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A modified manifestly self-consistent Langer-Zittartz method is applied to the nonperturbative
treatment of the electrostatic excluded-volume effects in the polyelectrolyte chain. The method is
tested for the case of the ordinary excluded-volume problem for which it produces the standard Flo-
ry result, ((Ri)}'~2ccX~~'. When it is applied to the polyelectrolyte chain, for the totally un-
screened case, it also gives the Flory result ((R ~) }'~~a:X, which is confirmed by recent Monte Carlo
simulations performed by Baumgirtner. Complications associated with effects of partial screening
are considered as well. Explanations for the failure of the conventional renormalization-group
methods for the polyelectrolyte chain are presented on the basis of comparisons between the
polyelectrolyte problem and mathematically similar problems in solid-state physics.

I. INTRODUCTION

The excluded-volume problem for the single homopoly-
mer chain has been studied extensively by both analytical
and by computer simulation methods. ' Various analytical
methods, which include Flory-type mean-field and self-
consistent-field approaches as well as position-space, real-
space, and field-theoretic renormalization methods, yield
very similar results that are in agreement with Monte Car-
lo simulations. In contrast to this success, which for
practical purposes solves the homopolymer excluded-
volume problem, application of the same methods to the
polyelectrolyte chain produces very conflicting results. A
similar situation exists for other closely related models
with Coulombic type of correlations, namely the "true"
self-avoiding walk and the random walk in random-
environment models, 3 ~ where recent field-theoretic renor-
malization calculations differ from Flory-type predic-
tions. Recent Monte Carlo simulations by Baumgirtner
for the unscreened polyelectrolyte are in good agreement
with Flory-type theories which give for the end-to-end
distance ((R )-N"} exponent v, the result v=3/d. In
dimension d=3 the rigid-rod result (v=1) is obtained,
which agrees with what is intuitively expected. The real-
space renormalization as well as the field-theoretic renor-
malization give v=2/(tf —2), which is valid for
(4 & d & 6) within the accuracy of the above methods. For
d &4 and the totally unscreened polyelectrolyte chain, ex-
isting renormalization-group methods fail to produce
meaningful physical results. This already poses a serious
theoretical problem, consequences of which go beyond the
polyelectrolyte problem as will be demonstrated below. In
addition, as it was already indicated by Baumgartner, ap-
plication of Monte Carlo methods to systems with long-
range interactions is considerably more difficult than
their application to standard short-range excluded-
volume-type interactions. This is even more true when
the concentration-dependent effects are considered.

Recently we made an attempt to describe the polyelec-
trolyte chain for the case when charges are partially
screened due to counterions in the solvent. Our analysis

was based on the principle of correspondence which re-
quires that in the limit of total screening the polyelectro-
lyte chain must behave as an ordinary homopolymer
chain with the standard excluded-volume exponent
v=-,'. We found that the presence of electrostatic in-

teractions under certain conditions, specified in our work,
destabilizes the standard excluded-volume fixed point so
that the chain tends to cross over from one scaling regime
to, presumably, another which is not accessible within the
conventional renormalization-group (RG) framework.
The situation is similar to that found in the standard
quantum electrodynamics, ' where at short distances re-
sults of perturbation theory cannot be trusted because the
coupling constant becomes too large. For the case of the
polyelectrolyte chain, it is natural to assume that the
crossover must take place between the good-solvent
excluded-volume regime and the regime of the rigid rod
which is described by a Flory-type exponent v=3/d. Be-
cause, upon approaching the unscreened limit, the renor-
malized parameters describing the polymer chain tend to
be in the strong-coupling domain, we conclude that the
fully unscreened chain cannot be described in a usual per-
turbative way so that some sort of nonperturbative treat-
ment is required.

The nonperturbative solution, if it exists, has some ad-
ditional advantages over the usual perturbative solutions.
For instance, in the polyelectrolyte case the electrostatic
persistence length is introduced, which must be con-
sidered along with the usual excluded-volume persistence
length. In practice it is experimentally impossible to
separate these two for the case of incomplete screening.
Use of the nonperturbative methods removes the need to
use the electrostatic stiffness, which is the averaged mac-
roscopic product of rather coinplicated microscopic in-
teractions. A microscopic model for the polyelectrolyte
may be chosen analogous to that used by Baumgartner,
which may be modified by introducing screening into the
potential. The model used by Baumgartner is a freely
jointed chain of beads, all having the same charges, and
rigid links between thein. Electrostatic stiffness comes
into this model as a result of some kind of averaging pro-
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cedure and is not included at the outset.
In this work we use a continuum version of

Baumgartner's model. Section II is devoted to the
description of the microscopic model. Here the connec-
tion with our previous work on the polyelectrolyte chain
is established. In addition, the main quantities of interest
and characteristic scales are defined. Section III presents
the general features of the manifestly self-consistent
modified Langer-Zittartz method. ' It also establishes the
connection with perturbation theory as well as shows
what kind of approximations must be made in the "renor-
malized" Dyson's equation in order to obtain the above
self-consistent-field equations for the case of homopoly-
mer and polyelectrolyte chains. In Sec. IV we obtain
some solutions of the above equations. Here we analyti-
cally obtain the well-known Flory results for the homopo-
lymer v= —(1=3) and polyelectrolyte v= 1 (d=3). Sec-
tion V is devoted to a discussion. We discuss here the
connection of the polyelectrolyte problem with similar
problems in solid-state physics.

II. MICROSCOPIC MODEL

We utilize here the same microscopic model as we pre-
viously used for the case of the weak-electrostatic-
coupling limit. In general, the polyelectrolyte chain has
two types of interactions, short-range repulsive excluded-
volume interaction, as in the case of uncharged polymers,
as well as the screened Coulomb interaction between the
charges on the chain. In the Monte Carlo simulations
only the electrostatic unscreened interactions were con-
sidered. To treat the problem analytically, we must adopt
a simplified model in which the charges are uniformly
distributed along the chain. For this model in 1-
dimensional space the dimensionless "Hamiltonian" is
given as

H(c)= —, f dr1 dc
dv

N
+ —,

' f dr f dr' W'[c(r) —c(r')]

N

+ —,b„~ ~' c v —c ~'

v'~ &A —(2.1)

1/2
4ne +no;Z; /ekT (2.3a)

1/2
= 4 X, gn„Z gn„''", (2.3b)

Z; is the valence of the ith ion, no; is the number density
of the ith component in the solution, and the sum ranges
over all ions in a unit volume surrounding the charge on
the polyelectrolyte chain being screened and including
that charge. The Bjerrum length A,~ is defined by

A,s e'!——ek T, (2.4)

where e has the dimensionality of charge, e is the dielec-
tric constant of the medium, k is Boltzmann's constant,
and T is the absolute temperature.

If r(r) designates the spatial position of the polymer
segment at the contour position ~ then

' 1/2

c(r) = r(r),
L

(2.5)

c{N)=R
G(R,N;b, „,W)= f D[c]exp[ —H(c)],

c{0)=0

where D[c] is a functional measure in the chain confor-
mational space. This distribution function, in principle,
enables us to calculate the moments like (R ") in a stan-
dard way. Having defined the quantities of interest, in
the following section we proceed with the actual computa-
tions of these quantities.

(2.6)

where L, is some persistence length. In our previous
paper we used the total persistence length, which is de-
fined as max t L,„,L~ I where L,„ is the persistence length
of the uncharged homopolymer, by definition

L~ ——A,av l, which is the electrostatic persistence
length, and I is the distance between ions along the chain.
When ~~0 (no screening), L~ diverges and in the oppo-
site limit we are left with just L,„,as expected. Evidently
the notion of L~ is of some use only for the partially
screened case so that we shall auoid it completely in our
nonperturbatI, ue treatment, as was explained in the Intro-
duction. We, in fact, adopt here Baumgartner's model of
freely jointed links and beads having charges with modifi-
cations needed for a continuum version. Given our Ham-
iltonian (2.1) we can define the fixed-end vector distribu-
tion function as

8'(r) =b,
~

r
~

+ exp( —x
~

r
~
), (2.2)

where b, is some electrostatic coupling constant, and
K=XDH the inverse Debye-Huckel screening length de-
fined as

where A denotes some kind of cutoff for excluding the
self-interactions, b,„denotes the bare excluded-volume
coupling constant, c(r) represents the continuous chain
conformation in d-dimensional space with the contour
variable r in the range of 0 to X, where X is the length of
the chain. The quantity 8' is the screened Coulombic in-
teraction which in d-dimensional space is

III. THE MODIFIED LANGER-ZITTARTZ
SELF-CONSISTENT-FIELD METHOD:

GENERAL FORMALISM

Some time ago Langer and Zittartz' proposed a
method for the computation of density of states for the
Schrodinger equation with a random Gaussian potential.
Since that time many authors" ' tried to solve the same
problem using field-theoretic nonperturbative methods.
The final results of their analyses were always in agree-
ment with those obtained initially by Langer and Zittartz.
We shall demonstrate shortly that the problem of the elec-
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trolyte chain given by Eqs. (2.1) and (2.6) can be presented
in a form identical to that considered by Langer and Zit-
tartz (L-Z). ' Although more sophisticated nonperturba-
tive field-theoretic methods" ' are applicable as well to
the electrolyte problem, we choose here the original ver-
sion of the L-Z method with minor modifications. The
reasons for doing so are twofold. First, we already men-

tioned that other methods" ' give in the end the same

results. Second, use of the L-Z method, as it will be
demonstrated, permits us to obtain the results in the most
economical way.

Using the definition of the distribution function [Eq.
(2.6)] and H(c), given in Eq. (2.1), we now want to con-
sider the most general form of the binary interaction term
in Eq. (2.1). Use of the Hubbard-Stratonovich (H-S) iden-
tity produces for this term

exp ——,
' ~ w'8' c w —c ~'

X
D exp ——,

' x x' x' 8 ' x—x' x exp —i d~ c r
s

(3.1a)

where W '(x —x') is defined from the following equa-

tion,
Using Eq. (3.1) we can rewrite Eq. (3.6) as

x'8' x—x' 8' ' x' —x" = x —x" (3.1b) G(R N;Rs)= J de exp(s(P) f D[ ()]exp[—H(R(d)],
2mi

'= fD[d] exp —,
'
1 dx J dx—' )P '(x —x')

XP(x)(}]d(x') (3.lc)

where C denotes the inverse Laplace contour,

H(R
l
(I())=+—, fdx fdx' t((x)')8' '(x —x')p(x)

(3.7)

Combining Eq. (3.1a) with Eqs. (2.1) and (2.6) gives

G ( R,N; 8') = fD [P)P f dt]]G (R,N
l P), (3.2}

where G (R,N
l P) is defined as

G(R,N
l P)

I

c(N) =R dcDc exp
0(0)=0 dr

—in[6(R, s lP)] . (3.8)

5H(R
l
4)) (3.9)

which can be rewritten in the following manner:

1 5G(R,s
l P}x'8' ' x—x' x' =

The potential (}]d now is determined from the stationarity
condition'

+iP[c(r)] dr

BN 2
V+idt](—x) G(x, y, N

l
(}]))=5(x—y)5(N) .

(3.4)

The above equation assumes that the contour distance L,
is equal to 1. For the Laplace-transformed distribution
function we obtain the following equation:

[s —,'V +inst](R—)]G(R,s
l
4))=5(R), (3.5)

where we choose the origin of coordinate system y=O and
denoted s as the Laplace variable conjugate to X. Going
back to Eq. (3.2} we can now write

(3.3)

Equations (2.1), (2.6), and (3.1a) completely define func-
tion P [P] in Eq. (3.2). The distribution function (3.3) sat-
isfies the "equation of motion, " which in the chosen sys-
tem of units can be written as

G( s

l y) g @R

E„(P)—~
(3.12)

with the subsequent assumption about the ground-state
dominance. Here we prefer to use an alternative represen-
tation of the Green's function,

(3.10)

The explicit form of the functional derivative in Eq. (3.10)
can be obtained by applying to both sides of Eq. (3.5) the
operator 5/5$(x). After elementary algebra we obtain

~( ) ~ ~( )«Ry» lk)«y» l0) (311)
G(R,s l(}))

Here G(R,s
l
P)—=G(R,O,s

l P), etc. Substitution of Eq.
(3.11) back into (3.5) produces the desired self-consistent-
field (SCF) equation. This equation, however, is hardly
treatable because of the explicit dependence of the poten-
tial (t) [Eq. (3.11)] on the end points R and 0. In order to
eliminate such a dependence, Langer and Zittartz pro-
posed using the spectral representation of the Green's
function G in the standard form

G(R,N;W')= . f dsexp(sN) fD[dt]]P[P]G(Rs l(}I)) . G(x,x', s l()]))=g, (x&)it), (x&), (3.13}

(3.6) where lx l
is the larger of lxl and lx'l and f
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satisfy the appropriate boundary conditions for large and
small ~x~, respectively. The difference between using
Eqs. (3.12) and (3.13) was discussed by one of us recently
in some detail in connection with the problem of the coil-
globule transition. ' Use of Eq. (3.13) instead of Eq.
(3.12) and the assumption about the ground-state domi-
nance in Eq. (3.11) shall be referred to as the modified L-
Z method. Substitution of Eq. (3.13) into Eq. (3.11) pro-
duces

usual perturbation expansion discussed in great detail in
Kholodenko and Freed. ' Because our goal is to find
some kind of nonperturbative solution to Eq. (3.15), we
cannot use an iterative method and have to rely upon oth-
er available methods.

IV. SOLUTIONS
OF THE SELF-CONSISTENT-FIELD EQUATIONS

iP(x)= fdy 8'(x —y)6(y, y, ~
~
P) (3.14)

A. The WKB solutions
for0( /x/ ( /R/.

Substitution of Eq. (3.14) back into Eq. (3.5) yields the
result which (after the inverse Laplace transformation is
performed) coincides with the first-order renormalized
perturbation-theory result obtain by approximating the
mass operator M in Dyson's equation

——V 6(RN)1

=S(R)5(X)+ f dr fdr M(R, r;N r)6(r—,r),
(3.15)

by its first-order "renormalized" perturbation correc-
tion. ' By solving Eq. (3.15) iteratively we recover the

The distribution function satisfying the Laplace-
transformed version of Eq. (3.15) contains more informa-
tion than we might actually need. Indeed, if we are in-
terested in computation of the free energy' or the mo-
ments of the distribution function, then additional sim-
plifications are possible. In fact, consider the following
quantity,

x x' 6 x,x', s (4.1)

which is related to the computation of the free energy. '

In three dimensions, for example, we can expand the dis-
tribution function in terms of spherical harmonics
F~~(Q). This then produces

x x xx,s

= fdxx'fdQfdx'x'fdQ'
(l, m);(I', na')

Gi i ( ,xxs IP)I'i (Q)I'&'

=4n fdx x fdx'x' Goooo(x, x', s
~
P) . (4.2)

Evidently the same kind of arguments can be repeated for
the computation of moments of the distribution function,
etc.

By assuming spherical symmetry, Eqs. (3.4) and (3.14)
can be rewritten as

ing manner:

1 d
2 dx'

y8' x—y

XG(y, y, s) —s X,"'"'(x)=0.
a

(4.5)

y W' x —y y, y, s —s G x,x', s
, 0'

= —5(x —x '), (4.3)

where the explicit P dependence was omitted. The sub-
script cr indicates that only the contributions from the
spherically symmetric part of the integrand are retained.
The Green's-function representation [see Eq. (3.13)] now
produces

P,"'(x)P,' '(x'), x &x'
(4.4)

where P,'"(x) and P,
' '(x) are two independent solutions of

E . (4.3). By introducing X,'"(x) and X,' '(x) via

P,
' " '=X,""'/x, Eq. (4.3) can be rewritten in the follow-

If we let 6( ,xxs) =X,'"(x)X,' '(x'), then it follows that 6
obeys the following relation for a~0+:

6( ,xxs)
i „„+,— 6( ,xxs)

i „„,= —2 .

(4.6)

f'(x, s) =as+2 fdy W(
i
x —y i )6(y, y, s) (4.7)

In order for the free energy to exist, the integral (4.1) must
be convergent. This means that the functions, X,"' or X,' ',
should obey such boundary conditions for +~ad and
x ~0, respectively, that integral (4.1) is convergent.
Given this requirement, we want to find a solution for Eq.
(4.5) in a region not too close to the origin and which has
the proper asymptotic behavior as x~00. For this pur-
pose we can use a WKB method in which we define
f(x,s) as
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Equation (4.5) now assumes the form g(l], (2)( )

, —f'(x, s) X(["2](x)=0, (4.5') =[f(x,s)] ' C[ 2 exp + f dy f (y,s) (4.8)

which admits the well-known %KB solutions
where C;, i = 1,2, are determined from the condition (4.6).
This gives the following representation for G:

G(x,x',s) = '

y

2[f(xs)f(x', s)] 's exp —f dy f(ye) sich f dyf(ye), «)»'
s I

2[f(x,s)f(x', s)] ' sich f dyf(y s) exp —J' dyf(y s), x (x' .
(4.9a)

For large x and x' expression (4.9a) can be simplified to

G(x,x', s) = '

X

[f(x,s)f(x',s)] ' exp f dy f (y,s), x &x'

x
[f(x,s)f(x', s)] ' 'exp —f dy f(y,s), x'&x .

(4.9b)

G(x,x,s)=f '=2 ' s+ fdx W'(
I
x —y I

)G(x,x,s)

In the region where Eq. (4.9b) is valid we can write the self-consistency condition as
—1/2

(4.10a)

Equation (4.10a) can be solved iteratively for the case of
small s (i.e., large N), yielding for the first iterate the re-
sult

G(x,x,s) = ( 2s + [G(x,x) ] (4.10b}

where G(x,x)=G(x,x,O) is the solution to Eq. (4.10a) for
s=O. This solution may be used to construct the Green's
function of Eq. (4.9b). In order to illustrate these ideas, it
is instructive to consider several examples.

B. The standard excluded-volume problem

For the excluded-volume problem 8'(x —y} is given
by9, 14

~(x—y)=b5(x —y) . (4.11)

By substitution of Eq. (4.11) into (4.10), the following
self-consistency equation is obtained:

[G(x,x,s)]

2b-=2s + G(x,x,s) .
X

(4.12)

Equation (4.12) is easily solved for s=0, yielding
' 1/3

G(x,x)=G(x,x,O) = x
2b

(4.13)

which may be combined with Eqs. (4.9b) and (4.10b) to
obtain an expression for G(x,x',s). Once this expression
is known, the inverse Laplace transform of G(x,x',s) can,
in principle, be performed. The procedure for the inverse
Laplace transformation is presented in the Appendix.
The computed G(x,x', N) contains more information than
is actually needed. We recall the potential P(x} used to

calculate G is selected by a stationarity condition (3.9)
which involves G(R,N

I
()])) of Eq. (3.3), whose path in-

tegral contains the boundary condition that one of the ter-
minal ends of the chain is at the origin of the coordinate
system. Thus to calculate the mean-square end-to-end
distance (R ), we may put x' in G(x,x', N) at the origin,
thus producing a result for G which coincides with that of
the field-theoretic mean-field treatment. We can then
write the expression for (R ) as

xx' yx ' 'exp —~ ~
(R') = lim // yx ' exp —I' x

(4.14)

h (t)N' N'b'/'
(~)2 C IO/3(~)2

4/3
2

4/3
2

x

It is natural to choose c' =N b2 . Making this choice
in Eq. (4.14), we obtain the final result

where y(x)=y(x, x'=e) with y(x, x') being given by Eq.
(A13) of the Appendix, and F(x)=F(x,O) with F(x,x')
being given by (A14). The above limit is taken after the
indicated integrations are carried out, because y(x) con-
tains self-interaction divergences at the origin (see the Ap-
pendix), which, as we will see, cancel for the ratio of in-

tegrals on the right-hand side of the Eq. (4.14) with small
but finite e. Self-interaction does not result in divergences
at x'=0 for F(x,x') (see the Appendix). It is convenient
to introduce the dimensionless variables X and r instead of
x and t in Eqs. (4.14) and (A12) to (A14).' Taking into
account Eq. (4.13), we choose these variables in such a
way that the combination h(t)N /(t)hx) in Eq. (A14)
remains dimensionless. If one writes x =cX and t =c~,
then according to Eqs. (A13), (A6), and (A14), we obtain
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3
y

1 /2 exp + 1 /5 2/5P

(Z') =b'"N'" lim (4.15)
ding yg ' exp —X' b FX

The dimensionless functions T'(X) and F(X) are obtained from Eqs. (A13) and (A14) for y(x) and F(x), respectively, by
replacing (x, t) with (X,i) and the parameters b and N with unity. With appropriate changes in potentials, Eq. (4.15) is
also applicable to electrolytes as is explained in the next subsection.

In the Appendix we note that the properties of F(X) imply it has a minimum in the domain of integration indicated in

Eq. (4.15). We have found the minimum to be at X=0.9819 by a combination of numerical integration and interval

halving to locate the real root of dF(X) IdX =0. Thus in the limit N ~ 00, we can use a saddle-point method to calculate
the above integrals. This then leaves the leading term proportional to N ~, which is the Flory result. '

C. Excluded volume (electrostatic)

We now wish to apply the manifestly self-consistent method to electrostatic interactions. Successful application to the

general case, which includes both electrostatic and conventional excluded-volume interactions, could then be treated per-

turbatively by assuming that the conventional excluded volume is small compared to its electrostatic counterpart. The

self-consistent equation in the form of Eq. (3.15) corresponds to a Hartree approximation of many-body theory. ' In the

theory of the large polaron it is known as Luttinger-Pekar equation and one of us provided its derivation directly using

the Feynman path-integral methods. ' Using the explicit form of the potential W given in Eq. (2.2), Eq. (4.5) can be

written as

Z2~ Jd G( )
exP( «

I
» y l

} — XIII'Iz)=0
2dx' ' '

/x —y/

In order to evaluate the integral of the above equation, we use the well-known multipole expansion
r

exp(Ik [x-y [ )
gI(kx)hi(ky), y &x

Im(fIx)I'Im«y)&&
'

(k )g (k„)
y I I=0m= I-

Only the spherically symmetric term needs to be retained which for «= ik is —given by the following equation:

(4.16)

(4.17a}

sinh(«x) exp( —«y}

exp( —«
I
x—y I )

I
x—y I

"
sinh(«y) exp( —«x)

Ky KX

Substitution of this result into Eq. (4.27) yields
r

1 d 4irZ ~a & — sinh(«y)
, +

2 dx2 «o y

y&x

exp( —«x) ~ — exp( —«y) sinh(«x)+ dyG(y, y, $)
X x x

y(1 I, (2)

(4.17b)

[G(x,x,$)]
(4.20)

The general WKB method can now be used and the self-
consistency equation (4.10a) produces the following result,

Q
3

U =2$x + [S(x)exp( —«x)+E(x) sinh(«x) j, (4.19)
K

where a =8nZ A,II,
'

U=2sx . (4.24)

Using the definition of U given in Eq. (4.2(j), we obtain
G(x,x,$) =~2$. Using Eq. (4.9a) we obtain the following
result for the free propagator:

=0 . (4.18)

l

Consider first the limit «—+co (complete screening), in
which case Eq. (4.23) gives the following simple result:

and S(x) and E(x) are the integral expressions

S(x)= f dy G(y,y, $)
0 y

F. (x)= J dy G(y,y, s)
X y

(4.21}

(4.22)

G(x,x',$) = .

2
exp( —x~2$ }sinh(x'~2$ ), x &x'

2$

2 sinh{xv 2$ )exp( —x'~2$ ), x &x' .
2$

(4.25)

(4.23)

Differentiation of Eq. (4.19} along with the definitions
given by Eqs. (4.20), (4.21), and (4.22) yields the following
differential equation:

d'U, a'
2

—«(U —2$x)=-
dx V'x U

The above describes a Gaussian chain for which
(R ) ~ N, as is expected for complete screening.

For x & oo the preferred approach is to look for solu-
tions to Eq. (4.23) and thereby take advantage of the
many techniques for solving differential equations and ob-
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taining systematic approximations to their solution. The
s=0 solutions should conform to the boundary conditions

lim — +zU =0,dU
r —+ ao 6(X

(4.26)

lim +x U
dU

r —+0 I 4X
a dy

exp( —ay)
x yU

(4.27}

which are derived from the s=O self-consistency condi-
tion [Eq. (4.19)] taking into account the limits of integra-
tion, 0 and co, in the integral expressions [Eqs. (4.21) and
(4.22)] for S(x) and E(x), respectively.

In this work it is our purpose to apply this procedure to
the unscreened case (~=0), which will also serve to illus-
trate the technique for intermediate ~ (0 &~ & ~ ). In or-
der to obtain G(x,x',N) for a=0, we need to solve Eq.
(4.23) for s=O in which case it reduces to

d U a
dx2 v'xU (4.28)

d4 d4 a
(4.29)

dp dp 3/4

The constant P is introduced as an arbitrary scaling factor
to render the logarithmic argument dimensionless and it
will be determined by the boundary conditions on the
solution to Eq. (4.29).

%e use a perturbation procedure to obtain the systemat-
ic approximations to 4 by treating the 3/@(d 4/dp )

term as a perturbation in the following form of Eq. (4.29):

~d 'Ci 2 d4
dp 3 dp

where A, (=1) is the parameter used for convenience in
keeping track of the various orders of the perturbation.
The zeroth-order solution is clearly ( —,

' a p) /3 with
higher-order terms being obtained by iterating the recur-
sion formula

(4.30)

8„+)
cifp

= —,S„[8„],

where 8„are defined by

(4.31)

4/= —', a p+ +HA, ",
n=l

(4.32)

and S„[8„]are the coefficients of a power-series expan-
sion in A, of 3/4(d 4/dp ) as is indicated by the equation

dek gk+3 3

clap

~@d 4 2 g~k k

Gp k ] gp
2a p+ g Hkk.

k=1

According to Kamke the solutions to this equation
are best studied after making the transform ations
p= —in(Px) and U =x4(p) to yield

lirn
d4

r ~o 6fp
(4.36)

lim
d4

r ~L Gap
(4.37)

where the cutoff L, has been introduced. Since the
zeroth-order contribution to 4= ( —,

' a p }2/ dominates
higher-order contributions as x~0, the boundary condi-
tion (4.36) reduces to

It is clear from the above equation that S„[8„]is calcul-
able from a knowledge of Hk for k & n and that

So ————,(a /p}. It is also relatively easy to obtain 8i and

82 by iterating Eq. (4.31),

0) ————,'a lap, (4.34)

a
82 —— (lnp —4) . (4.35)

6p

The above suggests that 8„ is of (n —1)th order in 1/p.
One can see by examination of Eq. (4.33) that this implies
that S„[8„]is (n+ 1)th order in 1/p. Thus iteration of
Eq. (4.31) proves inductively that 8„+i is nth order in
1/p. The parameter a appears as a multiplicative factor
in each term of the perturbation expansion. For large n

the dominant contribution to S„[8„]is d 8„/dp . This
implies that the general term in the perturbation series,
Eq. (4.32), progresses as (n —1)/p'" " for large n and
the series converges for I/p & 1.

One finds that the application of boundary condition
(4.26) for x.~O yields a scaling constant P that approaches
zero. This difficulty occurs because the integral for E(x)
in the original self-consistency condition has an upper-
limit divergence. This divergence is an intrinsic difficulty
of the unscreened electrolyte problem, which one could
have predicted by examining results of the homopolymer
case. The analysis of the latter case shows that
G(x,x) ~x implies that v= 1/( I+a). Since Monte Car-
lo calculations have demonstrated that v=1 for un-
screened electrolytes, one sees that extrapolation of the
above result to the unscreened electrolyte limit yields
a=O or G(x,x)=const, which implies divergence of the
integral E(x). The reason for the difficulty is that the re-
striction of a finite contour length for nonzero s (finite N)
is not contained in the equations. Such a restriction is not
required for v&1, because the monomer density rapidly
falls off to zero as distances x approach the size of the
contour length. The finite-contour-length restriction
disappears for the unscreened electrolyte when s=0 or
%~00, indicating that our equations produce only an
asymptotic result in the limit of large N. In order to ob-
tain this asymptotic result, we introduce an upper cutoff
L, which we take to infinity with N at the end of our cal-
culations. This procedure is meaningful if our final quan-
tities of interest, namely (R },are independent of L.

We will rewrite the boundary conditions [Eqs. (4.26)
and (4.27)) in terms of 4 and p for the unscreened case,

= g S„[8„]A,".
n=0

(4.33) (4.38)
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thus demonstrating that condition (4.36) is always satis-
fied. In applying the second boundary condition (4.37),
we notice from Eqs. (4.32), (4.34), and (4.35) that the pa-
rameter a appears in 4 only as a multiplicative factor.
Thus when solving this boundary condition for p at
x =L, the effect of a cancels and one obtains for p a
pure number which we express as —in/. Using the defi-
nition of p, following Eq. (4.28), this demonstrates that P
is inversely proportional to the cutoff L according to the
relation

portional to Bjerrum length of Eq. (2.4)] is sufficiently
small. In this connection it is worthwhile to note that
Baumgartner's Monte Carlo calculations were performed
for relatively high temperatures where the Bjerrum length
was —,'o the segment length.

In this work we will consider the high-temperature lim-
iting case where we need only to consider the zeroth-order
term of Eq. (4.40). By combining Eqs. (4.20) with the def-
inition of 4 following Eqs. (4.28) and (4.29},we obtain

(4.39)
(

3 a 3p)2/3 [
3 a 3 ln(Px)]2/3

[G(x,x)]
(4.41)

We now write the result for 4 to within two orders of
the perturbation expansion,

4=( —,a p) /
1 — + lnp — —4

21 2 (1 )'

p 27p'

Using Eq. (A7} for h (r) we can write the dimensionless
ratio in Eqs. (A13) and (A14), h (r)N /(M), in terms of
dimensionless variables,

h (r)N N a
[ [

3
1 { p )]2/3

(~) c(M)

(4.40)
—[——', ln(cd))'/'I . (4.42)

By noting that nth-order perturbative contributions to 4
are also of nth order in 1/p, we see that the rapid conver-
gence of the perturbation series is obtained for large p (or
x small relative to the cutoff L): At the end of these cal-
culations we will see that only small values of x relative to
L contribute to (R2) at high temperatures where a [pro-

In order to evaluate e, we use an iterative procedure in
which, at the beginning, we neglect the c dependence of
the logarithmic factors which produces c =c'Na, where it
is assumed that c' is a weak function of the parameter a.
Using this expression for c and noting that —lna ~Do as
T—tao, we expand the logarithmic portion of Eq. (4.42)
in powers of {—lna)

N a 3 Nac'g'~——,
'

ln
c (bX)

2/3
Nac'gX

2 I
2/3

—ln
~2 2

[1+0((—lna) ')], (4.43)
c (bX) ( ——,

' lna)'/'

where Eq. (4.39) for P has been used and c' is a sufficient-
ly weak function of the parameter a. We note that the
cutoff (L) dependence has completely disappeared in the
leading term in Eq. (4.43). According to Eq. (4.43) we ob-
tain in this approximation the following expression for c:

Xa

( ——', lna)'/
(4.44)

2( ——,
' lna)'"

X [1+0{(—lna) ')] . (4.45)

Since we put L, =l at the beginnin, we recall that lna
should be understood to be ln(a/L, ). Equation (4.44)
shows that c'=( ——', lna) '/, verifying the weak depen-
dence on the parameter a that is assumed for c' in the
above iterative process.

We would now like to eliminate the remaining cutoff
dependence in the expression for G(x,x', N) contributed
by the term —,N[G(x,x)] [see Eqs. (A12) and (A14)].
To accomplish this, —,N[G(x, x)] is expanded in a
fashion similar to Eq. (4.43),

—[G(x,x)] =—[——', a ln(Px)] /

I

The cutoff-dependent term

,'Na in(c'Nga —//L)/( ——, lna)'/

in the above equation only contributes an x-independent
prefactor to G(x,x',N) [see Eqs. (A12) and (A14)], which
cancels in the calculation of (R ) according to Eq. (4.14).
Consequently, the arbitrariness of the cutoff completely
disappears from our predicted (R ' ) in the high-
teinperature limit where terms of order ( —lna) ' are
neglected. ~4 Thus in the high-temperature large-N limit
we have by saddle-point evaluation of the integrals in Eq.
(4.15),

(R')'" aN . (4.46)

The saddle point was found to be at 7=0.5835 by the
same numerical methods as were used for the standard
excluded-volume case. The factor a is included in the
above proportionality because it provides the dominant
portion of the predicted temperature dependence. The
prediction that (R ) is proportional to N agrees with re-
sults of Flory-type theories and Baumgirtner*s Monte
Carlo results; the latter, as we have already noted, also
being obtained at relatively high temperatures.
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V. DISCUSSION

In the preceding sections we have developed a nonper-
turbative method for obtaining the (R ), which is apph-
cable to polyelectrolytes. In order to illustrate the method
it was applied to the homopalymer and the unscreened po-
lyelectralyte chain yielding results in agreement with
Flary's predictions' for the homopolymer case and re-

sults of Monte Carlo calculations for unscreened po-
lyeiectrolytes.

Our treatment of the unscreened polyelectrolytes re-

quired the introduction of a cutoff which we eliminated
from our results far (R ) in the high-temperature large-
N limit. Corrections for lower temperatures and finite N
could nat be made without developing a procedure for
systematic elimination of the cutoff dependence from the
higher-order terms. We do not develop this question in
the present paper. The cutoff problem does not occur for
an intermediate screening (0 & a & oo ) where it is expected
that v&1 and the methods described herein can be ap-

plied, as was demonstrated, without the introduction of
cutoffs. Consequently, the detailed calculations describ-
ing the crossover between the excluded-volume (v= —,')
and rigid-rod (v= 1) regimes are, in principle, possible and
we hope to follow up this work with such calculations in
the future.

We want to note that the problem of the large polaron'
is, from a mathematical standpoint, surprisingly similar
to the polyelectrolyte problem. Because the former prob-
lem for a reasonably large coupling constant does not per-
mit the perturbative treatment, the same must be true for
the polyelectrolyte chain. At the same time the variation-
al approach used for the polaron would be hardly appli-
cable to our case, especially when the finite concentration
effects and other effects are considered. Moreover, unlike
the polyelectrolytes in the regime of small screening, the
predictions of the large-polaron theory were tested experi-
mentally. These tests give additional support in favor of
the nonperturbative treatinents for the polyelectrolyte
chain.

APPENDIX: 'rHE LAPLACE INVERSION OF G(x,x', s)

In this portion of the Appendix we derive an expression for G(x,x,N) based on the following iterative expression for
G(x,x',s) [see Eqs. (4.9b) and (4.10b)]:

G(x,x', s) = exp —f dt I 2s + [G(t, t) j
(I2s+[G(x,x)] ) I2s+[G(x',x')] j

)'~

for the case where 0 & x' &x. We begin by rewriting G(x,x', s) in the following form:

G(x,x',s)=G (x,x', s)1(x,x',s),

(A 1)

(A2)

G (x,x',s)= exp( —M t 2s + [G(x,x)] J
'~ ),

[2s+ [G(x,x)]-'j '" (A3)

1(x,x',s)=
h (x')

2s + [G(x,x)]

. i&4exp —I2s+[G(x,x)] 2]'~i f h(t)
2s + [G(x,x) j

—1 dt (A4)

Ax =x —x

h (t)= [G(t, t) ] ' [G(x,x—) ] ' .

(A5)

(A6)

The above decomposition of G(x,x', s) is done so that h (t) and h (x') are positive within the range of argument changes.
The function I (x,x',s) can be expanded in the power series

00 A„(x,x')
1(x,x',s)= g (A7),= i I 2s +[G(x,x)]

which converges for sufficiently small h (x') and h (t). The product of G (x,x', s) and the series expansion for I (x,x', s)
yields a general term whose Laplace inversion can be brought into convenient form by the substitution
2s'= 2s +G(x,x)

. f t2s+[G(x,x)] J
'"+"~ exp( —MI2s+[G(x„x)] 'j'~')exp(sX)ds

2'lTl

=A„(2) '"+" exp
N 1 f (s') '"+" exp[ —v s (v 2 M) j exp(s'X)ds'

2[G(x,x)]

= —,A„(2N)'" "~ exp — I" 'erfc (AS)
2[G(x,x)]

where erfc(z) is the integral (2/Wn) exp( —t )dt and I represents the integral operator which is defined by the re-
s
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cursion relation

I"erfc(z) = f I" 'erfc(t)dt . (A9)

Since the methods herein described will be applied to cases where x and M are of the order N with vp —,, the argu-
ment of erfc, i.e., M/v'2N, is very large, being of the order N" '~ as N~00. Therefore we only need to keep the
dominant term of an asymptotic expansion of I"erfc(M /v'2N ), as indicated by the following relation:

2 &2N
v'2N V m 2M

(~)'
exp

2N
(A10)

By substituting this asymptotic relation into Eq. (A8), we obtain

G (x,x', s) =A„
I2s+[G(x,x')]

1 (M)
(2mN)

exp exp
2[G(x,x)]

(A 1 1)

Thus we see that within the framework of Eq. (All), La-
place inversion (W ') is accomplished by replacement of
G (x,x', s) with

r

exp
(Lhx) N

2[G(x,x)]

and I2s+[G(x,x)] I
"~ with (N/M)". Making the

latter substitution in the series expansion for I (x,x', s)
[see Eq. (A7)] permits us to find a sum of the infinite
series in a closed form so that we obtain for G(x,x', N},

1
G(x,x', N) = exp[ —F(x,x')],

[2trNy(x, x') ]'i
where

(A12)

2
i/2

y(x, x') = 1+ h (x')N
(M)

(A13)

and

(M) N
F(x,x') = +

2[G(x,x)]
1/2

h(t)N'
(du)z

—1 dt. (A14)

Since we are able to collapse the series expansion of
I (x,x', s) back to the analytic form after Laplace inver-

sion, we assume analytic continuation of our final Eq.
(A12) to regions of x and x' beyond the sphere of conver-

gence of the series in Eq. (A7). Since the decomposition
of G(x,x', s) was done so that h (t) is positive, and quanti-
ties taken to fractional powers in Eqs. (A12) to (A14} are
real for the region 0 ~ x'&x, the analytic continuation of
Eq. (A12) may span the same region.

We note from Eqs. (4.13) and (4.41) that [G(t, t)] is
proportional to t ~ and [——', a ln(Pt)] ~ for the homo-

polymer and polyelectrolyte problems, respectively. These
singularities are contained in h(t) and y(x,x'). As a
consequence, the moments of the distribution function
must be evaluated using G(x, e,N) and the limit @~0 be
taken at the end of the calculations as indicated by Eq.
(4.14). This limiting procedure is simplified by noting
that F(x,x') contains no singularity at x'=0. In order to
see this, we note that singularities in the integrand of the
integral expression of Eq. (A14) take on the form
[h (t)]'~ for small t and finite M. These reduce to t
and [——', a in(Pt)]' for the homopolymer and polyelec-
trolyte, respectively, according to Eq. (A6). Since both are
integrable singularities we can for these cases extend the
lower limit of integration x' to 0. The remaining terms in
the expression for F(x,x') are nonsingular at x'=0.

We also observe that the integral expression contained
in Eq. (A14) for F(x,x') is positive because h(t) ~0.
Since the other terms are also positive and one of them,
x /2N, increases without bound for large x while the oth-
er, —,N[G(x,x)], increases without bound for small x,
F(x,O) clearly should have a minimum. This property of
F(x,O) permits the possibility of saddle-point evaluations
of integrals involving G(x,O, N).
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