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Theory of the Saffman-Taylor "finger" pattern. II
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'We generalize the stability results of the preceding paper to arbitrary A,. Coupled with a new ap-
proach to the selection of "finger" width, this stability computation allows us to predict the depen-
dence of allowed widths on capillary number. At the same time, we show that of all possible finger
shapes at fixed capillary number, only one [denoted A. (y)] is stable. Finally, we show how finite
noise can shift A, (y },causing observed widths and stability to diverge from the noiseless calculation
at large velocity. We conclude with a discussion of the paradigm of microscopic solvability for dif-
fusive controlled pattern formation, into which the above analysis neatly falls.

I. INTRODUCTION

In the preceding paper, ' we studied the stability opera-
tor around the steady-state "finger" shape and concluded
that all modes at A, = —,

' were damped in time. This calcu-
lation was carried out by deriving the steady-state shape
to linear order in y and then considering a perturbation,
also to the same order. This is possible only because the
selection of a discrete set of allowed finger shapes as
demonstrated by McLean and Saffman and Vanden-
Broeck seems to be invisible in an asymptotic series in y.

In this paper, we use the general A, version of the stabili-
ty operator to study the true finger shape as a function of
y and its resultant stability. The first part is devoted to a
reexamination of the paper of Vanden-Broeck. In particu-
lar, we use his method of determining the allowed set of I,
at fixed y to demonstrate that the selection mechanism is
due to terms which are essentially singular as y~0. This
explains the inapplicability of asymptotic analysis as well
as the results in paper I regarding the translation zero
mode. Reversing the logic, we can then use the existence
of a true zero mode as an indication of convergence of the
asymptotic series. Using this, we reproduce the selected
set to high accuracy.

The second part of this paper is devoted to the stability
characteristics of the selected set. By virtue of the selec-
tion mechanism, it turns out that it is inevitable that all
but the largest velocity (smallest I, ) member of the
discrete set [A, '(y)] will be unstable. This explains the
agreement of the experiments with A,*. We study the con-
tinuum around k' as well as the antisymmetric discrete
modes. This will demonstrate that the true "finger" pat-
tern is stable. Finally, we heuristically consider the effects
of noise, following ideas put forth recently by Bensim. on.

Recently, we (together with Koplik ) have argued that
general mechanisms govern a wide variety of pattern for-
mation problems. We have described this idea as "micro-
scopic solvability" and demonstrated that it explains the
workings of simple models of dendritic crystal growth. In
Sec. V me review this approach and explain how the re-

suits of this series of two papers lend support to this
scenario.

II. PATTERN SELECTION

In the original paper of McLean and Saffman the al-
lowed value of A, as a function of y was found by directly
solving the steady-state equation. Afterwards, Vanden-
Broeck reconsidered the same question from a somewhat
different point of view. Specifically, he defined a general-
ized problem via allowing the interface shape to have a
cusp at the tip region. This problem then has a solution
at all values of A, , with the cusp magnitude f(A, ) equal to
some calculable function of I, at fixed y. The actual solu-
tions are determined by the auxiliary equation f(A, ) =0.

For completeness, let us briefly review the formalism in
Vanden-Broeck's paper. The steady-state equations can
be written as

8 I

(la)

8 t)8
K qs qs

s s
—q = —cos8, ( lb)

x (s)+iy (s)=— l —X l, e'
Qs s'q(s') '

to give rise to a nonzero value of t)x/t)y at s =1. Since
the solution ~as assumed to be symmetric around s =1
initially, this corresponds to a cusp at the tip.

with q (0)= 1, q (1)=0, 8(0)=0, and the small parameter
K related to y via K=m yA, /(1 —A, ) . We fix A, via the
condition

ln(1 —A, ) =—f, ds'1 ' 8(s')
s'

and solve the resulting equation with 8(1) free. The func-
tion f(A, ) is defined to be m/2 —8(1), which is readily
seen, via the relationship
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We have repeated Vanden-Broeck's calculations with
identical results.esults. An example of a corn uted f(k) is
shown in Figs. 1(a) and 1(b) for y = 5)& 10 and 3)& 10

pec ive y. (Note that our curves look sli htl diff
because theey are plotted at fixed y, not at fixed it. ) Th
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about how f(f —,
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This is a crucial result for all that follows.
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The fact that has an essential singularity as y~0 ex-
plains the failure of standar
a ve ormula says that k= —,
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is a solution to all orders in

an asymptotic expansion around =0 I
urbative pieces that spoil th t d - ' . n

y = . t is only non er-
e s ea y-state solution. In

other words, we cannot see the solvabilite so va i ity condition unless
men inc udes exponentially small terms. We will

discuss this idea further in Sec. V.

meanin
We now must consider the question f h

'

g of the stability operator derived via an as in tot-
ic expansion, given that th t

' ' 'ne viae rue solution is determined via

III.
exponentially small terms. This will b th b'wi e t e subject of Sec.

III. SOLVABILITY

So ar, we have defined an operator L (A, ; ) via a
steady-state solution which

' 1'd '
ex-is va i only if we neglect ex-

ponentially small terms. Specifically,

6 L, (z;y)= g L„(X)y",
n=0
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FIG. 1.. f(A. ) vs', . (a) y=5X10—', (b) y =3g10-'.

and, in fact, our numerical results have all made us

there exists a true stability operator L(A, ( )

n ween t"ese two operators~ Heu
1 ttht t ilk,a at a A,&A,;, L has no relationship to
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'
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p y absent or totally unimportant at the sel

ea y-state solution agrees extremely well with the nu-
merically computed exact solution.
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This idea has immediate consequences. Recall the dis-
cussion of the "zero-mode" symmetric discrete eigenvalue
at A, = —,

' as a function of y. We found that this mode was

always at Reco &0 even though one could derive in pertur-
bation theory a mode at exactly co=0. %'e can now
understand this behavior. At all A,&A,;, the perturbative
expansion fails to converge to a true stability operator.
Therefore, there is no reason why L should have a mode
at ~=0. Conversely, at A, =A,;, L -L, which has a zero
mode. In other words, only at the selected values of A,

should there exist a true translation zero mode.
One can turn around the argument just given to arrive

at the following hypothesis: The selected values of A, may
be determined by the requirement that L has a translation
zero mode. Also, if we have an approximation to L such
as Lo+yLi, we will get approximate values for A,;. The
corrections to these approximate values should go to zero
as higher powers of y. This method is illustrated in Fig.
3, where aio has been plotted versus A, at y =0.003. Notice
that coo crosses the axis at A, -0.519 in excellent agreement
(0.5%) with the direct determination as seen in Fig. 1(b).
At this relatively low value of y, it is actually more effi-
cient (less CPU time) to determine A, via this stability cri-
terion than it is to solve the steady-state equation directly.

As discussed above, there is actually a discrete set of A,;
for all y. To see how this comes about from the point of
view of the stability operator, we have studied the lowest
three discrete (symmetric) modes at y=0.005, shown in
Fig. 4. As before, coo crosses the axis at =0.524 in agree-
ment with the results shown in Fig. 1(a) (the agreetnent is

slightly worse at y =0.005 because La+ yL i is a less reli-
able approximation to L). Note that the next lowest
mode, coi, crosses the axis at A, -0.61. This corresponds
to the second zero crossing off (A, ) in Fig. 1(b). Eventual-
ly, co2 will cross, giving rise to a third allowed A, . This
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FIG 4 0 mi, and m2 vs k at y =5 X 10

behavior persists ad infinitum, giving rise to a countably
infinite set of allowed finger widths.

We can now suggest a general scenario for the discrete
eigenvalues. As we increase A, at fixed y, or as we de-
crease y at fixed iL& —,', they all march towards larger
Reco, eventually crossing the axis. As mentioned in Sec.
VI of paper I, more and more discrete modes are generat-
ed as y is lowered, and presumably by the time we reach
y=0, an infinite number of modes have crossed the
Reco=O axis. In this sense, the discrete spectrum goes
over continuously to the exact stability results of Saffman
and Taylor at y=O, i.e., an infinite number of unstable
discrete modes. k= —, is a singular point in this regard,
inasmuch as the transition to the y =0 limit does not hap-
pen continuously for that value of the width.

This scenario connecting the solvability condition with
the stability operator provides a resolution of the question
as to why, experimentally, only the smallest A,;=A,' is
seen. At any subsequent possible steady-state solution,
there is always at least one unstable mode, preventing the
steady-state solution from being physically attainable.
Given the type of spectrum seen in the figure, this is a
generic feature of the problem and will not be altered by
any small change in the equations or parameters. Because
of the fact that higher A, are connected with secondary
modes, the instability is inevitable.

There is one feature of this approach that needs clarifi-
cation. It is perfectly possible to construct a new operator
L, which agrees with L to any fixed order in y, which has
an exact zero mode. The construction proceeds by recal-
ling that there always exists a function 5&(f), coinputable
in perturbation theory, with

I. [5'(y)]=—g y"L„(X)[g(q)]=O(y~+') .

FIG. 3. Lowest symmetric mode uo vs A. at y =3 & 10 Then
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has 5N as an exact zero mode. In fact, Bensimon works
with an operator that differs from Lo+yLi by terms of
order y and by construction has an exact zero mode.
Similarly, the work by Muller-Krumbhaar and Langer on
stability of dendritic crystals employed the above idea to
get an exact translation mode. Any physical result, such
as the actual spectrum of the finger at the selected A., will

not depend on whether we use L or L—therefore, the in-
stabilities at secondary selected A,

&
are still calculable with

L. However, results at other A, can be and are different
because the operator is not converging to anything. Our
use of L is preferable because it allows not only the
evaluation of the spectrum at Aq, but also the determina-
tion of A,; itself.

One should not attach too much physical significance
to the fact that the solution is determined by a mode
crossing zero. After all, it is a priori obvious that any real
steady-state solution has an exact translation zero mode.
The real physics of the problem lies in the concept of "mi-
croscopic solvability, "

by which we mean the spoiling of
allowed steady-state solutions by exponentially smaB
terms in the "microscopic" parameter. The stability
method employed here is useful (a) as a computational
tool and, more importantly, (b) as it provides an answer to
the question of why one can only get a single stable
steady-state configuration.

Before proceeding to a discussion of the other modes
(continuum andlor antisymmetric), we would like to con-
sider the effect that noise might have on our scenario. As
we have stressed repeatedly, computations at small num-

bers of points are always more unstable than the true
modes, found by extrapolation. Let us suppose that in
some sense finite numerical noise in our program acts as a
model for physical noise arising from imperfections in the

apparatus. Then, any given experiment would approxi-
mately correspond to a numerical analysis at a fixed num-
ber of points. In Fig. 5 we exhibit the X=50 values of ~o
at y =0.002. The curve crosses zero at A.'=0.486, which
is then the allowed width. Because of the increased insta-
bility, A,

' has been lowered and, in fact, is below the
asymptotic limit at zero noise of —,. There have been indi-

cations in recent experiments ' that the width can go
below —,

'
and Bensimon has independently suggested that

this niight be due to noise effects. Of course, there are ad-
ditional three-dimensional considerations present in the
experiment that are not accounted for by the system of
equations studied here. These effects might also play an
important role in resolving this issue.

IV. STABILITY

Now that we have understood how the solvability con-
dition operates, we return to the question which motivated
our study, the stability of the finger. In this section, we
present results for the continuum, both symmetric and an-
tisymmetric, as weil as for antisymmetric discrete modes.
The conclusions will be the same as that stated in our ear-
lier paper' based on the A, = —,

'
analysis —fingers are stable

as far as linear analysis goes. At the end, we briefly dis-
cuss the evidence for the nonlinear mechanism whereby
real fingers do actually go unstable at finite y.

In Figs. 6(a) and 6(b) we have shown the extrapolated
continuum at y=0.005, A,

'—=0.525, including both the
antisymmetric and symmetric modes. As discussed in pa-
per I, there appears to be an antisymmetric branch, a sym-
metric branch (both of which end at Imco=0, Redo &0),
and an extra mode at the bottom of the symmetric contin-
uum. For this set of parameters, at spatial resolution
100a=2, this mode is at —0.01, and it becomes more
stable as o is decreased. The conclusions that can be
drawn from these quantitative results, as well as the quali-
tative study of the continuum at a wide variety of y, are
as follows.

(a) The continuum branches are almost completely
unaffected by changing from A, = —,

' to A, '(y). In all cases,
the spectrum lies entirely below Reco g 0.

(b) The additional "widening" mode moves much closer
to zero, albeit remaining stable. This is to be expected,
inasmuch as this mode is only nonzero due to exponential-
ly small terms preventing nearby A, from existing as con-
sistent steady-state solutions.

Again, we cannot present completely accurate extrapolat-
ed values because of the need for large s,„. As far as the
physics is concerned, though, this does not appear crucial
inasmuch as these continuum modes play a very small
role.

Let us turn to a study of the lowest antisymmetric
discrete mode. In Fig. 7 we present data for coo(y), where
in each case A, is chosen as A,'(y). " The results look com-
pletely analogous to those seen in Fig. 5 of paper I. At
any fixed number of points the mode eventually crosses
zero; however, the extrapolated "noiseless'* value changes
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only slightly and probably does not cross zero until y=0.
Again, the finger solution is stable to all manner of excita-
tions.

In both real' and computer' experiments, there is
eventually an antisymmetric instability which destroys the
Saffinan-Taylor finger. Our studies as well as that of
Bensimon suggest that this instability is not a simple bi-

furcation but instead is subcritical at all y~0. Our re-

sults support this idea because of the following observa-

tions.

(a) Finite noise leads to instability at A, '(y).
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(b) The stability spectrum becomes a rapidly varying
function of A, at small y—a small change in A, away from
A,
' can have a big effect on coo. This suggests that a finite

amplitude perturbation, which can effectively change A,

and then measure the stability, can act very differently
from an infinitesimal perturbation.

(c) The existence experimentally of states below A, = —,
'

attributable to imperfections in the apparatus or to com-
puter resolution can push coo across the Race=0 axis.
This can happen because decreasing A. at fixed y always
destabilizes.

40-
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X = 0.525

Bensimon further suggests that the critical amplitude goes
to zero very quickly as y~O. Our data seem to confirm
this idea, but we have not attempted a quantitative corn-
parison. Any quantitative comparison with real experi-
ments must await further understanding of which features
of this transition are universal.
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FIG. 6. Continuum modes at y=5&10 '. (a) Antisym-

metric, (b) symmetric.

V. CONCLUSIONS

In these two papers, we have presented a phenomeno-

logical approach to the selection and stability of the
Saffman- Taylor fingers. Along the way, we have

analyzed why perturbation theory fails and why simple es-

timates of the stability can be misleading. More positive-

ly, we have shown how to compute the selected width,

why the lowest solution is stable, and why all the addi-
tional solutions are unstable. What remains, of course, is
to find a method of analysis which can predict the
features found here and, perhaps most importantly, ex-

plain which features are universal and hence will be un-

changed when we make the inevitable modifications to the
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theory to account for the true experimental situation. '

In an earlier paper, the idea of microscopic solvability
was introduced as a general means of understanding or-
dered patterns and their breakdown. The essential com-
ponent of this idea was the fact that most patterns in dif-
fusively controlled systems were in fact controlled by very
small microscopic parameters, usually arising through the
microscopic structure of the interface. Included in this is
the width of the interface, the capillary length due to sur-
face tension, and, perhaps, the viscous skin depth of a rap-
idly moving fluid. The reason this can happen is that the
growth process is mathematically inconsistent without
such a small-scale cutoff. This shows up, for example, as
finite time singularities in the interface at y=o for the
Hele Shaw system' and leads to the importance of care-
fully considering the effects of finite y, even if it is ex-
tremely small.

This series of two papers has shown that the Saffman-
Taylor finger is a very good example of the above situa-
tion. This should alleviate the concern expressed by some

researchers' that this mechanism for pattern selection is
merely an artifact of the simplicity of the model that had
been studied to date. ' Of course, additional effort is
needed to see if these ideas will continue to hold for other
systems, most notably directional solidification cells and
crystal dendrites.

Finally, we comment on what effect the inclusion of
corrections to the equations studied here might have.
Inasmuch as the essential feature of the problem, namely
the restabilization due to surface tension, is present al-
ready, any additional modifications will have a small ef-
fect. A small effect might, for example, include the shift-
ing of the limiting value of the width as y goes to zero,
and would certainly shift A,

' at finite y. So, in any regime
of the experiments where the two-dimensional version of
the equations is not accurate, the value of A, will differ
slightly from the results here. One can go on to study
these effects now that the fundamental issues of how the
system behaves in a unique and stable manner have been
clarified.
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