical experi-
ments.

(2) Multiplicative noise leaves the first bifurcation
sharp with x'=0 being a stationary state for any kind of
parametric forcing. The simple exact formula for the sta-
bility boundary r, (A) of this state does not depend on the
correlation properties of the forcing —random and period-
ic perturbations entail the same stability threshold of
x =0 if the stationary distributions P(g) of their ampli-
tudes are the same. Furthermore, any small-amplitude
multiplicative forcing enhances the stability of the fixed
point x =0 up to r, (b, )=1+6 /2+O(h ). Large noise
either stabilizes or destabilizes the basic state depending



33 EFFECT OF ADDITIVE AND MULTIPLICATIVE NOISE ON. . .

on b, and the form of I'(g). These stability properties
resemble those of the parametrically forced Duffing oscil-
lator.

(3) For not too large distances r —r, above threshold
the fluctuations of x generated by multiplicative noise are
bounded and statistically stationary, provided that 5 is
not too large. Moments and correlations evaluated with a
small-6 perturbation expansion agree quantitatively with
numerical simulations. The supercritical growth of the
order parameter close to threshold is changed by multipli-
cative noise from -(r r, ) —for b, =0 to (r r, )—'~ for fi-
nite h.

(4) The stationary distribution W(x) of the map's
response to any sort of small-amplitude, uncorrelated
multiplicative noise is Gaussian if r is sufficiently far
away from r =2 (where the first superstable fixed point of
the unforced map is located). Right there, W(x ) has the
same shape as I'(g). If the latter is non-Gaussian, W(x)
smoothly changes its shape to a Gaussian one as

~

r 2~—
increases.

(5) We presented a careful investigation of the condi-

tions under which additive and multiplicative noise cause
similar statistical response behavior. For small 6 and r
sufficiently beyond the above discussed threshold r„we
derived an explicit r-dependent relation between
equivalent multiplicative and additive force amplitudes
that agrees with numerical experiments. In particular, for
r (3 our relation agrees with numerical experiments
much better than the one derived previously by Crutch-
field et al. '

(6) Close to r =3, where the first period doubling of the
unforced system breaks time translational symmetry, the
squanxi order parameter ((x„+,—x„)) shows a rounded
imperfect bifurcation, averages vary nonanalytically with
growing 5, and the small-5 expansion breaks down. A
factorization approximation that truncates the infinite se-
quence of equations for increasing moments gives rise to a
system of three nonlinear difference equations. Because
of various problems arising in this approach we do not
consider it to be satisfactory, although it reproduces the
nonanalytic growth of moments and of the order parame-
ter for small b, quantitatively.
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