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A generalized mode-coupling theory that takes into account molecular-scale effects is presented.
Thermodynamic as well as dissipative nonlinearities are included. The theory is used to calculate
molecular-scale renormalizations or mode-coupling contributions to the zero-wave-number shear
viscosity and to the time-dependent stress-tensor autocorrelation function. For a range of times the
theory leads to a stress-tensor autocorrelation function that appears to decay as t '~2. The results
are in reasonable agreement with computer simulations.

I. INTRODUCTION

Recent simulations' of molecular dynamics in dense
simple classical liquids have shown that the equilibrium
stress-tensor autocorrelation function (STCF) decays very
slowly for long times. The decay appears to follow a
t ~ law, where t is the time. This functional form can
be easily derived from conventional mode-coupling
theoryi but the theoretical coefficient of this long-time
tail is approximately 500 times smaller than the observed
coefficient.

There are indications that the computer simulations
have not yet reached the asymptotic long-time limit where
conventional mode coupling is applicable. The velocity
autocorrelation function (VACF) is still negative in the
time region where most of the data are taken to support a
t tail in the STCF. For these intermediates times it is
clear that the VACF has not yet reached its asymptotic
positive long-time tail. We also note that although the
conventional long-time tails are determined by long-
wavelength effects, the intermediate-time behavior of time
correlation functions is expected to be determined by in-
termediate or finite-wave-number effects.

van Beijeren and Kirkpatrick have recently studied in-
termediate length scale contributions to the STCF. van
Beijeren used hard-sphere kinetic theory to obtain an ex-
pression for the intermediate length scale contributions to
the STCF but he did not evaluate his results. He stressed
the importance of retaining what in kinetic theory
language is the kinetic part of the intermediate length
scale extended hydrodynamic modes. Kirkpatrick also
did a kinetic theory analysis but he neglected the kinetic
parts of the hydrodynamic modes. It was shown that
this is equivalent to using Kadanoff-Swift mode-coupling
theory ' at fuiite wave numbers. Kirkpatrick's final re-
sults were easily evaluated and he obtained a STCF that
appeared to decay at t in the time region considered
in the simulations. His theoretical results were in qualita-
tive agreement with the computer simulations at the long-

est times but at shorter times his coefficient was approxi-
mately two times too large.

In this paper we use another type of generalized (to in-

clude finite-wave-number effects) mode-coupling theory
and calculate the frequency-dependent shear viscosity, or
STCF. The theory presented here partially accounts for
the discrepancy found earlier by Kirkpatrick.

The usual long-time tails are due to the fact that in a
fluid the five conserved densities are slowly varying at
small wave numbers. The basic idea used here is that in a
dense fiuid the number-density fluctuations also vary at
wave numbers k near where the static structure factor
S(k) has its maximum. " Physically one can interpret
this slow relaxation on a molecular scale as being due to
structural relaxation. We use nonlinearities and this slow-

ly varying dynamical variable to renormalize the shear
viscosity in the usual way.

The theory given here is based on nonlinear generalized
fluctuating hydrodynamic equations. It is an improve-
ment over the previous Kadanoff-Swift-type mode-
coupling theories because dissipative nonlinearities as well
as thermodynamic nonlinearities are taken into account.
The effects of dissipative nonlinearities are not included in
the Kadanoff-Swift approach. This can be justified when
calculating long-wavelength effects. For finite wave num-

bers, however, we show that there is a mechanism by
which they become important and that they can be used
to partially account for the discrepancy discussed above.
Further, the dissipative nonlinearities can be related to the
kinetic parts of the hydrodynamic modes discussed by van
Beijeren.

The calculations presented here may also have impor-
tant implications for the recent dynamical theories of the
glass transition. ' ' This point will be discussed in Sec.
IV.

The organization of this paper is as follows. In Sec. II
the basic theory used here is outlined. In the linear ap-
proximation we first calculate the slowly decaying density
fluctuations on a tnolecular scale. We then use the non-
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linearities in our hydrodynamic equations to obtain a for-
mal expression for the renormalized shear viscosity. In
Sec. III we give explicit but approximate results for the
STCF for hard-sphere fluids. The main approximation is
in identifying and evaluating the nonlinear and nonlocal
dissipative coupling constant. In Sec. IV we conclude by
discussing our results and also by making some additional
remarks about the connections to previous theories.

II. THEORY

B,n (x,t)+ —V g(x, t) =0l
(2.1a)
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with F'[n(t)] the free energy for an inhomogeneous
equilibrium fluid minus its kinetic-energy contribution, '
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A. Nonlinear generalized hydrodynamic equations

To begin we write down a set of hydrodynamic equa-
tions that have the same structure for both small and in-
termediate [:—ko, where S(k) has its maximum] wave
numbers. We neglect temperature fluctuations since they
play no role in the renormalization discussed below. Fur-
ther, it is known that they do not play an important role
in determining the slowly decaying density fluctuations on
a molecular scale. ' "' It is also known that only the
number-density fluctuations are slowly varying on a
molecular scale. ' The generalized equations for the num-
ber density n(x, t) and the momentum density g(x, t)
are' '

k I' '(k) k
=y(k) = [1—jo(ko)+2jz(ko)],2

3tE
(2.3)

for the longitudinal viscosity. Here k=k/
~

k
~

is a unit
vector in the direction of k, tE is the Enskog mean free
time between collisions, cr is the hard-sphere diameter,
and jI is the spherical Bessel function of order l. A simi-
lar expression can be given for the generalized transverse
viscosity" but it will not be needed here. We note that
Eq. (2.3) is consistent with the general arguments given
above. The nonlinear part of I N)s will be discussed below.

For future use we next calculate the number density
and longitudinal momentum density time correlation
functions near ko in the linear approximation. Later we
show how these correlation functions determine the dom-
inant made-coupling contributions to the zero-wave-
number shear viscosity. The Fourier transform of the
linearized Eqs. (2.1) at intermediate wave number are

We next discuss the validity of these equations. We
first remark that their form follows from general con-
siderations' if temperature fluctuations and non-
Markovian effects are neglected. The free energy given by
Eq. (2.1c) is the exact expansion of the free energy for an
inhomogeneous equilibrium liquid. To complete our
equations we need to specify the bare nonlinear dissipative
kernel I p(x, x„n(t)). In the long-wavelength limit I
reduces to the usual combinations of gradients and bare
shear and bulk viscosities. For intermediate wave num-

bers the form of I p will be more model dependent. We
first consider the linear kernel 1 p(x, x„no')=I p(x x~),
or its Fourier transform,

I gk)= f dxe '"*I~gx) . (2.2)

For wavelengths on the order of a molecular diameter o
(or k=ko) we expect I p(k)/mno to be only weakly k
dependent and on the order of ~ ', with r the mean free
time between collisions, which is very small for liquid-
state densities. This follows since on this scale fluid
momentum approximately behaves as tagged-particle
momentum and acts as though it were not a conserved
quantity. In wave-number space we expect g(k, t} to ap-
proximately satisfy a relaxation-type equation. For our
explicit calculations we consider only hard-sphere fluids.
For this case, a very simple and accurate (for the densities
we consider) calculation for I p(k) near ko can be per-
formed' '" with the result

B(5n (k, t) + gI(k, t) =0—ik
(2.4a)

xtF= f dx ' +F'[n (t)], (2.1d)
2mn (x, t}

and f~(x, t) is a Gaussian random force' given by the
fluctuation dissipation theorem. Here rn is the mass of a
particle, k~ is Boltzmann's constant, T is the tempera-
ture, 5n (x, t) =n (x, t)—no, with no the equilibrium densi-
ty, C(x—x ) is the equilibrium two-particle direct correla-
tion function, noC(q) = 1 —1/S (q), C3 is the three-
particle direct correlation function, and we have neglected
higher-order nonlinearities in Eq. (2.1c).

B,gI(k, r) = — ' —y(k)g&(k, t)+f,(k, ).r
ik 5n (k, t)

(2.4b)

Here gI(k) =k.g (k) is the longitudinal momentum densi-
ty, P =k&T, and f~ is the longitudinal Langevin force.
Multiplying these equations by 5n( —k), averaging, and
neglecting B, (gI(k, t)5n( —k)), which is negligible for
long times, yields
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1

0
—(5n(k, r)5„(—k)) =C„„(k,r)

= ni)S (k) exp[ —co(k)t], (2.5a)

with co(k) the equilibrium relaxation rate '" for equilibri-
um density fluctuations near ko,

k
PmS(k)y(k)

' (2.5b)

and 0 is the volume of the fiuid. Note that co(k) is small
near ko since S(k} has a maximum there and because
y(k) is large, i.e., density fluctuations are slowly decaying
near ko. Equation (2.5b) is a valid representation for a)(k)
for only a restricted range of k values. " For a representa-
tion of this slow relaxation rate that is valid for essentially
all wave numbers we refer elsewhere. " Equation (2.5a)
and the continuity equation imply that longitudinal
momentum time correlation functions also have a slow
component near ko that are given by

—(gi(k, t)5n '(k) ) = — co(k)C„„(k,r), (2.6a)

'2
1 m co(k)

0 ' k
—(gi(k, &)gi'(k) )=- C„„(k,t) . (2.6b)

It is important to remark that although Eqs. (2.6) are
small [they are multiplied by r0(k)] we give a mechanism
below by which they become important.

=I ~gx —xi) + f dx2
5I' p(x, x);n (t))

5n(xz, t) .
n xi, t

eq

(2.7)
One might think that the resulting nonlinearity could be
neglected since it involves a momentum fluctuation.
However, if we use the estimate 5I 1315n
-O(I ~p)-O([co(k)] '), we see that this term can have a
large coefficient such that when it multiplies Eq. (2.6) the
net result is a term of order one, or of the same order as
the nonlinearities from the generalized pressure. Below
we confirm this estimate with a model hard-sphere calcu-
lation.

Denoting the relevant quadratic nonlinearities in Eq.
(2.1b) by I~Nt (x, t), one obtains

B. Renormalization of the shear viscosity
by molecular scale mode-coupling effects

Here we obtain a formal expression for the renormali-
zation of the shear viscosity due to the slow decay of den-
sity fluctuations near ko and the nonlinearities in Eq.
(2.1). We first remark that the convective terms, -g,
will not be important. Near ko momentum fluctuations
either are rapidly decaying or are small [cf. Eq. (2.6)].
Physically this is probably obvious: convection is difficult
in a dense fluid. The density nonlinearities in the general-
ized pressure on the right-hand side of Eq. (2.1b) will play
an important role. In fact, we show below that if these
are the only nonlinearities retained then one obtains a re-
sult identical to that obtained before by Kirkpatrick.
Another important nonlinearity is from the expansion of
the dissipative kernel I
r.y x, x, ; n(i))

ac(x —x, )I "(x,t)=kaT f dxi f dx3 5(x—xi)+ — C3(x,x„x2) 5 (n)x, t)5n( xt2)
BX 2 BX

1 5I )3(x,xz, n (t))f dxi dxz 5n(x), t)gp(x2, t)+ 3 f dx)I I)( xx))gI)(x„t)5n(x), t) .
mno n x), t Pln 0

(2.8)

gmc(ai) =

The last term in Eq. (2.8) will not renormalize the zero-wave-number shear viscosity since it is of O(k } and can be easi-
ly shown to lead to terms of O(k ) in the long-wavelength hydrodynamic equations. For finite-k effects it will also be
important. The other two terms in Eq. (2.8) are of O(k). Here k is the external wave number for the long-wavelength
fluctuation we wish to consider.

With the formal identification of the relevant nonlinearities the renormalization or mode-coupling contribution to the
zero-wave-number frequency-dependent shear velocity 7)(co) can be calculated in the standard way. We are interest-
ed in the molecular scale (for the intermediate wave vectors) contributions so that we shall use Eq. (2.5a) for the density-
density correlation function. Further, since we are interested in the slow components we will replace momentum fluctua-
tions by their longitudinal components and use Eq. (2.6). After a standard calculation we find that the dominant molec-
ular scale mode-coupling contribution to rl(co) [:—i),(co)] is given by

nake T f cc . f dki f dk22 —Ce(k& )+co(k2)]t~ i ~
idt e"t

3 3 S(k) )S(k2)e i 2 k'.ki2k (2ir) (2m }

—ik ix —x')~i)i) (xi —x4)+it& {x&—x&)

X V~(x, x),x2) &p(x', x3,x4) (2.9a)
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with
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BX~ BX~ BX~

oi(k2) 5I ~„(x,xz) cg(kt ) 51 „(x,xi)
+tP k,„" +ip kt„
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" 5n (xi, t) noki

" 5n (xz, t)
(2.9b)

and with V& given by Vtt except the first three terms are
multiplied by —1. In Eq. (2.9a) k' is a unit vector

orthogonal to k and the limit k-+0 is to be taken. Fur-
ther, in giving Eq. (2.9a} we have included only the
lowest-order or two-mode contribution to t},(co).

III. RESULTS FOR HARD-SPHERE FLUIDS

J3k tr Ij„

'",' '"' [41,(ko) —1,(ko)] .
2 k2tE

(3.2b)

The second and third terms in Eq. (3.2b} are due to the
dissipative nonlinearity and were neglected previously.
From Eqs. (2.3) and (2.Sb) it is easily seen that they are
the same order as the first term in Eq. (3.2b). Ii and I&
in Eq. (3.2b) are the integrals given by Eqs. (A6a) and
(A6b). Finally, we remark that the wave-number integral
in Eq. (3.2a) should be restricted to regions in wave-
number space where co(k) is the slowest decaying extended
hydrodynamic mode " (2& ko &20). We have verified
that the contribution to pz(t) for wave numbers outside
this region are negligible.

To evaluate pv(t) we use the Percus- Yevick representa-
tion (with the Verlet-Weiss correction) for the static
structure factor and simple numerical integration tech-
niques. In Fig. 1 we graph

P„(t}tE
p„(t)=

9s
(3.3)

In order to evaluate Eq. (2.9a) we need expressions for
the functional derivatives in Eq. (2.9b). In the Appendix
we obtain approximate expressions for these vertex func-
tions for hard-sphere fluids. Unfortunately they involve
three-particle equilibrium correlation functions which are
not known. To make further progress we use the Kirk-
wood superposition approximation to express these corre-
lation functions in terms of accurately known two-particle
functions. Using Eqs. (A3), (AS), and (A6) in Eq. (2.9)
and then taking the limit k ~0 yields

rlmc(co)= f dte' 'pq(t) (3.1)

with

kttTo ~ k4
pq(t) = f dk A (k) exp[ —2ni(k)t]

S2(k)

(3.2a)

where

as a function of t' = t/tE at the reduced hard-sphere den-

sity ntr =0 88 . T.he line is from the numerical evaluation
of Eq. (3.2). The error bars denote the typical spread in
data points in the computer simulations of Erpenbeck and
Wood. From Fig. 1 one see that the theory is in reason-
able agreement with the computer experiments. Examin-
ing the experimental data in detail one finds that at the
shortest times the theoretical result tends to be too large
while at the longest times the theoretical result tends to be
too small. Because of this the apparent agreement be-
tween theory and experiment in Fig. 1 may be accidental.
It might also be due to the large spread in data points in
the computer simulations. Further, it must be stressed
that we have used several approximations to obtain our
theoretical result. We can conclude, however, that the
theory is in qualitative agreement with the simulations.
Finally, we remark that if our result for p„(t) is plotted
versus (t') ~ then a reasonably straight line is obtained
in the time region considered in the simulations. For
t~ Dc the decay of Eq. (3.2a) is much faster than t

IV. DISCUSSION
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FIG. 1. p„(t}as a function of t =t/tE. The line is from the
numerical evaluation of Eq. {3.2}. The error bars denote the
typical spread in data points in the computer simulations of Ref.
2.

In this paper we have used a generalized mode-coupling
theory that takes into account molecular scale effects and
computed molecular scale renormalizations of the zero-
wave-number viscosity and the STCF. These mode-
coupling contributions are in addition to the long-
wavelength contributions usually computed. %e have
shown that these molecular scale effects can lead to an ap-
parent long-time tail in the STCF. Our results are orders
of magnitude larger than the usual long-wavelength con-
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tributions and are in reasonable agreement with computer
simulations. Physically, the importance of density fluc-
tuations indicates that we are taking into account some of
the important structural relaxation effects that are present
in a dense fluid.

One of the main aims of this paper was to point out the
importance of including dissipative nonlinearities as well

as thermodynamic nonlinearities in calculating finite-
wave-number mode-coupling effects. The dissipative non-
linearities were shown to partially account for the

discrepancy found earlier by Kirkpatrick.
%e have made several severe approximations in our

theory. The most important are those used in the Appen-
dix. %e have used approximate short-time arguments to
obtain the nonlinear and nonlocal dissipative terms in our
hydrodynamic equations. Part of this contribution de-

pends on three-particle equilibrium correlation functions,
and to calculate the effects of these terms on the STCF we
have used the Kirkwood superposition approximation.
These three-particle contributions turn out to be relatively
small which might indicate that our results are not too
sensitive to this approximation. A more complete kinetic
theory calculation that removes these approximations is
being performed by van Beijeren and co-workers. Anoth-
er source of error is the two-mode (or non-self-consistent
one-loop) approximation used here. Only for asymptoti-
cally long-wavelength contributions can this be justified.
In the theory given here this approximation is an uncon-
trolled one. Nevertheless, our final results are in reason-
able agreement with the computer simulations.

We conclude with a number of remarks.
(1} Throughout we have used a hydrodynamiclike

description even at wave numbers on the order of an in-

verse molecular diameter. The validity of this is assured,
at high densities, by the fact that the mean free path in a
dense liquid is much smaller than a molecular diameter.
Since hydrodynamics applies for wave numbers up to an
inverse mean free path, it certainly applies for wave num-
bers on the order of cr

(2) Some time ago Kawasaki" argued that thermo-
dynamic and dissipative nonlinearities led to contributions
to the transport coefficients of different signs. His gen-
eral arguments seem in conflict with our explicit results
given by Eqs. (3.1) and (3.2). To understand this apparent
paradox we note that Eq. (3.2) is valid only for a restricted
range of times and breaks down at short times. This is
due to the fact that in obtaining Eq. (2.9} we have re-

placed a momentum-momentum correlation function by
only its slowly decaying component. It is not hard to
show that the purely dissipative contribution to p„(t)
given by Eq. (3.2) is valid only when the inequality (here
k =ko)

co(k)t —y(k)t-
y(k)

is satisfied. For the times we consider, t ~ 10', this in-

equality is satisfied but at shorter times ( t & 10') the in-

equality is violated and our approximation becomes in-
valid. At these shorter times the purely dissipative non-
linear contribution to p„(t) is negative.

(3) Although the formalism used in Sec. II is valid for

any liquid all of our explicit results were for hard-sphere
fluids. We argued that the form of the linear dissipative
coefficient should be roughly the same for all simple
liquids at wave numbers near ko. However, the form of
the nonlinear dissipative vertex function seems much
more difficult to determine. As a consequence of this the
theory used here is difficult to apply to more general
liquids.

(4) In the recent' ' dynamical theories of the glass
transition the effects of dissipative nonlinearities were
neglected. It is not clear that this can be justified. First,
we note that the second and third terms in Eq. (2.8) were
neglected in these theories. In principle both of these non-

linearities should have been retained. %e believe that the
second one is of more importance. In the long-wavelength
version of these theories, this nonlinearity would have the
form

~ )8
5n (k —q, t)gi(q, t),

with k (q) the external (internal) wave number and i)z the
bare shear viscosity. The above-mentioned calculations
are all self-consistent one-loop calculations which effec-
tively replace gi(q, t) by i) '5n (q, t), with g the full shear
viscosity. These theories then look for solutions where il
diverges at a critical glass transition density. In such an
approach the above nonlinearity vanishes since it is

'(Bgii/Bn). However, it is easy to imagine that a
vertex renormalization could change this to

'(Bi)/Bn)=Bing/Bn which would lead to a singular
vertex function if i) is a singular function of density.
Such terms would actually dominate those retained. '

If this type of nonlinearity is effectively present then it
would probably modify the singularities found in the
current theories. '~ ' The same argument can be used for
the third term in Eq. (2.8). The resulting vertex is not a
singular function but it is of 0 (1).

(5) In Sec. I we mentioned that the effects of dissipative
nonlinearities are not included in a Kadanoff-Swift
mode-coupling theory. Further, we noted that the
Kadanoff-Swift approach was identical to a kinetic theory
analysis where kinetic parts of the hydrodynamic modes
are neglected. Although we have not yet verified it in de-

tail, it appears that the dissipative nonlinearities included
here are in principle equivalent to retaining the kinetic
parts of the hydrodynamic modes in a kinetic theory ap-
proach. ' This is known to be true for the Lorentz gas.

(6) Elsewhere we will present a similar phenomenologi-
cal theory for the intermediate-time behavior of the velo-
city autocorrelation function.
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APPENDIX

To generate the dissipative nonlinear vertex functions in
Eq. (2.9b) we consider a hard-sphere fluid and use short-
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time approximations. Suck approximations are known"
to be qualitatively correct in describing linear transport at
finite (near kp) wave numbers in dense hard-sphere fluids.
%e also remark that the same nonlinearities can be ob-
tained directly from the revised Enskog kinetic equation
for hard spheres. Since we are interested in nonlinear
terms in the momentum equation we consider

~t {g (x) }F(n {~+g (x}}F(tl . (A 1)

Here F(t) is an N-particle nonequilibrium distribution
function at time t, g (x) is the microscopic momentum
density, W+ is the forward streaming pseudo-Liouville
operator for hard-sphere particles, and the angular
brackets denote a phase-space average with distribution
function F(t). The right-hand side of Eq. (Al) can be
easily expressed in terms of one- and two-particle non-
equilibrium distribution functions.

The short-tine approximation mentioned above is im-
plemented by assuming that the initial S-particle distribu-

tion function is a I -space local equilibrium distribution
function and at a short time later it is still of local equili-
brium form. This implies that the two-particle distribu-
tion function is (1=Ri,Ui)

fp(1,2, t) =ft( lt)ft(2t)G2(xi, x2, n (t)), (A2a)

with fi the local equilibrium one-particle distribution,
' 3/2

ft(l, t)=n (x, , t)
Pm
2m

exp — [U, —u(x, , t)]
mP 2

2

(A2b)

with u the macroscopic flow velocity G. 2 in Eq. (A2a) is
the configurational part of the two-particle distribution
function for an inhomogeneous equilibrium fiuid at densi-
ty n(x, t). With Eqs. (A2) in the right-hand side of Eq.
(Al) the vertex 51 tt/5n can be identified by expanding
Eq. (A 1} in powers of 5n (x, t) and
gtt(x, t) =mn (x, t)utt(x, t). We obtain s

p7ln p

5I gx, xz, n(t))
5n (xi, t}

der o~crp x —x2 x —xt —ocr — x—x& x—x2 —0'cr
2mn ptE

no np
5(x—x2)H3(xpx2 cro

I
xi) — 5(x—xz —cr&)H3(xyxp

I x, )
g (o.) g (cr)

with

(A3a)

5Gz(x, x2n(t))
H, (x,x, Ix, ) =

n xi, t
(A3b)

eq

and tE &Pmn/——4mno g(o), and g(cr) is the radial distribution function at contact, and & is a unit vector. Note that
5I /5n is large, -tz, in agreement with the estimate given below Eq. (2.7).

H3(x, x —&o
I xi ) =H (x—xi —&o,x —xi ) can be expressed in terms of equilibrium distribution functions as

H(x —&cr,x)=h3{o
I
x —o&

I
x)—C(

I
x —cr&

I )[g{o)—1]—C{x)[g(o)—1]
—np dx'h3 c7, x—ocr —x', x —x' C x' (A4)

H(x —cro, x) =g(o) dq& dq2, iq& (x—crier)+iq2 I
e

(2m ) (2a)

X s(
I qi+q2 I

)
(A5)

with S(q)=1+nh2(q).
To obtain Eq. (3.2b) from Eqs. (2.9), (A3), and (A5) we

have defined the integrals

with h3 the three-particle cluster function in the cluster
expansion of the three-particle equilibrium distribution
function. The Kirkwood superposition approximation for
H is given by

z j 2(lcr)
I2(qo)=np f dl 1 h2(1)

Icr

+1
X f dp, ph2((q +12 2qlp)'~ )—

(A6a)

I3(qo )=np f dl 1 h2(lj)3(lo)
+1x f, dp(3p' —p)

Xh2({q +1 —2qlp)'~ ) . (A6b)



33 MODE-COUPLING THEORY OF THE LARGE LONG-TIME. . . 2657

'D. J. Evans, J. Stat. Phys. 22, 81 (1980).
2J. J. Erpenbeck and %'. %'. Wood, J. Stat. Phys. 24, 455 (1981),

and unpublished.
3See, for example, Y. Pomeau and P. Resibois, Phys. Rep. 19,

63 (1975).
4H. van Beijeren, Phys. Lett. 105A, 191 {1984). See also I. M.

de Schepper, A. F. E. M. Haffmans, and H. van Beijeren,
Phys. Rev. Lett. 56, 538 (1986).

5T. R. Kirkpatrick, Phys. Rev. Lett. 53, 1735 (1984); J. Non-
Cryst. Solids 75, 437 (1985).

6L. P. Kadanoff and J. Swift, Phys. Rev. 166, 89 (1968).
~K. K. Kobayashi, J. Phys. Soc. Jpn. 27, 1116(1969).
T. Munakata, J. Phys. Soc. Jpn. 43, 1723 (1977).

9I. M. de Schepper and E. G. D. Cohen, J. Stat. Phys. 22, 223
(1982).

tOW. E. Alley and B.J. Alder, Phys. Rev. A 27, 3158 (1983); W.
E. Alley, B.J. Alder, and S. Yip, ibid. 27, 3174 (1983).

I~T. R. Kirkpatrick, Phys. Rev. A 32, 3120 (1985).
' E. Leutheusser, Phys. Rev. A 29, 2765 (1984).
' V. Bengtzelius, %'. Goetze, and A. Sjolander, J. Phys. C 17,

5915 (1984).
'~S. P. Das, G. F. Mazenko, S. Ramaswamy, and J. Toner,

Phys. Rev. Lett. 54, 118 (1985), and unpublished.
'5T. R. Kirkpatrick, Phys. Rev. A 31, 939 (1985).
' Since temperature fluctuations are coupled to density fluctua-

tions they also have a slowly decaying contribution. However,
it is not too hard to show that this coupling is extremely small

[it is of O([a&(k)] ) in Eqs. (2.5) and (2.6)]. Similarly, the
longitudinal momentum density has a small slowly decaying
part [cf. Eq. (2.6)].

'7To derive equations of this form, see, for example, S.-k. Ma

and G. Mazenko, Phys. Rev. 8 11, 4077 (1975), or J. D. Gun-
ton, in Dynamical Critical Phenomena and Related Topics,
edited by C. P. Enz {Springer-Verlag, Berlin, 1979), p. 1.

'sin giving Eq. (2. lb) we have used that only the dependence of
I p on n(x, t) will be of importance.

I9See, for example, A. J. M. Yang, P. D. Fleming, and J. H.
Gibbs, J. Chem. Phys. 64, 3732 (1976}.

OSee, for example, R. Zwanzig, in Systems Far From Equilibri-
um, edited by L. Garrido (Springer, New York, 1980), p. 198.

2ISee, for example, K. Kawasaki, in Phase Transitions and Criti-
cal Phenomena, edited by C. Domb and M. Green (Academic,
New York, 1976), Vol. 5a, p. 166.

See, for example, G. F. Mazenko, S. Ramaswamy, and J. Ton-
er, Phys. Rev. A 28, 1618 (1983),
See, for example, D. Henderson and E. %. Grundkie, J.
Chem. Phys. 63, 601 (1975).
K. Kawasaki, J. Phys. A 6, L1 (1973).

25Due to the short-time approximation used in the Appendix we

miss part of the actual nonlinear and nonlocal dissipative ver-

tex function. As a consequence of this the explicit expressions
obtained here are not identical to those obtained by van

Beijeren {Ref.4).
26J. Machta, M. H. Ernst, H. van Beijeren, and J. R. Dorfman,

J. Stat. Phys. 35, 413 (1984).
~7See, for example, Refs. 9 and 11.

In giving Eq. (A3} we have neglected a term similar to the last
term in Eq. (2.8). Both of these contributions lead to terms of
O(k') in the hydrodynamic equations and should be con-
sistently neglected. In the approximations used here these
terms actually cancel each other.


