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Dielectronic-recombination-rate coefficients for neonlike ions
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This paper presents for the first time an explicit calculation of the partial dielectronic-
recombination-rate coefficients via the 313/ manifold for 17 neonlike ions ranging from argon to
tungsten, using relativistic multiconfiguration wave functions to calculate both the Auger and radia-

tive matrix elements. The effect of electron collisions on the dielectronic-recombination-rate coeffi-
cient is also examined at several densities of interest for modeling laboratory plasmas.

I. INTRODUCTION

Dielectronic recombination is the dominant recombina-
tion process for ions in high-temperature, low-density
plasmas' such as the solar corona. It is also a significant
contributor to plasma cooling in hot plasmas found in lab-
oratory fusion plasma experiments. The calculation of
the dielectronic-recombination-rate coefficient a " is dif-
ficult because of the many intermediate resonance states
over which the rate needs to be summed. We calculate
aD" for recombination from the neonlike ground state
into the sodiumlike nonautoionizing states via the 313l'
manifold for 17 neonlike ions ranging from Ar+s to
W+ . This calculation uses accurate relativistic atomic
wave functions calculated for each ion. This is the first
calculation in which relativistic multiconfiguration wave
functions are used to calculate the matrix elements ex-
plicitly for each of the doubly excited states. Previous au-
thors have calculated a "using a simple angular momen-
tum averaged procedure3 to average over as many inter-
mediate states as possible or have done a detailed calcula-
tion using single- or few-configuration nonrelativistic
wave functions to calculate the relevant atomic data.

II. METHOD

In j-j coupling the 3l3l' manifold consists of 237
doubly excited states which are connected to the neon-
like ground state 1s 2s 2p by the Auger process and
to the five sodiumlike nonautoionizing states
[ItL]3s1/2 3lil/2 3@3/2 3d3/2 3d5/2 by radiative decay and
electron collisional deexcitation. In addition, the doubly
excited states are connected to each other by radiative de-
cay and electron collisional processes.

There are a total of 243 states in our model. Our first
task was to calculate the wave functions for each of these
states using the code YODEL, which we ran on a Control
Data Corporation CDC7600 computer. YODEL is a relativ-
istic multiconfiguration Hartree-Fock atomic physics
code which uses as its orbital basis a set of single-
configuration Dirac orbitals calculated in a spherically
symmetric central potential which includes a finite nu-
clear potential. Racah algebra is used in calculating the
angular momentum part of the matrix elements. Using
these fixed orbitals to construct the single-configuration

wave functions, the Hamiltonian matrix is calculated in-

cluding Breit corrections to the Coulomb interactions be-
tween the electrons. Also included are the quantum elec-
trodynamic effects such as self-energy and vacuum polar-
ization. The Hamiltonian is diagonalized to give the full
multiconfiguration wave functions in intermediate cou-
pling. These wave functions are then used to calculate the
oscillator strengths for all the dipole-allowed transitions.

The continuum orbitals used in computing the Auger
matrix elements were calculated in a distorted wave ap-
proximation neglecting exchange. The potential was a
spherically averaged final-state potential. For this work,
an ion in a neonlike ground state would be used to calcu-
late the potential. For the high-Z systems we are using,
the neglect of the exchange term should be a small effect.
The free-electron wave functions are used with the mul-
ticonfiguration wave functions for the bound electrons to
calculate the Auger matrix elements.

Approximate collision cross sections are computed in
the classical path approximation coupling dipole-allowed
states. These collision cross sections are then approximat-
ed by the five-parameter fit

(tru) =1.58X 10 'p(b) cm'/sec,
b g3/2

where

(2)

lnlt ($)=ao+ a i lng +a 2 ln b +a 3 ln b . (3)

X+" "(21(31 3l )~X+" "(31 )+hv .

5E is the transition energy (in eV) used in fitting the data
and e=kT is the electron temperature (in eV). The free
electrons of density n, are assumed to have a Maxwell-
Boltzmann velocity distribution represented by a tempera-
ture T.

The components of the dielectronic-recombination pro-
cess are dielectronic capture, Auger,

X+'+e ~X+' "(21,3l23l3),

and stabilization,
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The neonlike ground state X+' captures an electron to
form a doubly excited sodiumlike state X+" "(213131').
The notation 2I represents a hole in the neonlike core,
while 3l3l' represents the two n =3 electrons. The dou-
bly excited state can Auger decay or undergo a radiative
decay (An=i) to a sodiumlike nonautoionizing state
which stabilizes the capture process.

In addition to the "direct" dielectronic recombination
there are radiative processes and (for finite density plas-
mas) collisional processes which can cause angular
momentum redistribution within the doubly excited states
and collisional deexcitation to the sodiumlike nonautoion-
izing states which stabilize the capture. These processes
are the following: radiative decay processes,

X+" "(21,312 31s )~X+'* "(21i 312 3li ) +h v,
X+" ' (21 i 3123li )-+X+' "(21'i3lz3lg ) +h v,

and collisional excitation and deexcitation,

X+" "(2li 3123!i)+e ~X+' "(3li)+e
X+ (21i 312313)+e ~X+ (21i 312 3li ) +e

X+" "(21,31~3!i)+e X+" "(21', 3123li)+e

All of these processes are included in our calculation.
To calculate the population kinetics, let

Nr ——population of the neonlike ground state,
Nr =population of the doubly excited states j=1—237,
NF ——population of the sodiumlike nonautoionizing states

l

i =1—5, and R,b
——rate coefficient for transitions from

level a to level b; then,

dNI
=QNkRkr Nr QRrk-

dt k

Nj
=NrRrr Nr Rrr+XR—rF;+XRrk +XNkRkr

dNF

g NkRkF; .
dt

gr ——degeneracy of the neonlike ground state, EJ =energy
of the doubly excited state j, Er ——energy of the neonlike
ground state, and AEJ ——EJ —EI. The radiative decay rate

pJ and the collisional deexcitation rate yJ stabilize
dielectronic capture by the hn = 1 transitions:

5
R C

yr' +yr' X Rr'Fr (9)

We define the total destruction rate yr to be

D R C
yr =yr+yr+X rk

k

(10)

The dielectronic-recombination-rate coefficient a is de-
fined by

DR
~DR

n, N;
(12)

The inclusion of the radiative decay rates for the b,n =0
transitions increases the rate coefficient by less than 3%%uo

for the range of ions we considered.

III. RESULTS

We calculated the dielectronic-recombination-rate coef-
ficient a " for the neonlike isoelectronic sequence as a
function of electron temperature for each of the 17 ele-
ments Ar, Fe, Cu, Ge, Kr, Zr, Nb, Mo, Ru, Rh, Ag, Sn,
Xe, Nd, Ho, Ta, and % at an electron density
n, =10' /cm . At this density, the effect of electron col-
lisions is negligible and can be neglected as we will show
later. In Fig. 1 we plot a "versus 8 for six of the ele-
ments. In Table I we list the maximum value of the

where the last term is due to An =0 transitions. The
recoinbination rate is then calculated by summing the fiux
of population from the doubly excited states to the sodi-
umlike nonautoionizing states:

237
DR yN( R+ c)

We then calculate the populations of the doubly excited
states using dynamic relaxation to steady state. We as-
sume the population of the neonlike ground state is con-
stant NI and that the populations of the sodiumlike
nonautoionizing states are zero. Equation (5) is solved for
Nr by setting dNr /dt =0 and then iterating on

Nryr '+g NkRkr

J A R C (7)
yr +yr +yr +g Rrk

k

1.6-

1.4—

12:
1.0:
0.8:
0.6:
04

I
7

I

|

I

I t

I

Nb

x
1'

where yJ
——Rlj is the dielectronic capture rate which is

calculated by detailed balance from the Auger rate yJ"..

0.2 =

102 10
3 A

y, (&)= gJpj —hF /8

(2~m8) r 2gr

where gJ ——degeneracy of the doubly excited state j,
FIG. 1. Die1ectronic-recombination-rate coefficient a " vs

electron temperature for six neonlike ions.
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TABLE I. Dielectronic-recombination-rate coefficients.
1,5—

18
26
29
32
36
40
41
42
44

47

54
60
67
73
74

Hp (eV)

124
257
314
380
474
576
602
632
692
724
788
885

1023
1257
1556
1844
1881

a,"„4,'10 " cm /sec)

0.265
0.825
1.109
1.235
1.382
1.489
1.495
1.488
1.470
1.451
1.441
1.423
1.389
1.178
1.009
0.865
0.845

186.5
385.6
471.6
569.8
711.0
864.3
903.4
948.4

1037.8
1085.3
1181.4
1326.9
1533.6
1881.4
2327.5
2752.4
2806.5
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FIG. 2. Dielectronic-recombination-rate coefficient ao" vs
electron temperature for neonlike niobium. The circles are the
result of this calculation while the solid line is the theoretical fit
of Eq. (15).

dielectronic-recombination-rate coefficient a,"„ for each
element and the value of 8& at which a " is maximum.
Also listed is E, the average energy lost by an electron in
each recombination. E is calculated by

g bEJ COJ.

(13)

where

DI R

CO& =
~J +~i

(14)

We calculate coj at 80. The QJ coj is a fast numerical al-
gorithm' to calculate an approximate y ". If we model
dielectronic recombination via the 313l' manifold as
proceeding through one pseudo-doubly-excited state with
bE =E, then we may fit the relativistic multiconfigura-
tion rate coefficient by

dielectronic-recombination rate peaks at niobium
(Z =41).

Collisions can have an effect on a "
by redistributing

the population of the doubly excited states among the dif-
ferent angular momentum states of the 313l' manifold,
especially the higher angular momentum states. "'2 It
can also act as a collisional stabilization process by col-
lisionally deexciting a 3l state to a 21 state. The latter
process is very slow, however, except at very high electron
densities. In Fig. 4 we plot aD" (8=80) versus n, for
four neonlike ions spanning the range of Z we have con-
sidered. aD" is normalized to unity for n, = 10'". As one
might expect, the effect is largest for low Z.

To show the relative effects of angular momentum
redistribution (bn =0) and collisional deexcitation
(b.n = 1) on the net dielectronic-recombination-rate coeffi-
cient, we plot in Fig. 5 a " (at 8=80) for argon versus

4.4S17aD;„e-"~ 38
x

X
2E

1.5—
~ ~

where a is maximum at 8= , E. (Comparing E and—80
in Table I, we see that 80- ', E within 1% for all —ele-

ments. ) Figure 2 shows a " plotted versus 8 for Nb,
demonstrating excellent agreement between the fit and the
original data. The circles are a result of the detailed cal-
culation while the solid line represents the fit of Eq. (15).
Agreement is better than 1% over the range 0.5 &x ~5.
In general, this fit is good to 4%%uo over the same range of x
for all the ions calculated. At low temperatures, the fit
underestimates o, because the detailed system has lo~er
energy states which become more heavily weighted; there-
fore, E is no longer the appropriate energy to use for the
pseudostate.

Figure 3 plots am, „versus Z (the bare nuclear charge)
for this calculation. We note that our calculation for the

R 1 0
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Ka 05—

0
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t
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FIG. 3. Maximum value of the dielectronic-recombination-
rate coefficient a "vs the bare nuclear charge Z for 17 neonlike
lons.
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FIG, 4. Dielectronic-recombination-rate coefficient a "
(Hp)

vs electron density for several neonlike ions. The curves are
normalized to unity at n, =10' .
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FIG. 5. Dielectronic-recombination-rate coefficient a " (8p)
vs electron density with (solid line) and without (dashed line)

electron collisional deexcitation (hn = 1) for neonlike argon.

electron density with (solid line) and without (dashed line)
collisional deexcitation included in the calculation.
Without collisional deexcitation a " reaches a maximum
around n, =10 ' and saturates. This saturation occurs
when the collisional rates between the 3!31' states dom-
inate the Auger and radiative rates. The 3131' stat~ are
then in a thermal equilibrium with their relative popula-
tions determined by a Boltzmann distribution at the elec-
tron temperature. Any further increase in the collision
rates (b,n =0) will not affect the population distribution
since the states are already in local equilibrium. Also,
heavy particle collisions' can contribute to the angular
momentum redistribution especially at high temperatures
for very small energy transitions.

As n, continues to increase, collisional deexcitation
(b,n =1) becomes dominant over radiative decay in in-

creasing the destruction rate of the doubly excited states.
Thus collisions effectively increase the branching ratio for
dielectronic capture. As the electron density becomes
high enough, this effect will also saturate as the branching
ratio reaches unity. It should be pointed out, of course,
that at these high values of n, collisional excitation from
the sodiumlike nonautoionizing states (which do have a
finite population) will cause a reverse fiow and counter-
balance the dielectronic recombination.

Finally, the dielectronic-recombination-rate coefficient
we have calculated is only a partial rate coefficient. Ac-
curate calculations of the rate coefficient must include
principal quantum numbers up to a limit dictated by plas-
ma ionization. %'e are currently calculating the contribu-
tions of the nln'I' manifolds for n, n') 3. Convergence of
the calculated rates is expected to be fairly rapid for
high-Z ions, such as tungsten, for two reasons. First, cal-
culations using the 313/' manifold for tungsten show that

the bulk of the dielectronic-recombination fiux proceeds
through a reasonably small nuinber of channels. Second,
due to j-j coupling, each multiconfiguration wave func-
tion used to calculate matrix elements is very pure in one
single-configuration wave function for the high-Z ions.
In this case, the use of single-configuration wave func-
tions should be a very good approximation, and extension
of the dielectronic-recombination-rate coefficient to high-
n values can be accomplished quite accurately by semian-
alytic formulation. Convergence of the low-Z cases, on
the other hand, is complicated by the necessity of includ-
ing virtually all of the 313l' states to obtain reasonable ac-
curacy. (The results reported here include all states for
each calculation. ) However, including principal quantum
numbers above n =4 will require compromise due to the
large number of states for these manifolds. Despite a
lower plasma ionization principal quantum number for
low-Z ions, computation of converged dielectronic-
recombination-rate coefficients for these elements be-
comes very difficult because of the necessity of retaining
virtually every state of the doubly excited manifolds.
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